
1 3J. Indian Inst. Sci. | VOL 99:2 | 215–224 June 2019 | journal.iisc.ernet.in

Sequence Segmentation Using Semi‑Markov 
Conditional Random Fields

1 Introduction
Sequence segmentation models form the core of 
several applications including speech segmen-
tation on phoneme boundaries11, information 
extraction20, named entity recognition18, syn-
tactic chunking, shallow parsing, pitch accent 
prediction, and, protein/gene finding. Tradition-
ally, many of these applications have been artifi-
cially formulated as sequence labeling tasks at the 
expense of loss of flexibility of features that can 
be exploited. This limitation is partly addressed 
by expanding the label set—for example, a pop-
ular choice in named entity recognition tasks 
(NER) is the Begin-Continue-End-Unique-other 
(BCEUO) encoding of entity labels3, and in syn-
tactic chunking tasks is the Begin-Inside-Outside 
(BIO) encoding of labels24. However, with the 
increasing diversity of settings where many of 
the applications are being deployed, it is impera-
tive to exploit a richer variety of features than 
has been possible by sequence models. Exam-
ples of such segment-level features for extraction 
tasks are: the whole entity has an exact match in 

Sunita Sarawagi*

J. Indian Inst. Sci.

A Multidisciplinary Reviews Journal

ISSN: 0970-4140 Coden-JIISAD

Abstract | Many applications in natural language, speech processing 
and data integration require model‑based segmentation of sequences. 
Semi‑Markov conditional random fields (semi‑CRFs) are a generalization 
of CRFs and provide a full conditional distribution over all possible seg‑
mentation of a sequence. Semi‑CRFs are particularly suitable for tasks 
that entail segment‑level features such as match with existing dictionary 
of segments. Empirical results on real‑life NER tasks show that they yield 
higher accuracy than CRFs, but the straightforward foreword–backward 
inference algorithm requires 3–10 times the computation cost of CRFs. 
This running time can be reduced significantly by exploiting overlapping 
features across segments. We present a succinct representation of over‑
lapping features and an efficient training algorithm that can sum over 
all possible input segmentation in time that is sub‑quadratic in the input 
length, even while imposing no bound on the maximum segment length. 
Consequently, the running time becomes comparable to CRFs even with 
the addition of useful entity‑level features on large input segments.

R
EV

IE
W

 
A

R
T

IC
LE

a database of entities, the length of the entity is 
between four and eight words, and the third or 
fourth token of the entity is a “-”. Sequence seg-
mentation models provide a direct and natural 
way of encapsulating all such entity features. A 
second advantage is that a joint distribution over 
segmentation makes it easy to cascade a segmen-
tation model with other tasks, such as deduplica-
tion of the extracted entities. This enables us to 
express data integration as an end-to-end task 
that combines the steps of information extraction 
and deduplication. Finally, the resultant data can 
be represented as a probabilistic database under 
the row/column uncertainty model.

Formal definition of sequence segmentation 
Given an input sequence x = x1 . . . xn , a segmen-
tation s of x consists of a sequence of variable 
length segments s = �s1, . . . , sp� where each seg-
ment sj = �tj ,uj , yj� consists of a start position tj , 
an end position uj , and a label yj ∈ Y  . Conceptu-
ally, a segment means that the tag yj is given to all 
xi ’s between i = tj and i = uj , inclusive. Each seg-
ment sj can be associated with a vector of features 

© Indian Institute of Science 2019. 

IIT Bombay, Mumbai, 
India. 
*sunita@iitb.ac.in

http://crossmark.crossref.org/dialog/?doi=10.1007/s41745-019-0100-1&domain=pdf


216

S. Sarawagi

1 3 J. Indian Inst. Sci.| VOL 99:2 | 215–224 June 2019 | journal.iisc.ernet.in

that captures the dependence of its label on input 
properties in the neighborhood of the segment 
and the label of the segment before it. The goal 
during inference is to simultaneously find a seg-
mentation of the input sequence and label each 
segment so as to maximize the total score over all 
segments.

We propose to model the problem of sequence 
segmentation using semi-Markov conditional 
random fields (or semi-CRFs for short), a condi-
tionally trained version of semi-Markov chains. 
In Sect. 2, we define the semi-CRF model and the 
corresponding training and inference algorithms. 
A limitation of the semi-CRF model over CRFs 
is the increased inference complexity. In Sect. 3, 
we present an inference algorithm that exploits 
the common case of a segment score being aggre-
gated over much smaller sub-segment scores that 
are shared across segmentation. In Sect. 4, we pre-
sent diverse applications of segmentation models.

2  The Semi‑CRF Model
We start this section by first giving an overview 
of conditional random fields (CRFs) based on 
which semi-CRFs are designed.

CRFs A CRF13 models Pr(y|x) using a Markov 
random field, with nodes corresponding to ele-
ments of the structured object y , and potential 
functions that are conditional on (features of) 
x . Learning is performed by setting parameters 
to maximize the likelihood of a set of (x, y) pairs 
given as training data. One common use of CRFs 
is for sequential learning problems like NP chunk-
ing22, POS tagging13, and NER17. For these prob-
lems, the Markov field is a chain, and y is a linear 
sequence of labels from a fixed set Y . For instance, 
in the NER application, x might be a sequence 
of words, and y might be a sequence in {I ,O}|x| , 
where yi = I indicates “word xi is inside a name” 
and yi = O indicates the opposite. Assume a vec-
tor f  of local feature functions f = �f 1, . . . , f K � , 
each of which maps a pair (x, y) and an index i 
to a measurement f k(i, x, y) ∈ R . Let f (i, x, y) 
be the vector of these measurements, and let 
F (x, y) =

∑|x|
i f (i, x, y) . For the case of NER, the 

components of f  might include the measurement 
f 13(i, x, y) = [[xi is capitalized]] · [[yi = I]] , where 
the indicator function [[c]] = 1 if c if true and zero 
otherwise; this implies that F13(x, y) would be 
the number of capitalized words xi paired with 
the label I. Following previous work13, 22, we will 
define a conditional random field (CRF) to be an 
estimator of the form:

(1)Pr(y|x,W ) =
1

Z(x)
eW ·F (x,y),

where W  is a weight vector over the components 
of F  , and Z(x) =

∑

y′ e
W ·F (x,y′).

