
1 3J. Indian Inst. Sci. | VOL 99:2 | 201–213 June 2019 | journal.iisc.ernet.in

Stochastic Gradient Descent and Its Variants
in Machine Learning

1 Introduction
Optimization problems are ubiquitous and arise
in almost all branches of Science and engineering.
Given a function f : Rd → R , how do we find

One of the most classical methods to solve this
problem is gradient descent (GD), which was
originally proposed by Cauchy23. In order to use
this algorithm, one has to be able to compute the
gradient of f (·) , ∇f (w) at any given point w . GD
starts with an initial vector w0 and performs the
following updates:

where αk are step sizes. GD has played a funda-
mental role in the field of optimization.

In several settings, however, one might not
have access to the exact gradients of f (·) . Con-
sider for example, the case where one does not
have a closed form expression of f (·) but rather
has to perform experiments/measurements to
compute properties (such as gradient at a point)
of f (·) . These experiments and measurements
have some amount of error and randomness in
their outputs so that one might have to perform
a large number of independent measurements
and average them if one wishes to obtain exact
gradients. Is it possible to avoid this and make do
with only one measurement per point? Robbins
and Monro wrote a seminal paper59 motivated by
this question. Robbins and Monro59 showed that
essentially the same update as that of GD, appro-
priately modified, works in this setting. More
concretely, suppose for every k, we have access

(1)min
w∈Rd

f (w).

wk+1 = wk − αk∇f (wk), for k = 0, . . . ,

Praneeth Netrapalli*

J. Indian Inst. Sci.

A Multidisciplinary Reviews Journal

ISSN: 0970-4140 Coden-JIISAD

Abstract | Stochastic gradient descent (SGD) is a fundamental algo-
rithm which has had a profound impact on machine learning. This arti-
cle surveys some important results on SGD and its variants that arose in
machine learning.
Keywords: Stochastic optimization, Gradient descent, Large scale optimization

R
EV

IE
W

A

R
T

IC
LE

to a random vector ζk which in expectation is
∇f (wk), i.e., E[ζk] = ∇f (wk) . Then Kiefer and
Wolfowitz41 and Robbins and Monro59 show that
the updates

where the sequence αk chosen appropriately
will asymptotically converge to the solution of
minw∈Rd f (w) under some conditions on f (·) .
The setting is known as stochastic approximation
and (2) is known as stochastic gradient descent
(SGD).

When one talks about the performance of
SGD, one wants to understand how the sequence
wk behaves. Qualitatively, one could ask for
instance, does wk converge to a global minimum
of (1)? Does it converge to a local minimum?
Does it converge at all? The answers to these ques-
tions depend on properties of the function f (·) .
One could ask quantitatively as to how fast does it
converge to wherever it converges. Let us denote
by Err(wk) some notion of error in the iterate wk .
For example, this could be function suboptimal-
ity f (wk)−minw f (w) or distance from a local
minimum, etc. which usually goes to 0 as k → ∞ .
The question of quantitative convergence results
can be decomposed into two parts:

1. Asymptotic How does Err(wk) behave
as k → ∞ ? Does it behave like O

(
1
k

)
 or

O

(
1√
k

)
?

2. Nonasymptotic For any given k, can I obtain
a bound on Err(wk) ? This would include,
for instance, obtaining the right problem-
dependent constants in the asymptotic
bounds above.

(2)wk+1 = wk − αkζk ,

© Indian Institute of Science 2019.

This article belongs to the
Special issue—Recent
Advances in Machine
Learning.

Microsoft Research,
#9, Vigyan 1st Floor,
Lavelle Road, Bengaluru,
Karnataka 560001, India.
*praneeth@microsoft.com

http://orcid.org/0000-0003-3863-6162
http://crossmark.crossref.org/dialog/?doi=10.1007/s41745-019-0098-4&domain=pdf

202

P. Netrapalli

1 3 J. Indian Inst. Sci.| VOL 99:2 | 201–213 June 2019 | journal.iisc.ernet.in

Since41, 59, stochastic approximation has been
a very active area of research and has made sig-
nificant progress in answering both qualitative
and quantitative questions above in a variety of
settings. Works that build upon Kiefer and Wol-
fowitz41 and Robbins and Monro59 have signifi-
cantly enlarged the classes of functions for which
one could show asymptotic convergence of (2),
stepsizes that obtain improved asymptotic con-
vergence rates, and in some cases bounds on the
nonasymptotic convergence rates. The literature
is too vast to cite in this short survey. Interested
readers may consult the monographs15, 18, 42, 43 for
a detailed overview.

Not long after the setting of stochastic
approximation and SGD were introduced, they
found applications in several fields including sig-
nal processing and machine learning11, 65. While
SGD was used in some specific machine learning
settings since the 80s e.g., LeCu45, 46 and Yann68,
it was not until the work of Bottou and Bous-
quet19 that its importance to machine learning
as a whole was realized. The main point of Bot-
tou and Bousquet19 was that in several machine
learning problems, where we might be able to
compute exact gradients, and it is possible to
implement GD, SGD might still offer significant
computational benefits over GD. Contrast this
with the motivation of Robbins and Monro59
which was purely the inability to compute exact
gradients in certain settings. It is a hallmark of
profound ideas that they outgrow the confines of
the initial settings in which they were thought of.

In order to understand the computational
benefits offered by SGD over GD, and apply it to
machine learning problems, one needs to thor-
oughly understand the convergence behavior of
these algorithms. Moreover, as the computational
budget is limited, understanding asymptotic con-
vergence rates is not sufficient; understanding non-
asymptotic rates is of paramount importance. By
now, there is a vast amount of literature answering
these questions in various settings. There are also
improved algorithms which take advantage of the
specifics of the machine learning setting.

2 Setting and Outline of the Paper
This survey is concerned with a (small) selec-
tion of such convergence results of SGD (2) and
its variants, under some widely studied settings
of the function f (·) and stochastic gradient ζk .
These results form the basis of the application of
SGD in various fields, including machine learn-
ing. Different sections of this paper deal with dif-
ferent settings.

Outline Some preliminaries are presented in
Sect. 3. Section 4 provides a brief primer on how
SGD is used in the machine learning context. Sec-
tion 5 presents results for the case when f (·) is
convex, Sect. 6 for the case when f (·) solves the
principal component analysis (PCA) problem
and Sect. 7 for the case when f (·) is a noncon-
vex function. Within each of these sections there
are subsections presenting improved results for
important special cases. Section 8 summarizes
these results and presents several important open
directions for future work. Finally Sect. 9 pre-
sents some resources for using these algorithms
in practice.

Due to the vast literature on this topic, and
the size of this survey, it is unavoidable that we
will not talk about several important works.
Interested readers may refer more comprehensive
surveys such as20.

Notation Normal font a, b, etc. is used to
denote scalars. Bold font, small case letters a,b ,
etc. are used to denote vectors and bold font,
upper case letters A,B are used to denote matri-
ces. ‖a‖ denotes the ℓ2 norm of a and ‖A‖ denotes
the operator norm of A . O(·) and Ω(·) denote the
standard big-Oh and Omega notation, respec-
tively. Õ(·) is the same as O(·) up to a multi-
plicative factor of polylog(·) in all the relevant
parameters. [n] denotes the set {1, · · · , n}.

