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Stochastic Gradient Descent and Its Variants 
in Machine Learning

1 Introduction
Optimization problems are ubiquitous and arise 
in almost all branches of Science and engineering. 
Given a function f : Rd → R , how do we find

One of the most classical methods to solve this 
problem is gradient descent (GD), which was 
originally proposed by Cauchy23. In order to use 
this algorithm, one has to be able to compute the 
gradient of f (·) , ∇f (w) at any given point w . GD 
starts with an initial vector w0 and performs the 
following updates:

where αk are step sizes. GD has played a funda-
mental role in the field of optimization.

In several settings, however, one might not 
have access to the exact gradients of f (·) . Con-
sider for example, the case where one does not 
have a closed form expression of f (·) but rather 
has to perform experiments/measurements to 
compute properties (such as gradient at a point) 
of f (·) . These experiments and measurements 
have some amount of error and randomness in 
their outputs so that one might have to perform 
a large number of independent measurements 
and average them if one wishes to obtain exact 
gradients. Is it possible to avoid this and make do 
with only one measurement per point? Robbins 
and Monro wrote a seminal paper59 motivated by 
this question. Robbins and Monro59 showed that 
essentially the same update as that of GD, appro-
priately modified, works in this setting. More 
concretely, suppose for every k, we have access 

(1)min
w∈Rd

f (w).

wk+1 = wk − αk∇f (wk), for k = 0, . . . ,
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to a random vector ζk which in expectation is 
∇f (wk), i.e., E[ζk] = ∇f (wk) . Then  Kiefer and 
Wolfowitz41 and Robbins and Monro59 show that 
the updates

where the sequence αk chosen appropriately 
will asymptotically converge to the solution of 
minw∈Rd f (w) under some conditions on f (·) . 
The setting is known as stochastic approximation 
and (2) is known as stochastic gradient descent 
(SGD).

When one talks about the performance of 
SGD, one wants to understand how the sequence 
wk behaves. Qualitatively, one could ask for 
instance, does wk converge to a global minimum 
of (1)? Does it converge to a local minimum? 
Does it converge at all? The answers to these ques-
tions depend on properties of the function f (·) . 
One could ask quantitatively as to how fast does it 
converge to wherever it converges. Let us denote 
by Err(wk) some notion of error in the iterate wk . 
For example, this could be function suboptimal-
ity f (wk)−minw f (w) or distance from a local 
minimum, etc. which usually goes to 0 as k → ∞ . 
The question of quantitative convergence results 
can be decomposed into two parts:

1. Asymptotic How does Err(wk) behave 
as k → ∞ ? Does it behave like O

(
1
k

)
 or 

O

(
1√
k

)
?

2. Nonasymptotic For any given k, can I obtain 
a bound on Err(wk) ? This would include, 
for instance, obtaining the right problem-
dependent constants in the asymptotic 
bounds above.

(2)wk+1 = wk − αkζk ,
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Since41, 59, stochastic approximation has been 
a very active area of research and has made sig-
nificant progress in answering both qualitative 
and quantitative questions above in a variety of 
settings. Works that build upon  Kiefer and Wol-
fowitz41 and Robbins and Monro59 have signifi-
cantly enlarged the classes of functions for which 
one could show asymptotic convergence of (2), 
stepsizes that obtain improved asymptotic con-
vergence rates, and in some cases bounds on the 
nonasymptotic convergence rates. The literature 
is too vast to cite in this short survey. Interested 
readers may consult the monographs15, 18, 42, 43 for 
a detailed overview.

Not long after the setting of stochastic 
approximation and SGD were introduced, they 
found applications in several fields including sig-
nal processing and machine learning11, 65. While 
SGD was used in some specific machine learning 
settings since the 80s e.g.,  LeCu45, 46 and Yann68, 
it was not until the work of  Bottou and Bous-
quet19 that its importance to machine learning 
as a whole was realized. The main point of  Bot-
tou and Bousquet19 was that in several machine 
learning problems, where we might be able to 
compute exact gradients, and it is possible to 
implement GD, SGD might still offer significant 
computational benefits over GD. Contrast this 
with the motivation of  Robbins and Monro59 
which was purely the inability to compute exact 
gradients in certain settings. It is a hallmark of 
profound ideas that they outgrow the confines of 
the initial settings in which they were thought of.

In order to understand the computational 
benefits offered by SGD over GD, and apply it to 
machine learning problems, one needs to thor-
oughly understand the convergence behavior of 
these algorithms. Moreover, as the computational 
budget is limited, understanding asymptotic con-
vergence rates is not sufficient; understanding non-
asymptotic rates is of paramount importance. By 
now, there is a vast amount of literature answering 
these questions in various settings. There are also 
improved algorithms which take advantage of the 
specifics of the machine learning setting.

2  Setting and Outline of the Paper
This survey is concerned with a (small) selec-
tion of such convergence results of SGD (2) and 
its variants, under some widely studied settings 
of the function f (·) and stochastic gradient ζk . 
These results form the basis of the application of 
SGD in various fields, including machine learn-
ing. Different sections of this paper deal with dif-
ferent settings.

