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An Overview of Restricted Boltzmann Machines

1 Introduction
In 1982,  Hopfield introduced a fully connected 
network of interacting units using which one can 
store and retrieve binary patterns21. This net-
work can be regarded as a dynamical system in 
which the stable states (associated with minima 
of a suitably defined energy) of the system cor-
respond to the desired memories. The network 
is initialized with a random state and each node 
is allowed to change/update its state through a 
simple rule that depends on the states of nodes 
connected to it. This dynamics results in a path 
in the state space that continuously decreases the 
energy of the network. The Hopfield network 
was very influential in the development of neural 
network models in the 1980s. Though successful 
in storing/retreiving the desired patterns, it was 
observed that the Hopfield model has limited 
capacity to store memories and it has the prob-
lem of spurious minima. To mitigate some of 
these problems, a stochastic version of the Hop-
field model, called Boltzmann machine, was pro-
posed17. A Boltzmann machine (BM) is a model 
of pairwise interacting units where each unit 
updates its state over time in a probabilistic way 
depending on the states of the neighboring units. 
Unlike a Hopfiled model, the BM can have some 
hidden units too. However, learning the param-
eters of the BM model is computationally inten-
sive. To reduce the complexity of learning, the 
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Abstract | The restricted Boltzmann machine (RBM) is a two-layered net-
work of stochastic units with undirected connections between pairs of 
units in the two layers. The two layers of nodes are called visible and hid-
den nodes. In an RBM, there are no connections from visible to visible or 
hidden to hidden nodes. RBMs are used mainly as a generative model. 
They can be suitably modified to perform classification tasks also. They 
are among the basic building blocks of other deep learning models 
such as deep Boltzmann machine and deep belief networks. The aim 
of this article is to give a tutorial introduction to the restricted Boltzmann 
machines and to review the evolution of this model.
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connectivity structure of the BM is restricted15, 19, 

42. This model is called the restricted Boltzmann 
machine (RBM). The RBM model has played an 
important role in the current resurgence of neu-
ral networks. The algorithm18 for unsupervised 
pretraining of deep belief networks using RBMs 
is a very significant development in the field in 
the sense that it rekindled interest in deep neural 
networks.

RBM is a probabilistic energy-based model 
(EBM) with a two-layer architecture in which the 
visible stochastic units are connected to the hid-
den stochastic units as shown in Fig. 1. There are 
no connections from visible to visible or hidden 
to hidden nodes. In a Boltzman machine, like in 
a Hopfield model, every unit can be connected 
to every other unit. RBM is a special case of the 
Boltzmann machine where an additional bipar-
tite structure is imposed by avoiding the intra-
layer connections15, 19, 42. Even though RBM is a 
generative model, it can also be used as a discrim-
inative model with suitable modifications.

As a generative model, an RBM represents a 
probability distribution (over states of the vis-
ible units) where low-energy configuarations 
have higher probability. The energy is determined 
by the connection weights which are the param-
eters to be learnt from the data to build a genera-
tive model for the data. The task of learning an 
RBM requires design of training algorithms and 
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a popular method is maximum likelihood esti-
mation of the parameters. RBMs are universal 
approximators in the sense that any probability 
distribution over {0, 1}m can be well approxi-
mated by an RBM with m visible units and suf-
ficient number of hidden units15, 24.

The Boltzmann machine can have all visible 
nodes. Consider the case with m visible nodes 
and let v ∈ {0, 1}m denotes the state of the visible 
units. Then, the BM represents a probability dis-
tribution given by

where E(·; θ) is the energy function (with param-
eters θ ) and Z =

∑

v
e−E(v;θ) is called the parti-

tion function. To increase the expressive power 
of the model, latent or hidden units can be intro-
duced. Let h ∈ {0, 1}n denotes the state of the 
hidden nodes. The energy function would depend 
on both visible and hidden units. The probability 
the model assigns to a given (v,h) is

(1)p(v|θ) =
e−E(v;θ)

Z
,

(2)p(v,h|θ) =
e−E(v,h;θ)

Z
.

The RBM also has the same distributional form 
as above. However, there are no connections 
within the visible and hidden nodes. This would 
determine the form of the energy function (see 
Sect. 1.1).

It is also possible to use the RBM as a discrim-
inative model. For this, we learn the joint distri-
bution p(v, y), where v is the feature vector and y 
is the label. The labels are provided along with the 
training sample as an input to the visible layer as 
shown in Fig. 2. Once the model is learnt, the new 
test sample is clamped to the visible units and the 
conditional distribution of the class given the test 
sample is used for classifying the test sample. It is 
also possible to consider the hidden unit repre-
sentation as features and then buiding a classifier 
using them.

The parameters, θ , of the RBM include all the 
connection weights and the biases. The probabil-
ity distribution represented by the model is deter-
mined by these parameters. Given training data, 
we need to learn the parameters so that the distri-
bution represented by the model closely matches 
the desired distribution as indicated by the train-
ing data.

The maximum likelihood estimation is the 
most popular method used to learn RBM param-
eters. However, the gradient (w.r.t. the parameters 
of the model) of the log-likelihood is intractable, 
since it contains an expectation term w.r.t. the 
model distribution. This expectation is computa-
tionally expensive: exponential in (minimum of) 
the number of visible/hidden units in the model. 
Therefore, this expectation is approximated by 
taking an average over the samples from the 
model distribution. The samples are obtained by 
exploiting the bipartite connectivity structure of 
the RBM.