3 Preliminaries
In this section, we will give some preliminar-
ies that will be helpful in following the rest of
this article. An important notion that will arise
repeatedly in the sections to follow is the gradient
of a function. Given a function f : Rd → R , and
a point w ∈ R

d , the gradient of f (·) at w denoted
by ∇f (w) ∈ R

d is the quantity that satisfies

If ∇f (w) exists (satisfying the property above),
then f (·) is said to be differentiable at w . A func-
tion f (·) is said to be differentiable if it is differ-
entiable everywhere in Rd . While we assume the
function to be differentiable throughout this arti-
cle, results in Sects. 5.1 and 5.2 hold even with-
out this property. We will also use the following
useful facts in some of our proofs. The proofs of
these statements are left as exercises.

Fact 1 For any natural numbers n1 < n2 , we have

lim
ǫ→0

f (w + ǫv)− f (w)− ǫ · �∇f (w), v�
ǫ

= 0

∀ v ∈ R
d
.

203

Stochastic Gradient Descent and Its Variants in Machine Learning

1 3J. Indian Inst. Sci. | VOL 99:2 | 201–213 June 2019 | journal.iisc.ernet.in

1. log n2+1
n1

≤
∑n2

i=n1
1
i ≤ 1+ log n2+1

n1

2. 12

(
1
n1

− 1
n2+1

)
≤

∑n2
i=n1

1
i2
≤ 1

2

(
1

n1−1 − 1
n2

)

3. 2
(√

n2 + 1−√
n1
)
≤

∑n2
i=n1

1√
i

≤ 2
(√

n2 −
√
n1 − 1

)

4 How is SGD Used in Machine
Learning?

A vast majority of machine learning problems
can be posed as minimizing a loss (think of it as
cost) function which can be written as an expec-
tation over some underlying distribution x ∼ D

For example, x may correspond to an image and
D to the distribution of natural images. φ(x,w)
might indicate how well w explains x . The way we
have access to the expectation is via some sam-
ples (also called examples) x1, . . . , xn . For exam-
ple, each xi may correspond to a particular image.
Since the only access we have to the distribution
D is via x1, . . . , xn , a natural way to solve (3) is by
solving the following:

The above minimization problem is known as
empirical risk minimization (ERM) or sample
average approximation (SAA) since the mini-
mization is over samples x1, . . . , xn . Defining
the function f (w)

def= 1
n

∑n
i=1 φ(xi,w) , one can

obtain stochastic gradient for any step by choos-
ing i uniformly at random from 1, . . . , n and
using ζk

def= ∇φ(xi,w) . Note that it is indeed pos-
sible to compute the full gradient of the func-
tion in (4). However, one needs to go over all the
examples, which requires Ω(n) time. The hope is
that computing the stochastic gradient over one
random example, which requires much less time,
might still be enough to make progress on (4). To
summarize, the appeal of SGD in machine learn-
ing applications is predominantly that of com-
putational efficiency. In optimization language,
problems of the form (4) are called finite sum
problems.

Since most machine learning problems can
be written in the form of (4), we are mostly
interested in understanding convergence rates
of finite sum problems. However, it turns out
that there is lot of intuition to be gained from
understanding the behavior of SGD on simpler
problems. For example, one could consider the
setting where we wish to minw f (w) and we have

(3)min
w∈Rd

Ex∼D[φ(x,w)].

(4)min
w∈Rd

1

n

n∑

i=1

φ(xi,w).

ζk = ∇f (wk)+ gk , where gk is a standard multi-
variate normal random vector. Even these settings
are interesting and results for such settings will
also be presented in the sections to follow.

5 Convex Optimization
In this section, we will present results on the per-
formance of stochastic gradient methods for con-
vex optimization.

Assumption 1 A differentiable function f (·) is
said to be convex if

Convex optimization has played a significant
role in the development of machine learning.
Some well-known and representative applica-
tions of convex optimization are support vector
machines (SVMs)32, sparse linear regression using
Lasso64 and matrix completion using semidefinite
relaxation22. Let us briefly describe linear regres-
sion as a representative example.

Linear regression We are given points
(x1, y1), . . . , (xn, yn) . We wish to find a vector w
such that w⊤xi ≈ yi for every i ∈ [n] . A classical
way to do this is linear regression:

The function in the minimization above is con-
vex. We will return to the convex finite sum prob-
lems in Sect. 5.3, but we will first present results
in the simpler settings where the stochastic gradi-
ents have bounded variance.

5.1 Convex Lipschitz Functions
The simplest setting for analyzing (2) is when the
function f (·) is Lipschitz (i.e.,

∥∥∇f (wk)
∥∥ is uni-

formly bounded) and the stochastic gradients
have bounded variance (these two conditions are
also equivalent to E

[
‖ζk‖2

]
 being bounded). The

following theorem is a classical result51 on the
convergence of SGD in such settings:

Theorem 1 Suppose f (·) satisfies Assumption 1.
If we run the SGD algorithm (2), where the sto-
chastic gradients ζk are all independent and sat-

isfy E[ζk] = ∇f (wk) and E
[
�ζk�2

]
≤ σ 2 , and the

stepsizes αk are chosen to be �w1−w∗�σ√
k

 . Then, we
have

f (v) ≥ f (w)+ �∇f (w), v − w�, ∀ w, v.

min
w

1

n

n∑

i=1

(
w⊤xi − yi

)2
.

204

P. Netrapalli

1 3 J. Indian Inst. Sci.| VOL 99:2 | 201–213 June 2019 | journal.iisc.ernet.in

Proof The main idea of the proof is to track the
distance between wk and w∗:

Taking expectations on both sides, we have

By Assumption 1, we know that
f (w∗) ≥ f (wk)+ �∇f (wk),w

∗ − wk� . Plugging
this in the above inequality and reorganizing
gives us

Adding the above expression over k, dividing by
2
∑t

k=1 αk and substituting the value of αk gives
us the result. �

The above theorem tells us that, for convex
Lipschitz functions and stochastic gradients with
bounded variance, SGD converges to the opti-
mal solution at a rate of O

(
log t√

t

)
 . This almost

matches (up to log factors) the best rate possible
for convex Lipschitz functions even with exact
gradients51. This means that stochasticity in the
gradients does not deteriorate the convergence
rate for this setting.

5.2 Strongly Convex Lipschitz Functions
While O

(
1√
t

)
 convergence rate is the best pos-

sible for convex Lipschitz functions, it turns out
that SGD has much better convergence rate under
the additional assumption of strong convexity.

Assumption 2 A differentiable function f (·) is
µ-strongly convex if

Strong convexity is satisfied, for exam-
ple, by regularized problems where

(
1

∑t
k=1 αk

t∑

k=1

αkE[f (wk)]

)

− f (w∗) ≤
�w1 − w

∗�σ log t√
t

.

∥∥wk+1 − w
∗∥∥2 =

∥∥wk − w
∗∥∥2

− 2αk�ζk ,wk − w
∗� + α2

k�ζk�
2
.

E

[∥∥wk+1 − w
∗∥∥2

]
≤ E

[∥∥wk − w
∗∥∥2

]

− 2αkE
[
�∇f (wk),wk − w

∗�
]
+ α2

kσ
2
.