Outline Some preliminaries are presented in 
Sect. 3. Section 4 provides a brief primer on how 
SGD is used in the machine learning context. Sec-
tion 5 presents results for the case when f (·) is 
convex, Sect. 6 for the case when f (·) solves the 
principal component analysis (PCA) problem 
and Sect. 7 for the case when f (·) is a noncon-
vex function. Within each of these sections there 
are subsections presenting improved results for 
important special cases. Section 8 summarizes 
these results and presents several important open 
directions for future work. Finally Sect. 9 pre-
sents some resources for using these algorithms 
in practice.

Due to the vast literature on this topic, and 
the size of this survey, it is unavoidable that we 
will not talk about several important works. 
Interested readers may refer more comprehensive 
surveys such as20.

Notation Normal font a, b, etc. is used to 
denote scalars. Bold font, small case letters a,b , 
etc. are used to denote vectors and bold font, 
upper case letters A,B are used to denote matri-
ces. ‖a‖ denotes the ℓ2 norm of a and ‖A‖ denotes 
the operator norm of A . O(·) and Ω(·) denote the 
standard big-Oh and Omega notation, respec-
tively. Õ(·) is the same as O(·) up to a multi-
plicative factor of polylog(·) in all the relevant 
parameters. [n] denotes the set {1, · · · , n}.

3  Preliminaries
In this section, we will give some preliminar-
ies that will be helpful in following the rest of 
this article. An important notion that will arise 
repeatedly in the sections to follow is the gradient 
of a function. Given a function f : Rd → R , and 
a point w ∈ R

d , the gradient of f (·) at w denoted 
by ∇f (w) ∈ R

d is the quantity that satisfies

If ∇f (w) exists (satisfying the property above), 
then f (·) is said to be differentiable at w . A func-
tion f (·) is said to be differentiable if it is differ-
entiable everywhere in Rd . While we assume the 
function to be differentiable throughout this arti-
cle, results in Sects. 5.1 and 5.2 hold even with-
out this property. We will also use the following 
useful facts in some of our proofs. The proofs of 
these statements are left as exercises.

Fact 1 For any natural numbers n1 < n2 , we have

lim
ǫ→0

f (w + ǫv)− f (w)− ǫ · �∇f (w), v�
ǫ

= 0

∀ v ∈ R
d
.
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1. log n2+1
n1

≤
∑n2

i=n1
1
i ≤ 1+ log n2+1

n1

2. 12

(
1
n1

− 1
n2+1

)
≤

∑n2
i=n1

1
i2
≤ 1

2

(
1

n1−1 − 1
n2

)

3. 2
(√

n2 + 1−√
n1
)
≤

∑n2
i=n1

1√
i

≤ 2
(√

n2 −
√
n1 − 1

)

4  How is SGD Used in Machine 
Learning?

A vast majority of machine learning problems 
can be posed as minimizing a loss (think of it as 
cost) function which can be written as an expec-
tation over some underlying distribution x ∼ D

For example, x may correspond to an image and 
D to the distribution of natural images. φ(x,w) 
might indicate how well w explains x . The way we 
have access to the expectation is via some sam-
ples (also called examples) x1, . . . , xn . For exam-
ple, each xi may correspond to a particular image. 
Since the only access we have to the distribution 
D is via x1, . . . , xn , a natural way to solve (3) is by 
solving the following:

The above minimization problem is known as 
empirical risk minimization (ERM) or sample 
average approximation (SAA) since the mini-
mization is over samples x1, . . . , xn . Defining 
the function f (w)

def= 1
n

∑n
i=1 φ(xi,w) , one can 

obtain stochastic gradient for any step by choos-
ing i uniformly at random from 1, . . . , n and 
using ζk

def= ∇φ(xi,w) . Note that it is indeed pos-
sible to compute the full gradient of the func-
tion in (4). However, one needs to go over all the 
examples, which requires Ω(n) time. The hope is 
that computing the stochastic gradient over one 
random example, which requires much less time, 
might still be enough to make progress on (4). To 
summarize, the appeal of SGD in machine learn-
ing applications is predominantly that of com-
putational efficiency. In optimization language, 
problems of the form (4) are called finite sum 
problems.

Since most machine learning problems can 
be written in the form of (4), we are mostly 
interested in understanding convergence rates 
of finite sum problems. However, it turns out 
that there is lot of intuition to be gained from 
understanding the behavior of SGD on simpler 
problems. For example, one could consider the 
setting where we wish to minw f (w) and we have 

(3)min
w∈Rd

Ex∼D[φ(x,w)].

(4)min
w∈Rd

1

n

n∑

i=1

φ(xi,w).

ζk = ∇f (wk)+ gk , where gk is a standard multi-
variate normal random vector. Even these settings 
are interesting and results for such settings will 
also be presented in the sections to follow.

5  Convex Optimization
In this section, we will present results on the per-
formance of stochastic gradient methods for con-
vex optimization.

Assumption 1 A differentiable function f (·) is 
said to be convex if

Convex optimization has played a significant 
role in the development of machine learning. 
Some well-known and representative applica-
tions of convex optimization are support vector 
machines (SVMs)32, sparse linear regression using 
Lasso64 and matrix completion using semidefinite 
relaxation22. Let us briefly describe linear regres-
sion as a representative example.