To extend this to the semi-Markov case, let 
s = �s1, . . . , sp� denote a segmentation of x , where 
segment sj = �tj ,uj , yj� consists of a start position 
tj , an end position uj , and a label yj ∈ Y  . Concep-
tually, a segment means that the tag yj is given to 
all xi ’s between i = tj and i = uj , inclusive. We 
assume segments have positive length, and adja-
cent segments touch, that is tj and uj always sat-
isfy 1 ≤ tj ≤ uj ≤ |x| , tj+1 = uj + 1,up = |x| , and 
t1 = 1.

We assume a vector g of segment feature func-
tions g = �g1, . . . , gK � , each of which maps a tri-
ple (j, x, s) to a measurement gk(j, x, s) ∈ R , and 
define G(x, s) =

∑|s|
j g(j, x, s) . We also make 

a restriction on the features, analogous to the 
usual Markovian assumption made in CRFs, and 
assume that every component gk of g is a func-
tion only of x , sj , and the label yj−1 associated 
with the preceding segment sj−1 . In other words, 
we assume that every gk(j, x, s) can be rewritten 
as:

for an appropriately defined g ′k . In the rest of the 
paper, we will drop the g ′ notation and use g for 
both versions of the segment-level feature func-
tions. A semi-CRF is then an estimator of the 
form:

where again W  is a weight vector for G and 
Z(x) =

∑

s′ e
W ·G(x,s′) . Thus, we get a probability 

distribution over all possible labeled segmenta-
tion of an input sequence.

2.1  Prediction
Given W  and x , we predict the segmenta-
tion with the highest probabability, that is, 
argmaxs Pr(s|x,W ) , where Pr(s|x,W ) is defined 
by Eq. 3. An efficient inference algorithm is sug-
gested by Eq. 2, which implies that:

Let L be an upper bound on segment length. 
Let si:y denote the set of all partial segmentation 
starting from 1 (the first index of the sequence) 
to i, such that the last segment has the label y 
and ending position i. Let Vx,g ,W (i, y) denote 

(2)gk(j, x, s) = g ′k(yj , yj−1, x, tj ,uj),

(3)Pr(s|x,W ) =
1

Z(x)
eW ·G(x,s),

argmaxs Pr(s|x,W )

= argmaxsW ·
∑

j

g(yj , yj−1, x, tj ,uj),



217

Sequence Segmentation Using Semi-Markov Conditional Random Fields

1 3J. Indian Inst. Sci. | VOL 99:2 | 215–224 June 2019 | journal.iisc.ernet.in

the largest value of W · G(x, s′) for any s′ ∈ si:y . 
Omitting the subscripts, the following recursive 
calculation implements a semi-Markov analog of 
the usual Viterbi algorithm:

The best segmentation then corresponds to the 
path traced by maxy V (|x|, y).

2.2  Training
During training, the goal is to maximize log like-
lihood over a given training set T = {(xℓ, sℓ)}

N
ℓ=1 . 

Following the notation of Sha and Pereira22, 
we express the log likelihood over the training 
sequences as:

We wish to find a W  that maximizes L(W ) . Equa-
tion 4 is convex, and can thus be maximized by 
gradient ascent, or one of many related methods. 
(In our implementation we use a limited-mem-
ory quasi-Newton method14, 15.) The gradient of 
L(W ) is the following:

The two computationally expensive terms above 
are the normalizer, ZW (xℓ) , and the expected 
value of the features under the current weight 
vector. We describe an algorithm much like 
the sum-product message passing algorithm in 
graphical models for computing these terms next.

Computing  ZW (xℓ) and  EPr(s′|W )G(xℓ, s
′) . 

We assume the feature vector g(y, y′, x, j, i) can 
be partitioned as ’edge’ features that do not 
depend on i, and segment-level features that do 
not depend on previous label y′ . Using these two 
types of features, we adopt the potential notation 
that is common in graphical models, and define 
two types of potentials:

––– Segment potentials θi:j(y) associated with a 
segment from i to j where all nodes from i to 
j have the base label y. Such potentials can be 
expressed in terms of segment features as: 

V (i, y) =















max
y′,i−L<j<i

V (i − d, y′)

+W · g(y, y′, x, j, i) if i > 0
0 if i = 0
−∞ if i < 0

,

(4)L(W ) =
∑

ℓ

(W · G(xℓ, sℓ)− log ZW (xℓ)),

∇L(W ) =
∑

ℓ

G(xℓ, sℓ)−

∑

s′ G(s′, xℓ)e
W ·G(xℓ ,s

′)

ZW (xℓ)

=
∑

ℓ

G(xℓ, sℓ)− EPr(s′|W )G(xℓ, s
′)

,

θi:j(y) = exp





�

k∈segment-feature

wkgk(y, x, i, j)



,

where wk denotes the weight parameter of 
feature gk.