2αkE[f (wk)]− f (w∗)

≤
(
E

[∥∥wk − w
∗∥∥2

]
− E

[∥∥wk+1 − w
∗∥∥2

])

+ α2

kσ
2
.

f (v) ≥ f (w)+ �∇f (w), v − w�

+
µ

2
�v − w�2, ∀ w, v.

f (w) = g(w)+ µ
2
�w�2 , with g(·) itself a con-

vex function. The additional µ2 ‖w‖2 is included
for stability reasons (in other words, to decrease
overfitting to the training data). The conver-
gence rate of Theorem 1 can be improved under
Assumption 251.

Theorem 2 Suppose f (·) satisfies Assumption 2.
If we run the SGD algorithm (2), where the sto-
chastic gradients ζk are all independent and sat-
isfy E[ζk] = ∇f (wk) and E

[
�ζk�2

]
≤ σ 2 , and the

stepsizes αk = 1
µk . Then,

Proof The proof begins in the same way as in
that of Theorem 1.

We now use the strong convex prop-
erty to conclude that �∇f (wk),wk − w

∗� ≥
f (wk)− f (w∗)+ µ

2
�wk − w

∗�2 . Plugging this in
the above inequality gives us

Reorganizing the above, we have

Summing up over k and dividing by t proves the
theorem. �

Note that Theorem 2 gives a convergence rate
of O

(
log t
t

)
 as compared to O

(
log t√

t

)
 of Theo-

rem 1. This matches the best known convergence
rate for strongly convex Lipschitz functions even
with an exact gradient oracle.

5.3 Finite Sums
Up till now, we have considered settings where
we did not have the option of querying the exact
gradient. We now consider a setting where we do
have the option of computing the exact gradient
but it is very expensive. The setting is that of finite
sums already mentioned in Sect. 4. For notational
simplicity, we rewrite it as follows:

(
1

t

t∑

k=1

E[f (wk)]

)
− f (w∗) ≤ σ 2 log t

2µt
.

E

[∥∥wk+1 − w
∗∥∥2

]
≤ E

[∥∥wk − w
∗∥∥2

]

− 2αkE
[
�∇f (wk),wk − w

∗�
]
+ α2

kσ
2
.

E

[∥∥wk+1 − w
∗∥∥2

]
≤ (1− αkµ)E

[∥∥wk − w
∗∥∥2

]

− 2αk
(
E[f (wk)]− f (w∗)

)
+ α2

kσ
2
.

E[f (wk)]− f (w∗) ≤
µ

2

(
(k − 1)E

[∥∥wk − w
∗∥∥2

]

−kE
[∥∥wk+1 − w

∗∥∥2
])

+ σ 2

2kµ
.

205

Stochastic Gradient Descent and Its Variants in Machine Learning

1 3J. Indian Inst. Sci. | VOL 99:2 | 201–213 June 2019 | journal.iisc.ernet.in

where we used φi(w) instead of φ(xi,w) . Recall
that in these problems, it is indeed possible to
compute the exact gradient ∇f (w) but it requires
going overall the n data points. On the other
hand, it is much easier to obtain a stochastic gra-
dient: sample a number i independently from 1
to n and return ∇φi(w) . The advantages and dis-
advantages of GD and SGD using exact and sto-
chastic gradients, respectively, is summarized in
Table 1.

The key question that arises after looking at
Table 1 is whether it is possible to combine the
fast iterations of SGD with the fast convergence
rate of GD. It turns out this is possible under the
additional assumption of smoothness on each
component function φi(·).

Assumption 3 A differentiable function f (·) is ℓ
-smooth if

The main idea in obtaining improved rates for
this setting is that one can reduce the variance in
stochastic gradients by computing the exact gra-
dient once in a while. The resulting algorithm
is known as stochastic variance reduced gradi-
ent (SVRG) and was first proposed by Johnson
and Zhang38. The SVRG algorithm is presented
in Algorithm 1. The following theorem provides
performance guarantees for SVRG:

(5)
min
w∈Rd

f (w)
def= 1

n

n∑

i=1

φi(w),

f (v) ≤ f (w)+ �∇f (w), v − w� +
ℓ

2
�v − w�2,

∀ w, v.

Theorem 3 Consider the finite sum setting (5).
Suppose that

––– each φi(·) is convex (Assumption 1) and ℓ
-smooth (Assumption 3) and

–– the total function f (·) is µ strongly convex
(Assumption 2).

Then, SVRG (Algorithm 1) with learning rate
α = 1

8ℓ and condition number κ = ℓ
µ

 satisfies

E
[
f
(
w̃t+1

)]
− f (w∗) ≤

(
3
4

)t(
f (winit)− f (w∗)

)
.

In contrast to Theorems 1 and 2 which guar-

antee convergence rates of Õ
(

1√
t

)
 and Õ

(
1
t

)
 ,

respectively, this theorem guarantees a much
faster convergence rate of 2−Ω(t) . We also note
that SVRG was not the first algorithm to achieve
these improved rates. Stochastic average gradi-
ent (SAG)61 and stochastic dual coordinate ascent
(SDCA)63 also achieve similar rates in this set-
ting. However, the concept of variance reduction
was made explicit in SVRG and has since been
extended to several other settings, one of which
we will mention in Sect. 7.

Proof (Proof of Theorem 3) We will establish
the inequality

Table 1: Comparison of GD and SGD.

Method Per iteration Convergence rate

GD Slow Fast

SGD Fast Slow

206

P. Netrapalli

1 3 J. Indian Inst. Sci.| VOL 99:2 | 201–213 June 2019 | journal.iisc.ernet.in

from which the result follows. The key compo-
nent of the proof lies in understanding the vari-
ance of stochastic gradient updates in

in Algorithm 1. We see that
E
[
∇φi

(
ws
r

)
−∇φi

(
w̃s

)
+ g

]
= ∇f (ws

r) and

We will now bound the last expression above
using smoothness and convexity of each indi-
vidual function φi(·) . Given any point w , consider
the point w

def= w − 1
ℓ
(∇φi(w)− ∇φi(w

∗)) . By
smoothness of φi(·) , we have

On the other hand, from convexity, we also have

Combining the above two inequalities and rear-
ranging gives us

Plugging this back in (6), we obtain

where we used the fact that
E[∇φi(w

∗)] = ∇f (w∗) = 0 . The key property
of the variance bound in (7) is that as ws

r and
w̃s → w∗ , the variance bound goes to 0. We are
now in a place to analyze the SVRG algorithm.
We have

E
[
f
(
w̃s+1

)]
− f (w∗) ≤

3

4

(
E
[
f
(
w̃s

)]
− f (w∗)

)
,

ws
r+1 ← ws

r − α
(
∇φi

(
ws
r

)
− ∇φi

(
w̃s

)
+ g

)

(6)

E

[∥∥∇φi
(
w

s

r

)
−∇φi

(
w̃s

)
+ g

∥∥2
]

≤ 2E

[∥∥∇φi
(
w

s
r

)
− ∇φi

(
w

∗)∥∥2
]

+ 2E

[∥∥∇φi
(
w̃s

)
− ∇φi

(
w

∗)∥∥2
]
.

φi(w) ≤ φi(w)−
1

ℓ
�∇φi(w),∇φi(w)−∇φi

(
w

∗)�

+ ℓ

2ℓ2

∥∥∇φi(w)− ∇φi
(
w

∗)∥∥2.