Linear regression We are given points 
(x1, y1), . . . , (xn, yn) . We wish to find a vector w 
such that w⊤xi ≈ yi for every i ∈ [n] . A classical 
way to do this is linear regression:

The function in the minimization above is con-
vex. We will return to the convex finite sum prob-
lems in Sect. 5.3, but we will first present results 
in the simpler settings where the stochastic gradi-
ents have bounded variance.

5.1  Convex Lipschitz Functions
The simplest setting for analyzing (2) is when the 
function f (·) is Lipschitz (i.e., 

∥∥∇f (wk)
∥∥ is uni-

formly bounded) and the stochastic gradients 
have bounded variance (these two conditions are 
also equivalent to E

[
‖ζk‖2

]
 being bounded). The 

following theorem is a classical result51 on the 
convergence of SGD in such settings:

Theorem  1 Suppose f (·) satisfies Assumption 1. 
If we run the SGD algorithm (2), where the sto-
chastic gradients ζk are all independent and sat-

isfy E[ζk] = ∇f (wk) and E
[
�ζk�2

]
≤ σ 2 , and the 

stepsizes αk are chosen to be �w1−w∗�σ√
k

 . Then, we 
have

f (v) ≥ f (w)+ �∇f (w), v − w�, ∀ w, v.

min
w

1

n

n∑

i=1

(
w⊤xi − yi

)2
.
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Proof The main idea of the proof is to track the 
distance between wk and w∗:

Taking expectations on both sides, we have

By Assumption 1, we know that 
f (w∗) ≥ f (wk)+ �∇f (wk),w

∗ − wk� . Plugging 
this in the above inequality and reorganizing 
gives us

Adding the above expression over k, dividing by 
2
∑t

k=1 αk and substituting the value of αk gives 
us the result.  �

The above theorem tells us that, for convex 
Lipschitz functions and stochastic gradients with 
bounded variance, SGD converges to the opti-
mal solution at a rate of O

(
log t√

t

)
 . This almost 

matches (up to log factors) the best rate possible 
for convex Lipschitz functions even with exact 
gradients51. This means that stochasticity in the 
gradients does not deteriorate the convergence 
rate for this setting.

5.2  Strongly Convex Lipschitz Functions
While O

(
1√
t

)
 convergence rate is the best pos-

sible for convex Lipschitz functions, it turns out 
that SGD has much better convergence rate under 
the additional assumption of strong convexity.

Assumption 2 A differentiable function f (·) is 
µ-strongly convex if

Strong convexity is satisfied, for exam-
ple, by regularized problems where 

(
1

∑t
k=1 αk

t∑

k=1

αkE[f (wk)]

)

− f (w∗) ≤
�w1 − w

∗�σ log t√
t

.

∥∥wk+1 − w
∗∥∥2 =

∥∥wk − w
∗∥∥2

− 2αk�ζk ,wk − w
∗� + α2

k�ζk�
2
.

E

[∥∥wk+1 − w
∗∥∥2

]
≤ E

[∥∥wk − w
∗∥∥2

]

− 2αkE
[
�∇f (wk),wk − w

∗�
]
+ α2

kσ
2
.

2αkE[f (wk)]− f (w∗)

≤
(
E

[∥∥wk − w
∗∥∥2

]
− E

[∥∥wk+1 − w
∗∥∥2

])

+ α2

kσ
2
.

f (v) ≥ f (w)+ �∇f (w), v − w�

+
µ

2
�v − w�2, ∀ w, v.

f (w) = g(w)+ µ
2
�w�2 , with g(·) itself a con-

vex function. The additional µ2 ‖w‖2 is included 
for stability reasons (in other words, to decrease 
overfitting to the training data). The conver-
gence rate of Theorem 1 can be improved under 
Assumption 251.

Theorem 2 Suppose f (·) satisfies Assumption 2. 
If we run the SGD algorithm (2), where the sto-
chastic gradients ζk are all independent and sat-
isfy E[ζk] = ∇f (wk) and E

[
�ζk�2

]
≤ σ 2 , and the 

stepsizes αk = 1
µk . Then,

Proof The proof begins in the same way as in 
that of Theorem 1.

We now use the strong convex prop-
erty to conclude that �∇f (wk),wk − w

∗� ≥
f (wk)− f (w∗)+ µ

2
�wk − w

∗�2 . Plugging this in 
the above inequality gives us

Reorganizing the above, we have

Summing up over k and dividing by t proves the 
theorem.  �

Note that Theorem 2 gives a convergence rate 
of O

(
log t
t

)
 as compared to O

(
log t√

t

)
 of Theo-

rem 1. This matches the best known convergence 
rate for strongly convex Lipschitz functions even 
with an exact gradient oracle.

5.3  Finite Sums
Up till now, we have considered settings where 
we did not have the option of querying the exact 
gradient. We now consider a setting where we do 
have the option of computing the exact gradient 
but it is very expensive. The setting is that of finite 
sums already mentioned in Sect. 4. For notational 
simplicity, we rewrite it as follows:

(
1

t

t∑

k=1

E[f (wk)]

)
− f (w∗) ≤ σ 2 log t

2µt
.