–– Transition potentials θ i where an entry θ i(y′, y) 
denotes the potential for a segment starting at 
i getting a label y when the previous segment 
is labeled y′ . Such potentials can be expressed 
in terms of edge features as:

With these two types of potentials, the total score 
of a segmentation s = �s1, . . . , sp� where each seg-
ment sj = �tj ,uj , yj� consists of a start position 
tj , an end position uj , and a label yj ∈ Y  can be 
expressed as 

∏p
j=1 θ tj (yj−1, yj)θtj :uj (yj) . The mar-

ginal probability of any segment potential can be 
computed via forward α and backward β mes-
sages which are expressed recursively as follows:

Let αi(y) denote the sum of scores over all seg-
mentation of the sequence between 1 to i where 
the last segment has a label y.

The running time of this algorithm is O(nL2) 
where n is the input sequence length. This is 
because there are O(nL) iterations and each seg-
ment i′ : i requires O(i − i′) work in computing 
the potential θ i′:i.

Similarly, we can recursively compute the 
backward messages βi(y) that denotes the sum of 
scores over all segmentation of the sequence from 
i + 1 to n with the segment ending at i having 
label y. Using the α and β values we can compute 
the normalizer Z(x) =

∑

y αn(y) and the mar-
ginal µi′:i(y) for a segment potential i′ : i labeled 
y as:

The expected value of a segment feature gk is:

Likewise, for edge features. Thus, in O(nL2) time 
and two sets of messages of O(n) length we can 
compute the marginal probability of any poten-
tial in the segmentation model.

Empirically, for typical NER tasks, segmen-
tation models are found to require about 3–10 
times the running time of sequential models. 
The value of the maximum length parameter L 
has to be chosen to be large enough to cover the 
largest segment because it is a hard limit on the 

θ i(y
′, y) = exp





�

k∈edge feature

wkgk(y, y
′, x, i, )



.

(5)

αi(y) =
∑

max(i−L,1)≤i′≤i

∑

y′∈Y

αi′−1(y
′)θi′(y

′, y)θi′:i(y).

µi′:i(y) =

∑

y′ αi′−1(y
′)θi′(y

′, y)θi′:i(y)βi(y)

Z(x)
.

EPr(s′|W )gk(xℓ, s
′) =

∑

(i′,i,y)

µi′:i(y)gk(y, , x, i
′, i).



218

S. Sarawagi

1 3 J. Indian Inst. Sci.| VOL 99:2 | 215–224 June 2019 | journal.iisc.ernet.in

length of the segment. Thus, for extraction from 
short text snippets, for example, citation records, 
L becomes comparable to n to cover long entities 
like “Titles”. This makes inference in segmenta-
tion models cubic in the length of the sequence. 
We present a more efficient algorithm for solving 
this inference problem in Sect. 3.

The semi-CRF has been shown to provide bet-
ter accuracy than CRFs for several information 
extraction tasks. More details can be found in 
Sarawagi and Cohen20.

3  Overlapping forward–backward 
algorithm

We next show how to improve inference speed 
of segmentation models. We call our algorithm 
“Overlapping forward–backward” algorithm for 
reasons that will soon become clear. A key insight 
we employ is that potentials for segmentation 
should be defined over a larger equivalence class 
of segments rather than for a single segment. We 
design a representation to express these equiva-
lences succinctly through four kinds of potentials.

––– ψ i′:≥i denotes potentials shared over all seg-
ments starting at i′ but ending anywhere after 
or at i.

–– ψ≤i′:i denotes potentials shared over all seg-
ments ending at i but starting anywhere before 
or at i′.

–– ψ≤i′:≥i denotes potentials shared over all seg-
ments starting before or at i′ and ending after 
or at i.

–– ψ i′:i denotes the usual full segment potentials 
that apply to the exact segment between i′ and 
i.

We list some examples of such potentials in the 
context of a NER task:

––– First two tokens of segment starting at i are 
“Prof. Dr”: ψ i:≥i+2.

–– Last three tokens of segment ending at i are 
“of the ACM”: ψ≤i−3:i.

–– A segment of length l starting at i has high 
cosine similarity to a lexicon entry: ψ i:i+l−1.

–– Segment contains “the” and “the” is the i-th 
word in x : ψ≤i:≥i.

–– The length of a segment starting at i is > k : 
ψ i:≥i+k.

Our goal next is to exploit the succinct form of 
potentials to speed up the message passing algo-
rithms outlined in Sect. 2.1. Our new message 
passing algorithms can run in time that in the 

worst case is O(nm+H) where m is the larg-
est gap between the start and end boundary of 
potentials in that sequence and is typically smaller 
than the largest length of a segment and, H is 
the total number of potentials that are fired for a 
sequence. Thus, for sequence labeling tasks where 
m = 2 , this will reduce to the standard O(n) for-
ward–backward algorithm, even though it can 
potentially output segments much larger than 2. 
We generalize this to the case of an arbitrary set 
of potentials. The main challenge in designing an 
efficient algorithm is that potentials could over-
lap in arbitrary ways and we cannot afford to pass 
messages only along transition edges as we did in 
Eq. 5 with only full segment potentials.

We first show how this is done for forward 
and backward messages in Sect. 3.1. We then 
show in Sect. 3.2 how to directly compute mar-
ginals over potentials instead of summing over 
marginal probability of all segments the potential 
overlaps with.