φi(w) ≥ φi
(
w∗)+ �∇φi

(
w∗),w − w∗�.

∥∥∇φi(w)−∇φi
(
w

∗)∥∥2 ≤ 2ℓ
(
φi(w)− φi

(
w

∗)

−�∇φi
(
w

∗)
,w − w

∗�
)
.

(7)

E

[∥∥∇φi
(
w

s

r

)
−∇φi

(
w̃s

)
+ g

∥∥2
]

≤ 4ℓ
(
E
[
φi
(
w

s
r

)]
− E

[
φi
(
w

∗)]

−�E
[
∇φi

(
w

∗)]
,w

s
r − w

∗�
)

+ 4ℓ
(
E
[
φi
(
w̃s

)]
− E

[
φi
(
w

∗)]

−�E
[
∇φi

(
w

∗)]
, w̃s − w

∗�
)

= 4ℓ
(
E
[
f
(
w

s
r

)]
− f

(
w

∗)+ E
[
f
(
w̃s

)]
− f

(
w

∗))
,

Summing the above inequality over r and rear-
ranging gives us

Using convexity, we can now easily see that

This proves the result. �

6 Principal Component Analysis (PCA)
We now move from the convex optimization set-
ting to a new one: that of principal component
analysis (PCA). PCA, originally introduced in
Hotelling33, is a way of finding important direc-
tions in the data and do dimensionality reduction.
It has been widely used in several applications39.
PCA is equivalent to the following: suppose each
data point xi ∈ R

d , i = 1, . . . , n is drawn inde-
pendently from some underlying probability
distribution; then given an integer k ≥ 1 , find

the top-k eigenvectors of �
def= E

[
xixi

⊤] . Here
again, one solves this problem using samples by
constructing the empirical covariance matrix
�̂

def= 1
n

∑n
i=1 xixi

⊤ and finding the top-q eigen-
vectors of �̂.

In several settings either due to the sequen-
tial nature of data generation or due to the large
ambient dimension d, storing all the samples
x1, . . . , xn or the full empirical covariance matrix
�̂ might not be feasible31, 60, 67. Instead we would

E

[∥∥ws

r+1 − w
∗∥∥2

]
= E

[∥∥ws

r − w
∗∥∥2

]

− 2αE
[
�∇φi

(
w

s
r

)
−∇φi

(
w̃s

)
+ g,w

s
r − w

∗�
]

+ α2
E

[∥∥∇φi
(
w

s

r

)
−∇φi

(
w̃s

)
+ g

∥∥2
]

≤ E

[∥∥ws

r − w
∗∥∥2

]
− 2αE

[
φi
(
w

s

r

)
− φi(w

∗)
]

+ 4α2ℓ
(
E
[
f
(
w

s

r

)]
− f

(
w

∗)+ E
[
f
(
w̃s

)]
− f

(
w

∗))

≤ E

[∥∥ws
r − w

∗∥∥2
]
− 2α(1− 2αℓ)

(
E
[
f
(
w

s
r

)]

−f (w∗)
)
+ 4α2ℓ

(
E
[
f
(
w̃s

)]
− f

(
w

∗))
.

1

22κ

22κ∑

r=1

E
[
f
(
w

s
r

)]
− f

(
w

∗)

≤
8ℓ

33κ
E
[∥∥ws

1 − w
∗∥∥]2

+ 1

2

(
E
[
f
(
w̃s

)]
− f

(
w

∗))

≤
8

33

(
E
[
f
(
w̃s

)]
− f

(
w

∗))+ 1

2

(
E
[
f
(
w̃s

)]

−f
(
w

∗)) ≤ 3

4

(
E
[
f
(
w̃s

)]
− f

(
w

∗))
.

E
[
f
(
w̃s+1

)]
− f (w∗) ≤ 1

22κ

22κ∑

r=1

E
[
f
(
w

s
r

)]

− f
(
w

∗) ≤ 3

4

(
E
[
f
(
w̃s

)]
− f (w∗)

)
.

207

Stochastic Gradient Descent and Its Variants in Machine Learning

1 3J. Indian Inst. Sci. | VOL 99:2 | 201–213 June 2019 | journal.iisc.ernet.in

like to estimate the top-k eigenvectors of � using
only O(dk) space, by sequentially going over the
samples x1, . . . , xn (and not storing them). Let us
first consider the simple case of q = 1 , i.e., we are
interested in estimating the top eigenvector of � .
The optimization problem corresponding to this
is given by

A natural approach would be to perform stochas-
tic gradient ascent (SGA) (ascent as opposed to
descent since we are dealing with a maximization
rather than a minimization problem). Note also
that we have the constraint �w� = 1 , so the SGA
step will be followed by a projection step onto the
unit ball. So the SGA with projection algorithm is

The above algorithm was first considered by
Oja53 and since, has been known as Oja’s algo-
rithm. Oja53 in fact showed that for a suitable
choice of stepsize sequence αk , the iterates wk
asymptotically converge to the top eigenvector of
� . Obtaining nonasymptotic convergence rates
has been a much more recent endeavor8, 13, 34, 48.
As an example of the kind of results one has in
this situation, we state here (a simplified version
of) the main result of Jain et al.34.

Theorem 4 Suppose data points xi come from a
distribution D such that

•–– �xi� ≤ M with probability 1,
•–– �1 > �2 denote the largest and second larg-

est eigenvalues respectively of the covariance
matrix �

def= E
[
xixi

⊤] and
•–– w∗ denotes the largest eigenvector of � (i.e.,

eigenvector corresponding to eigenvalue �1).

If w1 is chosen from standard normal distribution,
then for an appropriate stepsize sequence αk , for
any fixed t ≥ 40M�1 log

2 d

(�1−�2)
2 , with probability at least

3 / 4, we have

where sin(wt ,w
∗) denotes the sin of the angle

between wt and w∗.
We will only give a proof outline of the above

theorem. Interested readers may refer Jain et al.34
for the full proof.

max
w∈Rd :�w�=1

w⊤
�w = E

[
�x,w�2

]
.

(8)

w̃ = wk + αk�xk ,wk�xk and wk+1 = w̃

�w̃� .

sin2
(
wt ,w

∗) ≤ M�1 log d

(�1 − �2)
2
· 1
t
,

Proof (Proof outline) The main idea behind the
proof of Theorem 4 is that one can write the final
iterate wt as a scaled version of a linear function
of the initial vector w1:

Here I denotes the identity matrix and Z is a nor-
malization constant (that depends on xk and w1).
Since sin(·, ·) does not depend on the magnitude
of the vectors, we can ignore Z and try to bound
sin

(∏t−1
k=1

(
I+ αkxkxk

⊤) · w1,w
∗
)
 . Let us

denote St
def=

∏t−1
k=1

(
I+ αkxkxk

⊤) for notational
simplicity. Using the definition of sin and the fact
that �w∗� = 1 , we have

Since w1 is chosen uniformly from the unit
sphere, it turns out that the expression above is
approximately equal to (up to constant factors)
Tr

(
St

⊤
(
I−w∗w∗⊤

)
St

)

Tr
(
St

⊤St
) . The reason for this is that for

any PSD matrix A , if w1 is a standard normal vec-
tor, then we have w1

⊤Aw1 ≈ Tr(A) (up to con-
stant factors) with high probability. So we have
concluded that

The nice thing about the above expression is that
we have managed to aggregate the behavior of
the algorithm into the trace of certain matrices.
These matrices are relatively simple and comprise
of product of matrices of the form I+ αkxkxk

⊤ .
Since xk themselves are random, one can bound
the expected values of these quantities and use
Markov/Chebyshev inequalities to obtain the
desired bounds with constant probability. �

A particularly nice aspect of the above result is
that it matches the best known results we know of
even if one were allowed to compute the empiri-
cal covariance matrix. This result has since been
extended to the case where there is no gap, i.e.,
�1 = �2 (in this case, one shows convergence of
Rayleigh quotient)9 and to the case q ≥ 28. The

wt =
1

Z

t−1∏

k=1

(
I+ αkxkxk

⊤
)
· w1.