E

[∥∥wk+1 − w
∗∥∥2

]
≤ E

[∥∥wk − w
∗∥∥2

]

− 2αkE
[
�∇f (wk),wk − w

∗�
]
+ α2

kσ
2
.

E

[∥∥wk+1 − w
∗∥∥2

]
≤ (1− αkµ)E

[∥∥wk − w
∗∥∥2

]

− 2αk
(
E[f (wk)]− f (w∗)

)
+ α2

kσ
2
.

E[f (wk)]− f (w∗) ≤
µ

2

(
(k − 1)E

[∥∥wk − w
∗∥∥2

]

−kE
[∥∥wk+1 − w

∗∥∥2
])

+ σ 2

2kµ
.
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where we used φi(w) instead of φ(xi,w) . Recall 
that in these problems, it is indeed possible to 
compute the exact gradient ∇f (w) but it requires 
going overall the n data points. On the other 
hand, it is much easier to obtain a stochastic gra-
dient: sample a number i independently from 1 
to n and return ∇φi(w) . The advantages and dis-
advantages of GD and SGD using exact and sto-
chastic gradients, respectively, is summarized in 
Table 1.

The key question that arises after looking at 
Table 1 is whether it is possible to combine the 
fast iterations of SGD with the fast convergence 
rate of GD. It turns out this is possible under the 
additional assumption of smoothness on each 
component function φi(·).

Assumption 3 A differentiable function f (·) is ℓ
-smooth if

The main idea in obtaining improved rates for 
this setting is that one can reduce the variance in 
stochastic gradients by computing the exact gra-
dient once in a while. The resulting algorithm 
is known as stochastic variance reduced gradi-
ent (SVRG) and was first proposed by  Johnson 
and Zhang38. The SVRG algorithm is presented 
in Algorithm 1. The following theorem provides 
performance guarantees for SVRG: 

(5)
min
w∈Rd

f (w)
def= 1

n

n∑

i=1

φi(w),

f (v) ≤ f (w)+ �∇f (w), v − w� +
ℓ

2
�v − w�2,

∀ w, v.

Theorem 3 Consider the finite sum setting (5). 
Suppose that

––– each φi(·) is convex (Assumption 1) and ℓ
-smooth (Assumption 3) and

–– the total function f (·) is µ strongly convex 
(Assumption 2).

Then, SVRG (Algorithm 1) with learning rate 
α = 1

8ℓ and condition number κ = ℓ
µ

 satisfies 

E
[
f
(
w̃t+1

)]
− f (w∗) ≤

(
3
4

)t(
f (winit)− f (w∗)

)
.

In contrast to Theorems 1 and 2 which guar-

antee convergence rates of Õ
(

1√
t

)
 and Õ

(
1
t

)
 , 

respectively, this theorem guarantees a much 
faster convergence rate of 2−Ω(t) . We also note 
that SVRG was not the first algorithm to achieve 
these improved rates. Stochastic average gradi-
ent (SAG)61 and stochastic dual coordinate ascent 
(SDCA)63 also achieve similar rates in this set-
ting. However, the concept of variance reduction 
was made explicit in SVRG and has since been 
extended to several other settings, one of which 
we will mention in Sect. 7.

Proof (Proof of Theorem 3) We will establish 
the inequality

Table 1: Comparison of GD and SGD.

Method Per iteration Convergence rate

GD Slow Fast

SGD Fast Slow
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from which the result follows. The key compo-
nent of the proof lies in understanding the vari-
ance of stochastic gradient updates in

in Algorithm 1. We see that 
E
[
∇φi

(
ws
r

)
−∇φi

(
w̃s

)
+ g

]
= ∇f (ws

r) and

We will now bound the last expression above 
using smoothness and convexity of each indi-
vidual function φi(·) . Given any point w , consider 
the point w

def= w − 1
ℓ
(∇φi(w)− ∇φi(w

∗)) . By 
smoothness of φi(·) , we have

On the other hand, from convexity, we also have

Combining the above two inequalities and rear-
ranging gives us

Plugging this back in (6), we obtain

where we used the fact that 
E[∇φi(w

∗)] = ∇f (w∗) = 0 . The key property 
of the variance bound in (7) is that as ws

r and 
w̃s → w∗ , the variance bound goes to 0. We are 
now in a place to analyze the SVRG algorithm. 
We have

E
[
f
(
w̃s+1

)]
− f (w∗) ≤

3

4

(
E
[
f
(
w̃s

)]
− f (w∗)

)
,

ws
r+1 ← ws

r − α
(
∇φi

(
ws
r

)
− ∇φi

(
w̃s

)
+ g

)

(6)

E

[∥∥∇φi
(
w

s

r

)
−∇φi

(
w̃s

)
+ g

∥∥2
]

≤ 2E

[∥∥∇φi
(
w

s
r

)
− ∇φi

(
w

∗)∥∥2
]

+ 2E

[∥∥∇φi
(
w̃s

)
− ∇φi

(
w

∗)∥∥2
]
.