3.1  Forward and Backward Terms
Let θ i′:i denote the product of all potentials appli-
cable to segment i′ : i ; this can be expressed as 
θ i′:i =

∏

{ψuv : u = i′ ∨ u = (≤k), k ≥ i′, v = i∨

v = (≥j), j ≤ i} . For example, in Fig. 1 we show 
various potentials (as edges) for a sequence of 
length 9 where an arrow at any of the ends of an 
edge denotes potentials with open ends. Thus, 
the edge between nodes 3 and 5 denotes poten-
tial ψ3:≥5 , whereas the two edges between 4 and 7 
denote the potential ψ≤4:≥7 for the arrowed edge 
and ψ4:7 for the plain edge. For segment 4:7 the 
total potential θ4:7 = ψ4:≥5ψ4:7ψ≤4:≥7ψ≤6:7

Equation 5 for computing α values with no L 
restriction can be written in matrix notation as:

(6)
αi =

∑

i′≤i

(αi′−1θ i′) ∗ θ i′:i

y1 y2 y3 y4 y5 y6 y7 y8 y9

0 0 1 1 1 3 5 5 8

1 3 7 7 8 9 10 10 10

Figure 1: Potentials for a sequence of length 9. 
Potentials of the form ψ j:≥i are represented with 
edges having an arrow at i, potentials of the form 
ψ≤j:i are represented with edges having an arrow 
at j and so on. The first row of integers denotes 
A(i) values for each i and the second row denotes 
the B(i) values for each i. In this case m = 4.



219

Sequence Segmentation Using Semi-Markov Conditional Random Fields

1 3J. Indian Inst. Sci. | VOL 99:2 | 215–224 June 2019 | journal.iisc.ernet.in

where the symbol “*” denotes element-wise mul-
tiplication of vectors of the same size. In the rest 
of the paper, we will drop the “*” to reduce clutter 
and assume it to be implicitly present when two 
vectors of the same length abut.

Our goal is to reuse computations performed 
for αi−1 to reduce the number of terms summed 
over for computing αi . For this, we design a 
method for decomposing the full segment poten-
tials θ i′:i as a′(i′, i − 1)a(i) where a(i) is independ-
ent of i′ and a′ only involves potentials with the 
end boundary at i − 1 . We cannot hope to achieve 
this in general for all i′ ≤ i − 1 . Therefore, we 
define a function A(i) such that for the reduced 
set i′ ≤ A(i − 1) such a decomposition exists. We 
show how to design these functions.

Let A(i) be the maximum index j < i such 
that all potentials that start before or at j end 
before i + 1.

For the example in Fig. 1 
A(6) = 3,A(7) = A(8) = 5 and so on.

Let θ i′:>i denote the product of potentials 
common to all segments where the start bound-
ary is i′ and end boundary anywhere after i. Thus: 
θ i′:>i−1 =

∏

{ψ r:s : r = i′ ∨ r = (≤j), j ≥ i′, s =  
(≥k), k ≤ i − 1} .

Let θ i′:(>i−1→i) denote the product of 
potentials common to all segments that start 
at i′ and end at i but not before i. That is, 
θ i′:(>i−1→i) =

∏

{ψ r:s : r = i′ ∨ r = (≤j), j ≥ i′,

s = i ∨ s = (≥i)} . Note,

From the definition of A(i − 1) we can claim that,

Using Eqs. 7 and 8, we can choose 
a(i) = θA(i−1):(>i−1→i) and a′(i′, i − 1) = θ i′:>i−1 
and use these to write the expression for αi that 
reuses computations from αi−1 as follows: Let 
α̂i = αi−1θ i and α̂1 = 1 . Equation 6 can be 
rewritten as:

 where αP
i−1 denotes the sum of scores over all 

possible segmentation of sequence from 1 to i 
where the last segment’s start boundary is before 

A(i) = max j : ∀ψℓ:k ℓ ≤ j ⇒ k ≤ i.

(7)θ i′:i = θ i′:>i−1θ i′:(>i−1→i).

(8)

θ i′:(>i−1→i) = θA(i−1):(>i−1→i) if i′ ≤ A(i − 1).

(9)

αi =
∑

i′≤A(i−1)

α̂i′θ i′:>i−1ai +
∑

A(i−1)<i′≤i

α̂i′θ i′:i

= αP
i−1ai +

∑

A(i−1)<i′≤i

α̂i′θ i′:i

,

or at A(i − 1) and the end boundary after i − 1 . 
We compute αP

i  recursively as:

 where a>i is like ai except that we exclude poten-
tials where the end boundary is strictly at i.

Thus, by maintaining an additional set of n 
forward terms denoting αP

i  we are able to com-
pute αi by summing over only i − A(i − 1) 
terms instead of i − 1 terms. Note that 
i − A(i − 1) ≤ m , the maximum gap between the 
boundaries of any potential.

Example For the potentials in Fig. 1 we show 
how to compute α7 given A(6) = 3.

Similarly, with A(7) = 5 we compute αP
7 as

Beta terms The backward message β , for segmen-
tation models is defined as:

The computation of the beta messages can be 
optimized similarly to reuse terms from β i+1 in 
the computation of β i . Accordingly, we define 
an index B(i) such that for all i′ ≥ B(i) we can 
decompose θ i:i′ as b(i)b′(i + 1, i′) where b(i) is 
independent of i′ and b′ involves potentials not 
before i + 1.

Let B(i) be the smallest index j such that all 
potentials that end after or at j do not have their 
start boundaries before i, that is,

The last row in Fig. 1 shows B(.) values. For exam-
ple B(4) = 7 because there is no potential after 
position 7 that starts before position 4.