(9)

sin
2
(
Stw1,w

∗) = 1−
�Stw1,w

∗�2

�Stw1�2

=
w1

⊤
St

⊤
(
I− w

∗
w

∗⊤
)
Stw1

w1
⊤St

⊤
Stw1

.

sin
2
�
Stw1,w

∗�

= O



Tr

�
St

⊤
�
I− w

∗
w

∗⊤
�
St

�

Tr
�
St

⊤
St

�


.

208

P. Netrapalli

1 3 J. Indian Inst. Sci.| VOL 99:2 | 201–213 June 2019 | journal.iisc.ernet.in

best known results for q ≥ 2 , however, are signifi-
cantly suboptimal compared to the case when we are
allowed to compute the empirical covariance matrix.
Bridging this gap is an important open problem.

7 Nonconvex Optimization
Nonconvex optimization has always been an
important part of machine learning as most
machine learning problems, in their origi-
nal form, turn out to be nonconvex. Examples
include k-means clustering, matrix factorization
with sparsity/rank/nonnegativity constraints,
density estimation, training neural networks and
so on. Since nonconvex optimization is NP-hard
in the worst case, one cannot hope to obtain
polynomial convergence rates to global minima
or even local minima. The goal is more mod-
est—convergence to stationary points. Later on in
this section, we will give examples where finding
such stationary points guarantees a good solution
in terms of function value. We first introduce the
notion of first-order stationary point.

Definition 1 A point w is said to be an ǫ-
first order stationary point (ǫ-FOSP) of f (·) if ∥∥∇f (w)

∥∥ ≤ ǫ.

The following classical (and folklore) result
shows the convergence of SGD to first-order sta-
tionary points:

Theorem 5 Suppose the function f (·) is ℓ

-smooth (Assumption 3) and lower bounded
i.e., minw f (w) > −∞ . Suppose further that
at each step, we perform SGD with stochas-
tic gradient ζk satisfying E[ζk] = ∇f (wk) and

E
[
�ζk�2

]
≤ σ 2 . Fix t and choose stepsizes

α[k] = α
def=

√
2(f (w0)−minw f (w))

ℓσ 2 . Then,

Proof Using smoothness and properties of sto-
chastic gradients,

min
k∈[t]

E

[∥∥∇f (wk)
∥∥2
]

≤

√
2σ 2ℓ

(
f (w0)−minw f (w)

)

t
.

E[f (wk+1)] ≤ E[f (wk)]+ E[�∇f (wk),wk+1 − wk�]+
ℓ

2
�wk+1 − wk�2

= E[f (wk)]− αE[�∇f (wk), ζk�]+
α2ℓ

2
�ζk�2

= E[f (wk)]− αE

[∥∥∇f (wk)
∥∥2
]
+

α2σ 2ℓ

2
.

Reorganizing and adding, we obtain

Plugging in the choice of α proves the theorem. �
While GD converges to FOSPs, it turns out

that FOSPs are not always good solutions to the
minimization problem minw f (w) that we are
interested in. We would like to do better than
first-order stationarity. This brings us to

Definition 2 A point w is said to be an (ǫg , ǫh)
-second order stationary point ((ǫg , ǫh)-SOSP) of
f (·) if

∥∥∇f (w)
∥∥ ≤ ǫg and �min

(
∇2f (w)

)
≥ −ǫh.

In the context of several machine learning
problems, it turns out that while these prob-
lems have several highly suboptimal FOSPs25,
all SOSPs are close to optimal14, 16, 24, 30, 40, 49.
This motivates the quest for finding SOSPs and
not just FOSPs. Let us call FOSPs which are not
SOSPs as first-order saddle points. It turns out
that FOSPs, which are not SOSPs are actually
unstable fixed points of gradient flow (i.e., GD
with step size → 0), and the set of all points from
where gradient flow converges to first-order sad-
dle points is a measure zero set (in the ambient
Lebesgue measure)47, 54. However, GD with ran-
dom initialization might still take exponential
time to escape these first order saddle points and
converge to SOSPs28. In a remarkable result, Ge
et al.29 showed that a little amount of noise in the
updates of GD can help in escaping first order
saddles and converge to SOSPs in polynomial
time.This means that not doing exact gradient
descent is not a disadvantage but rather a potent
weapon! Jin et al.37 further improved upon the
results of Ge et al.29 by decreasing the depend-
ence on the dimension from polynomial to
polylog. The perturbed gradient descent (PGD)
algorithm of Jin et al.37 is given in Algorithm 2.
Note that the algorithm essentially performs GD
but perturbs the iterate once in a while by adding
appropriate noise.

1

t

t∑

k=1

E

[∥∥∇f (wk)
∥∥2
]

≤
f (w1)−minw f (w)

αt
+

αℓσ 2

2
.

209

Stochastic Gradient Descent and Its Variants in Machine Learning

1 3J. Indian Inst. Sci. | VOL 99:2 | 201–213 June 2019 | journal.iisc.ernet.in

Before we state the result, we need to intro-
duce the following assumption:

Assumption 4 A twice differentiable func-
tion f (·) is said to be ρ-Hessian Lipschitz if ∥∥∇2f (w)− ∇2f (z)

∥∥ ≤ ρ�w − z� , for every w
and z.

The following theorem gives the convergence
rate of PGD for smooth and Hessian Lipschitz
functions:

Theorem 6 Suppose f (·) : Rd → R is ℓ-smooth
(Assumption 3) and ρ-Hessian Lipschitz (Assump-
tion 4). Then, for any given ǫ , for appropriate choice
of the step size α and t ≥ Õ

(
ℓ(f (w0)−minw f (w))

ǫ2

)
 ,

we have that at least half of the iterates wk ,
k = 1, . . . , t are

(
ǫ,
√
ρǫ

)
-SOSPs.

We will only present a high level outline of the
proof of the above theorem. Interested readers
may refer Jin et al.37 for the full proof.

Proof (Proof outline) First, the algorithm is a
descent algorithm, i.e., the function value (almost)
always decreases. The proof follows by showing that
if an iterate is not an SOSP then the function value
decreases significantly in the next few steps. Since the
function is lower bounded, it can decrease signifi-
cantly only a limited number of times. So at least
half of the iterates are SOSPs. The main ideas in the
proof of the above result are as follows:

1. From the proof of Theorem 5, the function
value decreases significantly if an iterate is not
an FOSP.

2. If the iterates wk move significantly, then the
function value again decreases significantly.
This is called improve-or-localize property.