φi(w) ≤ φi(w)−
1

ℓ
�∇φi(w),∇φi(w)−∇φi

(
w

∗)�

+ ℓ

2ℓ2

∥∥∇φi(w)− ∇φi
(
w

∗)∥∥2.

φi(w) ≥ φi
(
w∗)+ �∇φi

(
w∗),w − w∗�.

∥∥∇φi(w)−∇φi
(
w

∗)∥∥2 ≤ 2ℓ
(
φi(w)− φi

(
w

∗)

−�∇φi
(
w

∗)
,w − w

∗�
)
.

(7)

E

[∥∥∇φi
(
w

s

r

)
−∇φi

(
w̃s

)
+ g

∥∥2
]

≤ 4ℓ
(
E
[
φi
(
w

s
r

)]
− E

[
φi
(
w

∗)]

−�E
[
∇φi

(
w

∗)]
,w

s
r − w

∗�
)

+ 4ℓ
(
E
[
φi
(
w̃s

)]
− E

[
φi
(
w

∗)]

−�E
[
∇φi

(
w

∗)]
, w̃s − w

∗�
)

= 4ℓ
(
E
[
f
(
w

s
r

)]
− f

(
w

∗)+ E
[
f
(
w̃s

)]
− f

(
w

∗))
,

Summing the above inequality over r and rear-
ranging gives us

Using convexity, we can now easily see that

This proves the result.  �

6  Principal Component Analysis (PCA)
We now move from the convex optimization set-
ting to a new one: that of principal component 
analysis (PCA). PCA, originally introduced in  
Hotelling33, is a way of finding important direc-
tions in the data and do dimensionality reduction. 
It has been widely used in several applications39. 
PCA is equivalent to the following: suppose each 
data point xi ∈ R

d , i = 1, . . . , n is drawn inde-
pendently from some underlying probability 
distribution; then given an integer k ≥ 1 , find 

the top-k eigenvectors of �
def= E

[
xixi

⊤] . Here 
again, one solves this problem using samples by 
constructing the empirical covariance matrix 
�̂

def= 1
n

∑n
i=1 xixi

⊤ and finding the top-q eigen-
vectors of �̂.

In several settings either due to the sequen-
tial nature of data generation or due to the large 
ambient dimension d, storing all the samples 
x1, . . . , xn or the full empirical covariance matrix 
�̂ might not be feasible31, 60, 67. Instead we would 

E

[∥∥ws

r+1 − w
∗∥∥2

]
= E

[∥∥ws

r − w
∗∥∥2

]

− 2αE
[
�∇φi

(
w

s
r

)
−∇φi

(
w̃s

)
+ g,w

s
r − w

∗�
]

+ α2
E

[∥∥∇φi
(
w

s

r

)
−∇φi

(
w̃s

)
+ g

∥∥2
]

≤ E

[∥∥ws

r − w
∗∥∥2

]
− 2αE

[
φi
(
w

s

r

)
− φi(w

∗)
]

+ 4α2ℓ
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like to estimate the top-k eigenvectors of � using 
only O(dk) space, by sequentially going over the 
samples x1, . . . , xn (and not storing them). Let us 
first consider the simple case of q = 1 , i.e., we are 
interested in estimating the top eigenvector of � . 
The optimization problem corresponding to this 
is given by

A natural approach would be to perform stochas-
tic gradient ascent (SGA) (ascent as opposed to 
descent since we are dealing with a maximization 
rather than a minimization problem). Note also 
that we have the constraint �w� = 1 , so the SGA 
step will be followed by a projection step onto the 
unit ball. So the SGA with projection algorithm is

The above algorithm was first considered by  
Oja53 and since, has been known as Oja’s algo-
rithm.  Oja53 in fact showed that for a suitable 
choice of stepsize sequence αk , the iterates wk 
asymptotically converge to the top eigenvector of 
� . Obtaining nonasymptotic convergence rates 
has been a much more recent endeavor8, 13, 34, 48. 
As an example of the kind of results one has in 
this situation, we state here (a simplified version 
of) the main result of  Jain et al.34.

Theorem 4 Suppose data points xi come from a 
distribution D such that

•–– �xi� ≤ M with probability 1,
•–– �1 > �2 denote the largest and second larg-

est eigenvalues respectively of the covariance 
matrix �

def= E
[
xixi

⊤] and
•–– w∗ denotes the largest eigenvector of � (i.e., 

eigenvector corresponding to eigenvalue �1).

If w1 is chosen from standard normal distribution, 
then for an appropriate stepsize sequence αk , for 
any fixed t ≥ 40M�1 log

2 d

(�1−�2)
2  , with probability at least 

3 / 4, we have

where sin(wt ,w
∗) denotes the sin of the angle 

between wt and w∗.
We will only give a proof outline of the above 

theorem. Interested readers may refer  Jain et al.34 
for the full proof.

max
w∈Rd :�w�=1

w⊤
�w = E

[
�x,w�2

]
.