Let θ<i+1:i′ denote the product of all 
potentials in segments that end at i′ but 
start anywhere to the left of i + 1 . That is, 
θ<i+1:i′ =

∏

{ψ r:s : r = (≤k), k ≥ i + 1, s = i′∨

s = (≥j), j ≤ i′}

Let θ<i+1→i:i′ denote the product of 
all potentials shared by segments ending 
at i′ and starting at i but not after i. Thus, 
θ<i+1→i:i′ =

∏

{ψ r:s : r = i ∨ r = (≤i), s = i′ ∨ s

= i′ ∨ s = (≥j), j ≤ i′} . Thus,

The definition of B(i) implies that:

αPi =

{

αPi−1a>i +
∑A(i)

j=A(i−1)+1 α̂jθ j:>i if A(i) > 0

0 if A(i) ≤ 0
,

α7 = αP6a7 + α̂4θ4:7 + α̂5θ5:7 + α̂6θ6:7 (see Eq. 9)

= αP6ψ≤4:≥7ψ≤6:7 + α̂4ψ4:≥5ψ4:7ψ≤4:≥7ψ≤6:7

+ α̂5ψ≤6:7 + α̂6ψ≤6:7

.

αP
7 = αP

6ψ≤4:≥7 + α̂4ψ4:≥5ψ≤4:≥7 + α̂5.

β i = θ i+1

∑

i′>i

θ i+1:i′β i′ .

B(i) = min j : ∀ψℓ:k k ≥ j ⇒ ℓ ≥ i.

(10)θ i:i′ = θ<i+1→i:i′θ<i+1:i′ .



220

S. Sarawagi

1 3 J. Indian Inst. Sci.| VOL 99:2 | 215–224 June 2019 | journal.iisc.ernet.in

Using Eqs. 10 and 11 we can set 
b(i) = θ<i+1→i:B(i+1) and b′(i + 1, i′) = θ<i+1:i′ 
to compute βi without summing over all n− i as 
follows:

 where βP
i =

∑

i′≥B(i) θ<i:i′β i′ , represents the sum 
over all segmentation s where the first segment in 
s starts before i and ends at or after position B(i) . 
βP
i  is computed recursively as:

 where b<i is like bi except that we exclude poten-
tials where the start boundary is strictly at i.

Most likely segmentation The computation of 
the most likely segmentation can also optimized 
via two dynamic programming equations similar 
to the two equations for αi and αP

i  above so as to 
compute the maximum over at most m terms.

3.2  Computing Marginals Around 
Potentials

The forward and backward messages can be 
combined to compute the marginals for vari-
ous potentials. For normal segmentation models 
with potentials only of the form ψ s:e , this involves 
only O(1) computations of the form α̂sθ s:eβe . 
However, for potentials where the segment start 
and end boundaries are not fixed, computing 
the marginal for a potential of the form ψ≤s:≥e 
could require summing O(n2) such terms. We 
propose two ways to reduce the number of terms 
to be summed over. First, we use tricks like in the 
computation of α and β terms where we decom-
pose potentials and depend on a parallel set of 
αP and βP terms. Second, we share computations 
across adjacent potentials. These two techniques 
together allow us to compute each marginal in 
O(1) amortized time per potential. In the fol-
lowing sections we will use µ to denote un-nor-
malized marginals, i.e., the marginals before the 
division by Z(x).

Potentials of the form ψ≤s:e For such potentials 
the marginal µ≤s:e requires summing over s terms 
as follows:

(11)
θ<i+1→i:i′ = θ<i+1→i:B(i+1) if i′ ≥ B(i + 1).

(12)

β i = θ i+1





�

B(i+2)>i′>i

θ i+1:i′β i′ +
�

i′≥B(i+2)

bi+1θ<i+2:i′β i′





= θ i+1





�

B(i+2)>i′>i

θ i+1:i′β i′ + bi+1β
P
i+2





.

βP
i =

{

b<iβ
P
i+1

+
∑j=B(i+1)−1

j=B(i) θ<i:jβ j if B(i) ≤ n

0 otherwise.

µ≤s:e =
∑

i′≤s

α̂i′θ i′:eβe.

We simplify this computation to reuse work 
across multiple related marginals as follows:

The first case in the above equation follows from 
Eq. 9 used to simplify the computation of α terms. 
The second case is a simple recursion and shows 
how we can reuse work in computing marginals 
of adjacent potentials. By the definition of A(.) in 
Eq. 8, we know that s > A(e − 1) and the case of 
A(e − 1) = s is a base case of the recursion.

Potentials of the form ψ s:≥e . In this case mar-
ginals require summing over n− e terms as 
follows:

We simplify this computation so as to require 
summing over no more than m terms as follows:

Edge potentials also fall in this class except that 
we need to restrict the previous label.

Potentials of the form ψ≤s:≥e In this case we 
need

We simplify this computation so as to not require 
summing over O(n2) terms as follows:

 where µ′(s − 1) = µ≤s−1,≥B(s)/β
P
s  In the equa-

tion above the first case is obvious. The second 
case where B(s + 1) = e is derived next.

 It was tricky to get all the indices right in the 
above algorithm. We verified correctness by test-
ing1 that we get the same results on a direct com-

µ≤s:e =

{

αPe−1aeβe if A(e − 1) = s

µ≤(s−1):e + α̂sθ s:eβe if A(e − 1) < s
.

µs:≥e = α̂s

∑

i≥e

θ s:iβ i.

µs:≥e =

{

α̂sβ
P
s+1

bs if B(s + 1) = e

µs:≥(e+1) + α̂sθ s:eβe if B(s + 1) > e
.

µ≤s:≥e =
∑

i′≤s

α̂i′

∑

i≥e

θ i′:iβ i.