3. If the current iterate is an FOSP, but not
an SOSP, and if the iterates wk do not move
much, then one can approximate the function
with a quadratic (using the Hessian) by Hes-
sian Lipschitz property.

4. If f (·) were quadratic with a significant nega-
tive eigenvalue, one can analyze the exact
behavior of PGD as matrix power update and
show that PGD decreases function value sig-
nificantly.

5. By controlling the approximation from quad-
ratic and combining with the decrease from
item 3 above, one can show that the function
value decreases significantly even when the
iterates do not move much.

6. As mentioned above, since the function is
lower bounded, the function value cannot
decrease arbitrarily. So after enough number
of iterations, it has to be the case that several
of the Hessians do not have a large nega-
tive eigenvalue and hence the corresponding
points have to be SOSPs.

 �

7.1 Finite Sum Setting
In this section, we consider the finite sum set-
ting (5) where neither the individual φi(·) nor the
sum function f (·) is convex. In this setting one
again wonders whether it is possible to combine
GD and SGD in some way to obtain the best of
both worlds. Allen-Zhu and Hazan7 and Reddi
et al.58 independently showed that the SVRG
algorithm can indeed be extended to the non-
convex setting and obtains better rates than GD
and SGD. The nonconvex SVRG algorithm is pre-
sented in Algorithm 3. We now state the following
theorem (with out proof) which gives conver-
gence rates of nonconvex SVRG to FOSPs:

210

P. Netrapalli

1 3 J. Indian Inst. Sci.| VOL 99:2 | 201–213 June 2019 | journal.iisc.ernet.in

Theorem 7 Suppose f (·) is a finite sum func-
tion (5) where each component φi(·) is ℓ-smooth
(Assumption 3). For any ǫ > 0 , if the stepsize is
chosen α = 1

ℓn2/3
 and t > O(n) , then we have

Note that the above result obtains a conver-
gence rate of O

(
1
t

)
 as compared to the O

(
1√
t

)

of Theorem 5. There have also been recent works
on designing SVRG style algorithms for finding
SOSPs5, 6, 10. These papers combine ideas from
the proof of Theorem 7 as well as the PCA results
mentioned in Sect. 6 to efficiently escape saddle
points.

8 Summary and Future Directions
In this work, we have surveyed some important
results on the performance of SGD in various set-
tings. The several applications of SGD in machine
learning have led to new results on the perfor-
mance of SGD in various contexts as well as new
algorithms with better performance. Still, there
are a number of important questions about SGD
that we do not know the answer to. We mention
(in our view) the most important ones below:

•–– Step size schedules Given a fixed time horizon
t, what is the best step size schedule αk for
k = 1, . . . , t ? Even in the setting of convex
optimization, while the 1√

k
 and 1k step sizes of

Theorems 1 and 2 are optimal in the worst
case, they are suboptimal on a problem to
problem basis. Polyak and Juditsky56 indeed
shows that using a constant learning rate with
averaging at the end achieves asymptotically
optimal rates for quadratic problems. However,
for nonquadratic problems, decaying step
sizes seems necessary. While there are several
papers on this topic12, 27, 50, there is still not
a clear answer to the right decay schemes for
general (even convex) functions.

•–– Minibatching In finite sum settings, in prac-
tice, one uses SGD with minibatching, i.e.,
instead of picking an i at random and using
∇φi(w) , one chooses i1, . . . , ib at random
and uses the average 1b

∑b
j=1 ∇ij (w) . Here b is

known as the minibatch size. The main rea-
son for doing this in practice is paralleliza-
tion since the b gradient computations can be
done simultaneously on different machines.
At the same time, minibatching also leads to

min
k

E

[∥∥∇f (wk)
∥∥2
]

≤
ℓn2/3

(
f (w0)−minw f (w)

)

t
.

smaller variance in the stochastic gradient
and one would expect this to give faster con-
vergence rate. While b = 1 corresponds to full
SGD, b = n corresponds to full GD. We would
like to know what the optimal value of b is for
which we get the best convergence rates. Most
existing results that try to do this comparison,
e.g., Dekel et al.26 use (loose) upper bounds
on the performance of minibatch SGD which
does not give conclusive answers. To the best
of our knowledge, the only work that stud-
ies the true effect of minibatch SGD is for the
linear least squares setting36. Extending such
results beyond linear regression is an impor-
tant open problem.

•–– Acceleration While any improvement in the
convergence rate of an algorithm is termed
acceleration, we are referring here in particu-
lar to the technique of momentum or Nest-
erov acceleration. Can Nesterov’s acceleration
technique be used to improve the convergence
rate of SGD? In a remarkable result, Lan44
showed for the first time that momentum
techniques can indeed improve stochastic gra-
dient methods if the stochastic gradient has
bounded variance. Most machine learning
settings, however, do not fall in this category.
For the problem of strongly convex linear
least squares regression (which is not cov-
ered by Lan44), Jain et al.35 showed that it is
indeed possible to again use these techniques
to improve the convergence rate of SGD.
Extending it to non-strongly convex linear
least squares regression is an open problem.
Much less is known for problems beyond lin-
ear least squares regression.

•–– Parallelization and distributed algorithms One
serious issue with SGD on large-scale prob-
lems is its sequential nature—the iterations
have to be performed one after another. How
do we parallelize this computation. So far,
there have been three approaches (1) mini-
batching, (2) model averaging and iii) asyn-
chronous SGD. We have already mentioned
questions related to minibatching above.
Model averaging refers to running SGD inde-
pendently on different machines and averag-
ing the resultant vectors w from those dif-
ferent machines. First this makes sense only
in the convex setting. Even in the convex (or
locally convex even if the function is globally
nonconvex) setting, this is known to be opti-
mal only for linear least squares regression.
While we do obtain some bounds in the gen-
eral convex setting, it is unknown whether this
is the optimal way to make use of different

211

Stochastic Gradient Descent and Its Variants in Machine Learning

1 3J. Indian Inst. Sci. | VOL 99:2 | 201–213 June 2019 | journal.iisc.ernet.in

machines. Finally, asynchronous SGD refers to
the setting where different machines maintain
their own local copies of the iterates wk and
perform SGD on them while synchronizing
them only once in a while. There have been
some interesting results on this approach,
e.g., Recht et al.57 but they cover only some
special cases, and their relevance to real-world
machine learning problems is unclear.

•–– Stochastic quasi Newton methods In the con-
text of deterministic gradient-based methods,
ones that construct approximations of the
Hessian (known as quasi-Newton methods)
such as BFGS, l-BFGS, see chapters 8 and 9 in
Nocedal and Wright52, are superior to gradi-
ent descent. While there has been some work
on designing such methods with stochastic
gradients17, 21, 62, 66, they have so far not been
successfully applied to large-scale machine
learning problems.

We believe that making progress on answering
the above questions is necessary to advance state
of the art in optimization in machine learning.