(8)

w̃ = wk + αk�xk ,wk�xk and wk+1 = w̃

�w̃� .

sin2
(
wt ,w

∗) ≤ M�1 log d

(�1 − �2)
2
· 1
t
,

Proof (Proof outline) The main idea behind the 
proof of Theorem 4 is that one can write the final 
iterate wt as a scaled version of a linear function 
of the initial vector w1:

Here I denotes the identity matrix and Z is a nor-
malization constant (that depends on xk and w1 ). 
Since sin(·, ·) does not depend on the magnitude 
of the vectors, we can ignore Z and try to bound 
sin

(∏t−1
k=1

(
I+ αkxkxk

⊤) · w1,w
∗
)
 . Let us 

denote St
def=

∏t−1
k=1

(
I+ αkxkxk

⊤) for notational 
simplicity. Using the definition of sin and the fact 
that �w∗� = 1 , we have

Since w1 is chosen uniformly from the unit 
sphere, it turns out that the expression above is 
approximately equal to (up to constant factors) 
Tr

(
St

⊤
(
I−w∗w∗⊤

)
St

)

Tr
(
St

⊤St
)  . The reason for this is that for 

any PSD matrix A , if w1 is a standard normal vec-
tor, then we have w1

⊤Aw1 ≈ Tr(A) (up to con-
stant factors) with high probability. So we have 
concluded that

The nice thing about the above expression is that 
we have managed to aggregate the behavior of 
the algorithm into the trace of certain matrices. 
These matrices are relatively simple and comprise 
of product of matrices of the form I+ αkxkxk

⊤ . 
Since xk themselves are random, one can bound 
the expected values of these quantities and use 
Markov/Chebyshev inequalities to obtain the 
desired bounds with constant probability. �

A particularly nice aspect of the above result is 
that it matches the best known results we know of 
even if one were allowed to compute the empiri-
cal covariance matrix. This result has since been 
extended to the case where there is no gap, i.e., 
�1 = �2 (in this case, one shows convergence of 
Rayleigh quotient)9 and to the case q ≥ 28. The 

wt =
1

Z

t−1∏

k=1

(
I+ αkxkxk

⊤
)
· w1.

(9)
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best known results for q ≥ 2 , however, are signifi-
cantly suboptimal compared to the case when we are 
allowed to compute the empirical covariance matrix. 
Bridging this gap is an important open problem.

7  Nonconvex Optimization
Nonconvex optimization has always been an 
important part of machine learning as most 
machine learning problems, in their origi-
nal form, turn out to be nonconvex. Examples 
include k-means clustering, matrix factorization 
with sparsity/rank/nonnegativity constraints, 
density estimation, training neural networks and 
so on. Since nonconvex optimization is NP-hard 
in the worst case, one cannot hope to obtain 
polynomial convergence rates to global minima 
or even local minima. The goal is more mod-
est—convergence to stationary points. Later on in 
this section, we will give examples where finding 
such stationary points guarantees a good solution 
in terms of function value. We first introduce the 
notion of first-order stationary point.

Definition 1 A point w is said to be an ǫ-
first order stationary point ( ǫ-FOSP) of f (·) if ∥∥∇f (w)

∥∥ ≤ ǫ.

The following classical (and folklore) result 
shows the convergence of SGD to first-order sta-
tionary points:

Theorem 5 Suppose the function f (·) is ℓ

-smooth (Assumption 3) and lower bounded 
i.e., minw f (w) > −∞ . Suppose further that 
at each step, we perform SGD with stochas-
tic gradient ζk satisfying E[ζk] = ∇f (wk) and 

E
[
�ζk�2

]
≤ σ 2 . Fix t and choose stepsizes 

α[k] = α
def=

√
2(f (w0)−minw f (w))

ℓσ 2  . Then,

Proof Using smoothness and properties of sto-
chastic gradients,

min
k∈[t]

E

[∥∥∇f (wk)
∥∥2
]

≤

√
2σ 2ℓ

(
f (w0)−minw f (w)

)

t
.

E[f (wk+1)] ≤ E[f (wk)]+ E[�∇f (wk),wk+1 − wk�]+
ℓ

2
�wk+1 − wk�2

= E[f (wk)]− αE[�∇f (wk), ζk�]+
α2ℓ

2
�ζk�2

= E[f (wk)]− αE

[∥∥∇f (wk)
∥∥2
]
+

α2σ 2ℓ

2
.

Reorganizing and adding, we obtain

Plugging in the choice of α proves the theorem. �
While GD converges to FOSPs, it turns out 

that FOSPs are not always good solutions to the 
minimization problem minw f (w) that we are 
interested in. We would like to do better than 
first-order stationarity. This brings us to

Definition 2 A point w is said to be an (ǫg , ǫh)
-second order stationary point ( (ǫg , ǫh)-SOSP) of 
f (·) if 

∥∥∇f (w)
∥∥ ≤ ǫg and �min

(
∇2f (w)

)
≥ −ǫh.