µ≤s:≥e =

{

µ≤s:≥(e+1) + µ≤s:e if B(s + 1) > e

(µ′(s − 1)b<s + α̂sbs)β
P
s+1

if B(s + 1) = e
,

µ≤s:≥e =
∑

i′≤s

α̂i′θ<s+1→i′ :e

∑

i≥e

θ<s+1:iβ i (see Eq : 12)

=
∑

i′≤s

α̂i′θ<s+1→i′ :eβ
P
s+1

=
∑

i′≤s

α̂i′θ<i′+1→i′ :e

∏

i′<j≤s

θ<j+1→<j:e β
P
s+1

=
∑

i′≤s

α̂i′bi′
∏

i′<j≤s

b<j β
P
s+1

(see Eq. 11)

= ((µ≤s−1:≥B(s)/β
P
s )b<s + α̂sbs)β

P
s+1

.

1 Be careful about using the following code—I’ve only proven 
that it works, I haven’t tested it. Donald Knuth



221

Sequence Segmentation Using Semi-Markov Conditional Random Fields

1 3J. Indian Inst. Sci. | VOL 99:2 | 215–224 June 2019 | journal.iisc.ernet.in

putation of all the terms without such 
optimization.

Algorithm 1 Alphas(n,ψi′:≥i,ψ≤i′:i,ψ≤i′:≥i,ψi′:i, θi)
Initialize: α̂1 = �, A(0) = 0
for i = 1 . . . n do

Initialize θ<i+1:i = �,αi = �,αP
i = �

for i′ = i down to A(i− 1) + 1 do
Get θ<i′:i,θi′:i from θ<i′+1:i and ψs
αi = αi + α̂i′θi′:i

end for
Compute A(i) from ψs
if A(i) > 0 then

Get θj:>i,θ<j:>i from θ<j:i with j = A(i− 1) + 1,
for j = A(i− 1) + 1 . . . A(i) do

αP
i = αP

i + α̂jθj:>i

Get θj+1:>i,θ<j+1:>i from θ<j:>i and ψs.
end for

end if
if A(i− 1) > 0 then

Get ai,a>i from a>i−1 and ψs.
αi = αi +αP

i−1ai

αP
i = αP

i +αP
i−1a>i

end if
α̂i+1 = αiθi+1

end for

3.3  Complexity Analysis
We show that the worst case complexity of infer-
ence is O(nm+H) where m is the maximum 
span of any potential and H is the total number 
of features expressed as potentials. Consider the 
computation of α and αP terms via Eq. 9. The 
maximum number of terms summed over in 
each of the equations is m, the maximum gap 
between end positions of any potential. This 
explains the O(nm) part. We explain the O(H) 
part by showing that the θ -s can be computed in 
such a way that if the same potential is applicable 
to k adjacent segments the amount of work done 
is a constant independent of k. For this we start 
from i′ = i and decrease i′ and in each iteration 
compute θ i′:i and θ<i′:i from a previous compu-
tation of θ<i′+1:i . We maintain the features in an 
efficient array-like structure such that for each 
i′ : i pair (there can be at most nm of these) and 
for each of the four possible kinds of potentials 
of the form ψ≤i′:≥i,ψ≤i′:i,ψ i′:≥i,ψ i′:i , we can 
retrieve all applicable features in O(1) amortized 
time. Then, θ i′:i can be computed from θ<i′+1:i by 
adding only the newly active features. We show 

how to compute the forward α terms via efficient 
potential reuse in Algorithm 1. The computation 
of betas is analogous.

In contrast, for the original algorithm the 
complexity in the average case is O(nL+ G) where 
L is a hard limit on the maximum segment length 
and is expected to be greater than m and G is the 
total number of features fired over all segments. 
We show that O(G) = O(L2H) in the presence 
of token-level features. For example, consider a 
feature with the corresponding potential of the 
form ψ≤s:≥s+ℓ−1 . This feature would be fired 
(L− ℓ+ 1)(L− ℓ+ 2)/2 times since it overlaps 
with that many segments. If all features were at 
the word level with ℓ = 1 , then O(G) = O(L2H) . 
In tasks like title/journal name extraction from 
citations where L is around 20 and several token-
level features (like word and regular expression 
patterns indicators) are mixed with a few seg-
ment-level features (like match with a diction-
ary), this can lead to enormous savings as we see 
in the experimental section below. If we were to 
express complexity without involving the G and 
H terms and assumed that we need to perform 
O(k) work to find potential of a k length segment, 
we get O(nL2) average case complexity for the 
old segmentation algorithm, which is reduced to 
O(nm2) worst case for the new algorithm.

The marginals µ can be computed in O(mn) 
time as follows. All features are first sorted in 
increasing order of their start boundary followed 
by a decreasing order of their end boundary. The 
computation of µ s is done in the same order so 
that no storage needs to be allocated for them and 
the compute cost of µ is shared across all features 
with the same start and end boundary.

Empirically too we find the new inference 
algorithm to significantly reduce training time. In 
Fig. 2 we show that the running time for Segment 
increases sharply whereas SegmentOpt stays close 
to SequenceBCEUwith increasing training size on 
three different tasks. More details about the task 
and experiments can be found in Sarawagi19.

Address

50

550

1050

1550

2050

2550

3050

0 10 20 30 40 50 60
Training %

T
im

e 
(s

ec
o

n
d

s) Sequence
SegmentOpt

Segment

Articles

50
2050
4050
6050
8050

10050
12050
14050

0 20 40 60 80
Training %

T
im

e 
(s

ec
o

n
d

s)

Sequence
SegmentOpt
Segment

Cora

50

2050

4050

6050

8050

10050

12050

0 20 40 60 80
Training %

T
im

e 
(s

ec
o

n
d

s)

Sequence
SegmentOpt

Segment

Figure 2: Running time against training set size for SequenceBCEU, Segment and SegmentOpt.