9 Resources
The simplicity of SGD (2) and its variants such
as SVRG means that in settings where stochas-
tic gradients are computable, implementing it
is straightforward. In cases where writing code
for computing stochastic gradients might be
involved, one might try to use autodifferentia-
tion packages such as Autodiff 1, Autograd2 and
Casadi3, etc. In the context of training neural
networks, there are frameworks that are quite
easy to use such as PyTorch55, TensorFlow4, etc.
The painstaking part of using these in practice
is, however, the choice of step sizes αk for which
there is, as yet, no fully automatic procedure that
works well, and one has to choose them manually
and pick what works best.

Publisher's Note Springer Nature remains
neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 12 November 2018 Accepted: 16 January 2019
Published online: 12 February 2019

References
 1. Autodiff. https ://pypi.org/proje ct/autod iff/. Accessed 30

Nov 2018

 2. Autograd. https ://githu b.com/HIPS/autog rad. Accessed

30 Nov 2018

 3. Casadi. https ://web.casad i.org/. Aaccessed 30 Nov 2018

 4. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J,

Devin M, Ghemawat S, Irving G, Isard M et al (2016)

Tensorflow: a system for large-scale machine learning.

OSDI 16:265–283

 5. Agarwal N, Allen-Zhu Z, Bullins B, Hazan E, Ma T (2017)

Finding approximate local minima faster than gradi-

ent descent. In: Proceedings of the 49th annual ACM

SIGACT symposium on theory of computing, ACM, pp

1195–1199

 6. Allen-Zhu Z (2017) Natasha 2: faster non-convex optimi-

zation than sgd. arXiv preprint arXiv :1708.08694

 7. Allen-Zhu Z, Hazan E (2016) Variance reduction for

faster non-convex optimization. In: International confer-

ence on machine learning, pp 699–707

 8. Allen-Zhu Z, Li Y (2017) First efficient convergence for

streaming k-PCA: a global, gap-free, and near-optimal

rate. In: Foundations of computer science (FOCS), 2017

IEEE 58th annual symposium on, IEEE, pp 487–492

 9. Allen-Zhu Z, Li Y (2017) Follow the compressed leader:

faster online learning of eigenvectors and faster MMWU.

In: Precup D, Teh YW (eds) Proceedings of the 34th inter-

national conference on machine learning, pp 116–125

 10. Allen-Zhu Z, Li Y (2017) Neon2: finding local minima

via first-order oracles. arXiv preprint arXiv :1711.06673

 11. Amari S (1967) A theory of adaptive pattern classifiers.

IEEE Trans Electron Comput 3:299–307

 12. Bach F, Moulines E (2013) Non-strongly-convex smooth

stochastic approximation with convergence rate O(1/n).

In: Advances in neural information processing systems,

pp 773–781

 13. Balsubramani A, Dasgupta S, Freund Y (2013) The fast

convergence of incremental PCA. In: Advances in neural

information processing systems, pp 3174–3182

 14. Bandeira AS, Boumal N, Voroninski V (2016) On the

low-rank approach for semidefinite programs arising in

synchronization and community detection. In: Confer-

ence on learning theory, pp 361–382

 15. Benaïm M (1999) Dynamics of stochastic approxima-

tion algorithms. In: Seminaire de probabilites XXXIII,

Springer, pp 1–68

 16. Bhojanapalli S, Boumal N, Jain P, Netrapalli P (2018)

Smoothed analysis for low-rank solutions to semidefinite

programs in quadratic penalty form. In: Proceedings of

the 31st conference on learning theory, pp 3243–3270

 17. Bordes A, Bottou L, Gallinari P (2009) SGD-QN: careful

quasi-Newton stochastic gradient descent. J Mach Learn

Res 10(Jul):1737–1754

 18. Borkar VS (2009) Stochastic approximation: a dynamical

systems viewpoint, vol 48. Springer, Berlin

 19. Bottou L, Bousquet O (2008) The tradeoffs of large scale

learning. In: Advances in neural information processing

systems, pp 161–168

 20. Bottou L, Curtis FE, Nocedal J (2018) Optimization

methods for large-scale machine learning. SIAM Rev

60(2):223–311

https://pypi.org/project/autodiff/
https://github.com/HIPS/autograd
https://web.casadi.org/
http://arxiv.org/abs/1708.08694
http://arxiv.org/abs/1711.06673

212

P. Netrapalli

1 3 J. Indian Inst. Sci.| VOL 99:2 | 201–213 June 2019 | journal.iisc.ernet.in

 21. Byrd RH, Hansen SL, Nocedal J, Singer Y (2016) A sto-

chastic quasi-Newton method for large-scale optimiza-

tion. SIAM J Optim 26(2):1008–1031

 22. Candès EJ, Recht B (2009) Exact matrix completion via

convex optimization. Found Comput Math 9(6):717

 23. Cauchy A (1847) Compte rendu des s eances de lacad-

emie des sciences. Comptes Rendus Hebd Seances Acad

Sci 21(25):536–538

 24. Choromanska A, Henaff M, Mathieu M, Arous GB,

LeCun Y (2015) The loss surfaces of multilayer networks.

In: Artificial intelligence and statistics, pp 192–204

 25. Dauphin YN, Pascanu R, Gulcehre C, Cho K, Ganguli

S, Bengio Y (2014) Identifying and attacking the saddle

point problem in high-dimensional non-convex optimi-

zation. In: Advances in neural information processing

systems, pp 2933–2941

 26. Dekel O, Gilad-Bachrach R, Shamir O, Xiao L (2012)

Optimal distributed online prediction using mini-

batches. J Mach Learn Res 13(Jan):165–202

 27. Dieuleveut A, Durmus A, Bach F (2017) Bridging the gap

between constant step size stochastic gradient descent

and markov chains. arXiv preprint arXiv :1707.06386

 28. Du SS, Jin C, Lee JD, Jordan MI, Singh A, Poczos B (2017)

Gradient descent can take exponential time to escape

saddle points. In: Advances in neural information pro-

cessing systems, pp 1067–1077

 29. Ge R, Huang F, Jin C, Yuan Y (2015) Escaping from sad-

dle pointsonline stochastic gradient for tensor decompo-

sition. In: Conference on learning theory, pp 797–842

 30. Ge R, Jin C, Zheng Y (2017) No spurious local minima

in nonconvex low rank problems: a unified geometric

analysis. arXiv preprint arXiv :1704.00708

 31. Hall PM, Marshall AD, Martin RR (1998) Incremental

eigenanalysis for classification. In: BMVC, vol 98, Cit-

eseer, pp 286–295

 32. Hearst MA, Dumais ST, Osuna E, Platt J, Scholkopf B

(1998) Support vector machines. IEEE Intell Syst Appl

13(4):18–28

 33. Hotelling H (1933) Analysis of a complex of statisti-

cal variables into principal components. J Educ Psychol

24(6):417

 34. Jain P, Jin C, Kakade SM, Netrapalli P, Sidford A (2016)

Streaming PCA: matching matrix Bernstein and near-

optimal finite sample guarantees for Oja’s algorithm. In:

Conference on learning theory, pp 1147–1164

 35. Jain P, Kakade SM, Kidambi R, Netrapalli P, Sidford A

(2017) Accelerating stochastic gradient descent. arXiv

preprint arXiv :1704.08227

 36. Jain P, Kakade SM, Kidambi R, Netrapalli P, Sidford A

(2018) Parallelizing stochastic gradient descent for least

squares regression: mini-batching, averaging, and model

misspecification. J Mach Learn Res 18(223):1–42. http://

jmlr.org/paper s/v18/16-595.html

 37. Jin C, Ge R, Netrapalli P, Kakade SM, Jordan MI (2017)

How to escape saddle points efficiently. In: Proceedings

of the 34th international conference on machine learn-

ing, pp 1724–1732

 38. Johnson R, Zhang T (2013) Accelerating stochastic gra-

dient descent using predictive variance reduction. In:

Advances in neural information processing systems, pp

315–323

 39. Jolliffe I (2011) Principal component analysis. In: Inter-

national encyclopedia of statistical science, Springer, pp

1094–1096

 40. Kawaguchi K (2016) Deep learning without poor local

minima. In: Advances in neural information processing

systems, pp 586–594

 41. Kiefer J, Wolfowitz J (1952) Stochastic estimation of

the maximum of a regression function. Ann Math Stat

23(3):462–466

 42. Kushner H, Yin GG (2003) Stochastic approximation and

recursive algorithms and applications, vol 35. Springer

Science & Business Media, Berlin

 43. Kushner HJ, Clark DS (2012) Stochastic approximation

methods for constrained and unconstrained systems, vol

26. Springer Science & Business Media, Berlin

 44. Lan G (2012) An optimal method for stochastic compos-

ite optimization. Math Program 133(1–2):365–397

 45. LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-

based learning applied to document recognition. Proc

IEEE 86(11):2278–2324

 46. LeCun YA, Bottou L, Orr GB, Müller KR (2012) Effi-

cient backprop. In: Neural networks: tricks of the trade,

Springer, pp 9–48

 47. Lee JD, Simchowitz M, Jordan MI, Recht B (2016) Gradi-

ent descent only converges to minimizers. In: Conference

on learning theory, pp 1246–1257

 48. Li CJ, Wang M, Liu H, Zhang T (2018) Near-optimal sto-

chastic approximation for online principal component

estimation. Math Program 167(1):75–97

 49. Mei S, Misiakiewicz T, Montanari A, Oliveira RI (2017)

Solving SDPS for synchronization and MaxCut problems

via the Grothendieck inequality. arXiv preprint arXiv

:1703.08729

 50. Moulines E, Bach FR (2011) Non-asymptotic analysis of

stochastic approximation algorithms for machine learn-

ing. In: Advances in neural information processing sys-

tems, pp 451–459

 51. Nemirovsky AS, Yudin DB (1983) Problem complexity

and method efficiency in optimization

 52. Nocedal J, Wright SJ (2006) Numerical optimization 2nd

 53. Oja E (1982) Simplified neuron model as a principal

component analyzer. J Math Biol 15(3):267–273

 54. Panageas I, Piliouras G (2016) Gradient descent only

converges to minimizers: non-isolated critical points and

invariant regions. arXiv preprint arXiv :1605.00405

 55. Paszke A, Gross S, Chintala S, Chanan G (2017) Pytorch.

https ://pytor ch.org/. Accessed 1 Nov 2018

 56. Polyak BT, Juditsky AB (1992) Acceleration of stochas-

tic approximation by averaging. SIAM J Control Optim

30(4):838–855

http://arxiv.org/abs/1707.06386
http://arxiv.org/abs/1704.00708
http://arxiv.org/abs/1704.08227
http://jmlr.org/papers/v18/16-595.html
http://jmlr.org/papers/v18/16-595.html
http://arxiv.org/abs/1703.08729
http://arxiv.org/abs/1703.08729
http://arxiv.org/abs/1605.00405
https://pytorch.org/

213

Stochastic Gradient Descent and Its Variants in Machine Learning

1 3J. Indian Inst. Sci. | VOL 99:2 | 201–213 June 2019 | journal.iisc.ernet.in

 57. Recht B, Re C, Wright S, Niu F (2011) Hogwild: a lock-

free approach to parallelizing stochastic gradient descent.

In: Advances in neural information processing systems,

pp 693–701

 58. Reddi SJ, Hefny A, Sra S, Poczos B, Smola A (2016) Sto-

chastic variance reduction for nonconvex optimization. In:

International conference on machine learning, pp 314–323

 59. Robbins H, Monro S (1951) A stochastic approximation

method. Ann Math Stat 22(3):400–407

 60. Ross DA, Lim J, Lin RS, Yang MH (2008) Incremen-

tal learning for robust visual tracking. Int J Comput Vis

77(1–3):125–141

 61. Schmidt M, Le Roux N, Bach F (2017) Minimizing finite

sums with the stochastic average gradient. Math Program

162(1–2):83–112

 62. Schraudolph NN, Yu J, Günter S (2007) A stochastic

quasi-Newton method for online convex optimization.

In: Artificial intelligence and statistics, pp 436–443

 63. Shalev-Shwartz S, Zhang T (2013) Stochastic dual coordi-

nate ascent methods for regularized loss minimization. J

Mach Learn Res 14(Feb):567–599

 64. Tibshirani R (1996) Regression shrinkage and selection

via the lasso. J R Stat Soc Ser B (Methodol) 58(1):267–288

 65. Tsypkin YZ, Nikolic ZJ (1971) Adaptation and learning in

automatic systems, vol 73. Academic Press, New York

 66. Wang X, Ma S, Goldfarb D, Liu W (2017) Stochastic

quasi-Newton methods for nonconvex stochastic optimi-

zation. SIAM J Optim 27(2):927–956

 67. Weng J, Zhang Y, Hwang WS (2003) Candid covariance-

free incremental principal component analysis. IEEE

Trans Pattern Anal Mach Intell 25(8):1034–1040

 68. Yann L (1987) Modeles connexionnistes de lapprent-

issage. Ph.D. thesis, These de Doctorat, Universite Paris 6

Praneeth Netrapalli is currently a
researcher at Microsoft Research India, Ban-
galore. His research focuses on designing
efficient and provable algorithms for
machine learning. His work was one of the
first to shed light on the performance of

alternating minimization (a meta-heuristic which is widely
used across several fields) on some well-studied machine-
learning problems, and subsequently led to the design of
other faster algorithms. His recent work is focused on
designing simple and effective algorithms for general non-
convex optimization as well as stochatic optimization

problems, which are ubiquitous in machine learning. Pra-
neeth obtained B-tech from IIT Bombay in 2007 and MS
and PhD from The University of Texas at Austin in 2011 and
2014, respectively, all in Electrical Engineering. From 2014
to 2016, he was a postdoctoral researcher at Microsoft
Research New England, Cambridge MA. From 2007 to 2009,
he worked as a quantitative analyst at Goldman Sachs, Ban-
galore, where his work focused on evaluating prices and risk
of financial derivatives. More information about his research
is available on his home page http://prane ethne trapa lli.org/.

http://praneethnetrapalli.org/

	Stochastic Gradient Descent and Its Variants in Machine Learning
	Abstract |
	1 Introduction
	2 Setting and Outline of the Paper
	3 Preliminaries
	4 How is SGD Used in Machine Learning?
	5 Convex Optimization
	5.1 Convex Lipschitz Functions
	5.2 Strongly Convex Lipschitz Functions
	5.3 Finite Sums

	6 Principal Component Analysis (PCA)
	7 Nonconvex Optimization
	7.1 Finite Sum Setting

	8 Summary and Future Directions
	9 Resources