In the context of several machine learning 
problems, it turns out that while these prob-
lems have several highly suboptimal FOSPs25, 
all SOSPs are close to optimal14, 16, 24, 30, 40, 49. 
This motivates the quest for finding SOSPs and 
not just FOSPs. Let us call FOSPs which are not 
SOSPs as first-order saddle points. It turns out 
that FOSPs, which are not SOSPs are actually 
unstable fixed points of gradient flow (i.e., GD 
with step size → 0 ), and the set of all points from 
where gradient flow converges to first-order sad-
dle points is a measure zero set (in the ambient 
Lebesgue measure)47, 54. However, GD with ran-
dom initialization might still take exponential 
time to escape these first order saddle points and 
converge to SOSPs28. In a remarkable result,  Ge 
et al.29 showed that a little amount of noise in the 
updates of GD can help in escaping first order 
saddles and converge to SOSPs in polynomial 
time.This means that not doing exact gradient 
descent is not a disadvantage but rather a potent 
weapon!  Jin et al.37 further improved upon the 
results of  Ge et al.29 by decreasing the depend-
ence on the dimension from polynomial to 
polylog. The perturbed gradient descent (PGD) 
algorithm of Jin et al.37 is given in Algorithm 2. 
Note that the algorithm essentially performs GD 
but perturbs the iterate once in a while by adding 
appropriate noise. 

1

t

t∑

k=1

E

[∥∥∇f (wk)
∥∥2
]

≤
f (w1)−minw f (w)

αt
+

αℓσ 2

2
.
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Before we state the result, we need to intro-
duce the following assumption:

Assumption 4 A twice differentiable func-
tion f (·) is said to be ρ-Hessian Lipschitz if ∥∥∇2f (w)− ∇2f (z)

∥∥ ≤ ρ�w − z� , for every w 
and z.

The following theorem gives the convergence 
rate of PGD for smooth and Hessian Lipschitz 
functions:

Theorem 6 Suppose f (·) : Rd → R is ℓ-smooth 
(Assumption 3) and ρ-Hessian Lipschitz (Assump-
tion 4). Then, for any given ǫ , for appropriate choice 
of the step size α and t ≥ Õ

(
ℓ(f (w0)−minw f (w))

ǫ2

)
 , 

we have that at least half of the iterates wk , 
k = 1, . . . , t are 

(
ǫ,
√
ρǫ

)
-SOSPs.

We will only present a high level outline of the 
proof of the above theorem. Interested readers 
may refer  Jin et al.37 for the full proof.

Proof (Proof outline) First, the algorithm is a 
descent algorithm, i.e., the function value (almost) 
always decreases. The proof follows by showing that 
if an iterate is not an SOSP then the function value 
decreases significantly in the next few steps. Since the 
function is lower bounded, it can decrease signifi-
cantly only a limited number of times. So at least 
half of the iterates are SOSPs. The main ideas in the 
proof of the above result are as follows:

1. From the proof of Theorem  5, the function 
value decreases significantly if an iterate is not 
an FOSP.

2. If the iterates wk move significantly, then the 
function value again decreases significantly. 
This is called improve-or-localize property.

3. If the current iterate is an FOSP, but not 
an SOSP, and if the iterates wk do not move 
much, then one can approximate the function 
with a quadratic (using the Hessian) by Hes-
sian Lipschitz property.

4. If f (·) were quadratic with a significant nega-
tive eigenvalue, one can analyze the exact 
behavior of PGD as matrix power update and 
show that PGD decreases function value sig-
nificantly.

5. By controlling the approximation from quad-
ratic and combining with the decrease from 
item 3 above, one can show that the function 
value decreases significantly even when the 
iterates do not move much.

6. As mentioned above, since the function is 
lower bounded, the function value cannot 
decrease arbitrarily. So after enough number 
of iterations, it has to be the case that several 
of the Hessians do not have a large nega-
tive eigenvalue and hence the corresponding 
points have to be SOSPs.

 �

7.1  Finite Sum Setting
In this section, we consider the finite sum set-
ting (5) where neither the individual φi(·) nor the 
sum function f (·) is convex. In this setting one 
again wonders whether it is possible to combine 
GD and SGD in some way to obtain the best of 
both worlds.  Allen-Zhu and Hazan7 and Reddi 
et al.58 independently showed that the SVRG 
algorithm can indeed be extended to the non-
convex setting and obtains better rates than GD 
and SGD. The nonconvex SVRG algorithm is pre-
sented in Algorithm 3. We now state the following 
theorem (with out proof) which gives conver-
gence rates of nonconvex SVRG to FOSPs: 
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Theorem 7 Suppose f (·) is a finite sum func-
tion (5) where each component φi(·) is ℓ-smooth 
(Assumption 3). For any ǫ > 0 , if the stepsize is 
chosen α = 1

ℓn2/3
 and t > O(n) , then we have

Note that the above result obtains a conver-
gence rate of O

(
1
t

)
 as compared to the O

(
1√
t

)
 

of Theorem 5. There have also been recent works 
on designing SVRG style algorithms for finding 
SOSPs5, 6, 10. These papers combine ideas from 
the proof of Theorem 7 as well as the PCA results 
mentioned in Sect. 6 to efficiently escape saddle 
points.