222

S. Sarawagi

1 3 J. Indian Inst. Sci.| VOL 99:2 | 215–224 June 2019 | journal.iisc.ernet.in

4  Applications of Semi‑CRFs
Ever since the work was first published in 2004, 
there have been many applications of the model. 
We list them below.

Integrating unstructured text into relational 
databases Consider an application where we need 
to automatically integrate unstructured text into 
an existing large multi-relational structured data-
base. For example, given a structured database of 
publications, we need to integrate a new unstruc-
tured citation string by first extracting structured 
fields and then deduping with existing fields in 
the database. The demi-CRF model provides a 
convenient method of exploiting match with 
existing entries in the database as segment-level 
features, and then to jointly both extract the enti-
ties and dedupe it with an existing entity if it is 
a potential duplication.  Mansuri and Sarawagi16 
presents the design of such a system.

Creating probabilistic databases from infor-
mation extraction models Large text databases 
obtained by integrating unstructured data from 
multiple sources are central to many real-life 
applications, including citation databases like 
Citeseer, product comparison databases, and per-
sonal information management systems (PIM). A 
key step in the creation of such databases is the 
extraction of structured entities from unstruc-
tured sources. The semi-CRF model provides a 
sound probability distribution over extractions 
but is not easy to represent and query in a rela-
tional framework. One method of surmounting 
the problem of extraction errors is to require that 
each extracted entity be attached with confidence 
scores that correlate with the probability that the 
extracted entities are correct. Such probabilistic 
results can be stored in an imprecise data man-
agement system1, 4–7, 21 for getting probabilistic 
answers. While this representation of uncertainty 
is natural and allows for simple query execution 
semantics, the number of extraction results can in 
the worst case be exponentially large. Gupta and 
Sarawagi8 shows how a semi-CRF model can be 
converted into a mixture of multinomial distri-
butions over the different fields extracted by the 
model.

Extracting tables from lists on the web In this 
application, our goal was to assemble a table from 
a few example rows by harnessing the huge cor-
pus of information-rich but unstructured lists on 
the web. Consider a scenario where a user wishes 
to build a table of multi-attribute records belong-
ing to a topic, say oil spills, starting with a few 
editor-picked seed records. We wish to construct 
this answer by aggregating the oil spill mentions 

present in various HTML lists on the Web. This 
requires us to segment the list records and map 
the segments to the query schema using a sta-
tistical model and consolidate the results from 
multiple lists into a unified merged table. Gupta 
and Sarawagi9 shows a method of solving this 
task by first matching the seed set of examples 
to the HTML lists to create noisily labeled data, 
then training a semi-CRF based on segment-level 
regular expressions over HTML tags, exploiting 
overlap across lists to collect even more labeled 
data, and so on in a loop.

Recent applications of semi-CRFs More 
recently, semi-CRFs have been combined with 
deep learning that provides richer feature rep-
resentations than earlier hand-crafted features. 
Some examples include part of speech tagging of 
character-level noisy text10, named entity recogni-
tion on word level input23, 25, hand writing and 
speech recognition2.

5  Conclusion and Future Work
Semi-CRFs are a tractible extension of CRFs that 
offer much of the power of higher-order mod-
els without the associated computational cost. A 
major advantage of semi-CRFs is that they allow 
features which measure properties of segments, 
rather than individual elements. For applications 
like NER and gene finding12, these features can 
be quite natural. In experiments on several NER 
problems, semi-CRFs generally outperform con-
ventional CRFs, and when little training data is 
available, the differences are often dramatic.

The default forward–backward inference algo-
rithm for inference in semi-CRFs is significantly 
slower than in CRFs. We also proposed tech-
niques to make the running time of semi-Markov 
models comparable to that of CRFs by exploiting 
features shared across multiple segments.

Since its publication in 2004, the semi-CRF 
model has been adopted in many applications, 
including recent deep learning models for part of 
speech tagging, named entity recognition, hand 
writing recognition, and speech recognition. 
However, none of these recent implementations 
harness the overlapping forward–backward infer-
ence algorithm . A compelling direction of future 
work is to train deep learning models with this 
more efficient inference algorithm.

Publisher’s Note 
Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and insti-
tutional affiliations.



223

Sequence Segmentation Using Semi-Markov Conditional Random Fields

1 3J. Indian Inst. Sci. | VOL 99:2 | 215–224 June 2019 | journal.iisc.ernet.in

Received: 1 November 2018   Accepted: 24 January 2019
Published online: 20 March 2019