8  Summary and Future Directions
In this work, we have surveyed some important 
results on the performance of SGD in various set-
tings. The several applications of SGD in machine 
learning have led to new results on the perfor-
mance of SGD in various contexts as well as new 
algorithms with better performance. Still, there 
are a number of important questions about SGD 
that we do not know the answer to. We mention 
(in our view) the most important ones below:

•–– Step size schedules Given a fixed time horizon 
t, what is the best step size schedule αk for 
k = 1, . . . , t ? Even in the setting of convex 
optimization, while the 1√

k
 and 1k step sizes of 

Theorems 1 and 2 are optimal in the worst 
case, they are suboptimal on a problem to 
problem basis.  Polyak and Juditsky56 indeed 
shows that using a constant learning rate with 
averaging at the end achieves asymptotically 
optimal rates for quadratic problems. However, 
for nonquadratic problems, decaying step 
sizes seems necessary. While there are several 
papers on this topic12, 27, 50, there is still not 
a clear answer to the right decay schemes for 
general (even convex) functions.

•–– Minibatching In finite sum settings, in prac-
tice, one uses SGD with minibatching, i.e., 
instead of picking an i at random and using 
∇φi(w) , one chooses i1, . . . , ib at random 
and uses the average 1b

∑b
j=1 ∇ij (w) . Here b is 

known as the minibatch size. The main rea-
son for doing this in practice is paralleliza-
tion since the b gradient computations can be 
done simultaneously on different machines. 
At the same time, minibatching also leads to 

min
k

E

[∥∥∇f (wk)
∥∥2
]

≤
ℓn2/3

(
f (w0)−minw f (w)

)

t
.

smaller variance in the stochastic gradient 
and one would expect this to give faster con-
vergence rate. While b = 1 corresponds to full 
SGD, b = n corresponds to full GD. We would 
like to know what the optimal value of b is for 
which we get the best convergence rates. Most 
existing results that try to do this comparison, 
e.g.,  Dekel et al.26 use (loose) upper bounds 
on the performance of minibatch SGD which 
does not give conclusive answers. To the best 
of our knowledge, the only work that stud-
ies the true effect of minibatch SGD is for the 
linear least squares setting36. Extending such 
results beyond linear regression is an impor-
tant open problem.

•–– Acceleration While any improvement in the 
convergence rate of an algorithm is termed 
acceleration, we are referring here in particu-
lar to the technique of momentum or Nest-
erov acceleration. Can Nesterov’s acceleration 
technique be used to improve the convergence 
rate of SGD? In a remarkable result,  Lan44 
showed for the first time that momentum 
techniques can indeed improve stochastic gra-
dient methods if the stochastic gradient has 
bounded variance. Most machine learning 
settings, however, do not fall in this category. 
For the problem of strongly convex linear 
least squares regression (which is not cov-
ered by  Lan44),  Jain et al.35 showed that it is 
indeed possible to again use these techniques 
to improve the convergence rate of SGD. 
Extending it to non-strongly convex linear 
least squares regression is an open problem. 
Much less is known for problems beyond lin-
ear least squares regression.

•–– Parallelization and distributed algorithms One 
serious issue with SGD on large-scale prob-
lems is its sequential nature—the iterations 
have to be performed one after another. How 
do we parallelize this computation. So far, 
there have been three approaches (1) mini-
batching, (2) model averaging and iii) asyn-
chronous SGD. We have already mentioned 
questions related to minibatching above. 
Model averaging refers to running SGD inde-
pendently on different machines and averag-
ing the resultant vectors w from those dif-
ferent machines. First this makes sense only 
in the convex setting. Even in the convex (or 
locally convex even if the function is globally 
nonconvex) setting, this is known to be opti-
mal only for linear least squares regression. 
While we do obtain some bounds in the gen-
eral convex setting, it is unknown whether this 
is the optimal way to make use of different 
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machines. Finally, asynchronous SGD refers to 
the setting where different machines maintain 
their own local copies of the iterates wk and 
perform SGD on them while synchronizing 
them only once in a while. There have been 
some interesting results on this approach, 
e.g.,  Recht et al.57 but they cover only some 
special cases, and their relevance to real-world 
machine learning problems is unclear.

•–– Stochastic quasi Newton methods In the con-
text of deterministic gradient-based methods, 
ones that construct approximations of the 
Hessian (known as quasi-Newton methods) 
such as BFGS, l-BFGS, see chapters 8 and 9 in  
Nocedal and Wright52, are superior to gradi-
ent descent. While there has been some work 
on designing such methods with stochastic 
gradients17, 21, 62, 66, they have so far not been 
successfully applied to large-scale machine 
learning problems.

We believe that making progress on answering 
the above questions is necessary to advance state 
of the art in optimization in machine learning.

9  Resources
The simplicity of SGD (2) and its variants such 
as SVRG means that in settings where stochas-
tic gradients are computable, implementing it 
is straightforward. In cases where writing code 
for computing stochastic gradients might be 
involved, one might try to use autodifferentia-
tion packages such as  Autodiff 1, Autograd2 and 
Casadi3, etc. In the context of training neural 
networks, there are frameworks that are quite 
easy to use such as PyTorch55, TensorFlow4, etc. 
The painstaking part of using these in practice 
is, however, the choice of step sizes αk for which 
there is, as yet, no fully automatic procedure that 
works well, and one has to choose them manually 
and pick what works best.
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