References
 1. Barbar D, Garcia-Molina H, Porter D (1992) The man-

agement of probabilistic data. IEEE Trans Knowl Data 

Eng 4(5):487–502. https ://doi.org/10.1109/69.16699 0

 2. Beck E, Hannemann M, Dtsch P, Schlter R, Ney H (2018) 

Segmental encoder-decoder models for large vocabu-

lary automatic speech recognition. Proc Interspeech 

2018:766–770

 3. Borthwick A, Sterling J, Agichtein E, Grishman R (1998) 

Exploiting diverse knowledge sources via maximum 

entropy in named entity recognition. In: Sixth Workshop 

on Very Large Corpora. Association for Computational 

Linguistics, New Brunswick, New Jersey

 4. Boulos J, Dalvi N, Mandhani B, Mathur S, Re C, Suciu 

D (2005) Mystiq: a system for finding more answers by 

using probabilities. In: Proceedings of the ACM SIG-

MOD International Conference on Management of Data, 

Baltimore, Maryland. https ://doi.org/10.1145/10661 

57.10662 77

 5. Dalvi NN, Suciu D (2004) Efficient query evaluation on 

probabilistic databases. In: Proceedings of the 30th VLDB 

Conference,Toronto, Canada, pp 864–875

 6. Fuhr N (1990) A probabilistic framework for vague que-

ries and imprecise information in databases. In: Proceed-

ings of the sixteenth international conference on Very 

large databases. Morgan Kaufmann Publishers Inc., San 

Francisco, pp 696–707

 7. Green TJ, Tannen V (2006) Models for incomplete and 

probabilistic information. IEEE Data Eng Bull 29(1)

 8. Gupta R, Sarawagi S (2006) Curating probabilistic data-

bases from information extraction models. In: VLDB

 9. Gupta R, Sarawagi S (2009) Answering table augmen-

tation queries from unstructured lists on the web. In: 

PVLDB

 10. Kemos A, Adel H, Schtze H (2018) Neural semi-markov 

conditional random fields for robust character-based 

part-of-speech tagging. 1808.04208

 11. Keshet J, Shalev-Shwartz S, Singer Y (2005) Phoneme 

alignment using large margin techniques. In: Work-

shop on the advances in structured learning for text and 

speech processing, NIPS

 12. Krogh A (1998) Gene finding: putting the parts together. 

In: Bishop MJ (ed) Guide to human genome computing, 

2nd edn. Academic Press, Cambridge, pp 261–274

 13. Lafferty J, McCallum A, Pereira F (2001) Conditional 

random fields: Probabilistic models for segmenting and 

labeling sequence data. In: Proceedings of the Interna-

tional Conference on Machine Learning (ICML-2001), 

Williams

 14. Liu DC, Nocedal J (1989) On the limited memory bfgs 

method for large-scale optimization. Math Programm 

45:503–528

 15. Malouf R (2002) A comparison of algorithms for maxi-

mum entropy parameter estimation. In: Proceedings 

of The sixth conference on natural language learning 

(CoNLL-2002), pp 49–55

 16. Mansuri I, Sarawagi S (2006) A system for integrating 

unstructured data into relational databases. In: Proc. of 

the 22nd IEEE Int’l Conference on Data Engineering 

(ICDE)

 17. McCallum A, Li W (2003) Early results for named entity 

recognition with conditional random fields, feature 

induction and web-enhanced lexicons. In: Proceedings of 

The Seventh Conference on Natural Language Learning 

(CoNLL-2003), Edmonton, Canada

 18. McDonald R, Crammer K, Pereira F (2005) Flexible text 

segmentation with structured multilabel classification. 

In: HLT/EMNLP

 19. Sarawagi S (2006) Efficient inference on sequence seg-

mentation models. In: Proceedings of the 23rd Inter-

national Conference on Machine Learning (ICML), 

Pittsburgh

 20. Sarawagi S, Cohen WW (2004) Semi-markov conditional 

random fields for information extraction. In: NIPS

 21. Sarma AD, Benjelloun O, Halevy A, Widom J (2006) 

Working models for uncertain data. In: ICDE

 22. Sha F, Pereira F (2003) Shallow parsing with conditional 

random fields. In: Proceedings of HLT-NAACL

 23. Ye ZX, Ling ZH (2018) Hybrid semi-markov crf for neu-

ral sequence labeling. In: ACL

 24. Zhang T, Damerau F, Johnson D (2002) Text chunking 

based on a generalization of winnow. J Mach Learn Res 

2:615–637

 25. Zhuo J, Cao Y, Zhu J, Zhang B, Nie Z (2016) Segment-

level sequence modeling using gated recursive semi-

markov conditional random fields. In: ACL

https://doi.org/10.1109/69.166990
https://doi.org/10.1145/1066157.1066277
https://doi.org/10.1145/1066157.1066277


224

S. Sarawagi

1 3 J. Indian Inst. Sci.| VOL 99:2 | 215–224 June 2019 | journal.iisc.ernet.in

Sunita Sarawagi  researches in the fields 
of databases, data mining, and machine 
learning. Her current research interests are 
deep learning, graphical models and infor-
mation extraction. She is institute chair pro-
fessor at IIT Bombay. She got her PhD in 

databases from the University of California at Berkeley and 
a bachelor degree from IIT Kharagpur. Her past affiliations 
include visiting faculty at Google Research, Mountain view, 
CA, visiting faculty at CMU Pittsburg, and research staff 
member at IBM Almaden Research Center. She has several 

publications in databases and data mining, and several pat-
ents. She serves on the board of directors of ACM SIGKDD 
and VLDB foundation. She was program chair for the ACM 
SIGKDD 2008 conference, research track co-chair for the 
VLDB 2011 conference and has served as program commit-
tee member for SIGMOD, VLDB, SIGKDD, ICDE, and 
ICML conferences. She is/was on the editorial board of the 
ACM TODS, ACM TKDD, and FnT for machine-learning 
journals.


	Sequence Segmentation Using Semi-Markov Conditional Random Fields
	Abstract | 
	1 Introduction
	2 The Semi-CRF Model
	2.1 Prediction
	2.2 Training

	3 Overlapping forward–backward algorithm
	3.1 Forward and Backward Terms
	3.2 Computing Marginals Around Potentials
	3.3 Complexity Analysis

	4 Applications of Semi-CRFs
	5 Conclusion and Future Work
	References