To avoid evaluating intractable expectation in 
the maximum likelihood method, other methods 

Figure 1: RBM with m visible units and n hidden 
units. wij is the weight between hi and vj and the 
terms b and c denote the bias for visible and hid-
den unit, respectively.

Figuer 2: RBM with m visible units and n hidden units. The units representing class label are indicated by 
the red circles. The class label is represented by these label units through one out of K representations 
(and we denote it by vector ey ). wij is the weight between hi and vj , and the terms b , c and b̃ denote the bias 
for visible, hidden and label units, respectively. w̃ij is the weight between hi and jth label unit.
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such as the pseudo-likelihood, ratio matching 
and generalized score matching are proposed. 
These methods use the conditional distributions 
due to which the intractability referred to above 
is resolved. However, empirical analysis in Mar-
lin et al.28 showed that the maximum likelihood 
method is better compared to other methods 
even though it is computationally intensive.

We would first discuss the model in brief 
before discussing the learning algorithms.

1.1  The RBM model
The probability assigned to a given visible sample 
v by the RBM is

where Z =
∑

v,h e
−E(v,h;θ) is called the partition 

function. The energy function is defined depend-
ing on the the way the visible and hidden units 
are modeled. For example, the visible and hidden 
units can be binary or Gaussian. In this article, 
we mostly consider the case where all units are 
binary. If both the hidden and visible units are 
binary, we have v = {0, 1}m and h = {0, 1}n and 
then the energy function is defined as:

Here, parameter θ consists of {w,b, c}.
The bipartite structure implies conditional 

independence of visible units conditioned on all 
hidden units (and vice-versa). That is,

The above conditional distribution can be 
expressed as:

where σ(x) is the logistic sigmoid function, i.e., 
σ(x) = 1/(1+ e−x) . Similarly, the conditional 
distribution of the visible unit given the hidden 
units is:

(3)p(v|θ) =
∑

h

p(v,h; θ) =
1

Z

∑

h

e−E(v,h;θ),

(4)

E(v,h; θ) =−
∑

i,j

wijhi vj −

m
∑

j=1

bj vj −

n
∑

i=1

ci hi

(5)=− h
T
wx − b

T
x − c

T
h.

(6)p(h|v) =

n
∏

i=1

p(hi|v), p(v|h) =

m
∏

i=1

p(vi|h).

p(hi = 1|v) =
p(hi = 1, v)

p(hi = 0, v)+ p(hi = 1, v)

=σ





m
�

j=1

wijvj + ci



,

The model distribution given in Eq. (3) can be 
factorized as a mixture of product distributions 
as:

The aim is to learn θ such that the model distri-
bution, p(v|θ), is close to the data distribution, 
say, pdata in some sense. We discuss the learning 
algorithms in Sect. 2.

1.2  Representational Power
The representational power of a model defines its 
ability to capture a class of distributions. As seen 
from Eq. (8), RBM distribution is a product of 
mixtures, where each hidden unit contributes to 
a mixture which is a product of two distributions. 
The increase in the number of hidden units guar-
antees improvement in the training log-likelihood 
or equivalently guarantees reduction in the KL 
divergence between the data and the model distri-
bution24. Further, they showed that any distribu-
tion over {0, 1}n can be approximated arbitrarily 
well (in terms of the KL divergence measure) with 
an RBM with k + 1 hidden units, where k is the 
number of input vectors with non-zero probabil-
ity. This result is generalized to show that any dis-
ribution can be approximated arbitrarily well by 
the RBM with 2n − 1 hidden units32. Further, the 
results are refined33 to show that RBM with that 
RBM with α2n − 1 (where α < 1 ) hidden units are 
sufficient to approximate any distribution.

2  Learning RBM with Maximum 
Likelihood

Minimizing the KL divergence (a popular distribu-
tion distance measure) between the model and the 
data distribution is equivalent to maximizing the 
likelihood of the training samples. Suppose we have 
N training samples, T = {v(1), v(2), . . . , v(N )} , the 
KL divergence between the model and the data dis-
tribution is given as:

(7)p(vj = 1|h) = σ

(

n
∑

i=1

wijhi + bj

)

.

(8)p(v|θ) =
1

Z

m
∏

j=1

ebjvj
n
∏

i=1

(

1+ e
ci+

∑

j

wijvj
)

.

(9)

dKL(pdata(v) � p(v|θ))

=
∑

v∈T

pdata(v) log

(

pdata(v)

p(v|θ)

)

=
∑

v∈T

[

pdata(v) log pdata(v)− pdata(v) log p(v|θ)
]

.
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Hence, minimizing KL-divergence is equivalent to 
maximizing the loglokelihood:

where pdata(v) =
1
N

∑N
i=1 δ(v − vi) is the empiri-

cal distribution of the training data and it is not a 
function of θ . The log-likelihood of θ for a given 
data vector, v , can be found by marginalizing out 
the hidden units from the joint distribution, i.e.,

The gradient of log-likelihood can be evaluated as:

where Ep denotes expectation with respect to the 
distribution p. The first expectation is termed as the 
positive phase and the second term as the negative 
phase. The above equation can be simplified using 
the conditional independent structure of the visible 
and hidden units. For a specific wij (similar argu-
ments follow for biases b, c also),

(10)

arg min
θ

dKL(pdata(v) � p(v|θ))

= arg min
θ

∑

v∈T

[

pdata(v) log pdata(v)− pdata(v) log p(v|θ)
]

= arg max
θ

∑

v∈T

pdata(v) log p(v|θ),

(11)

lnL(θ |v) = ln p(v|θ) = ln
1

Z

∑

h

e−E(v,h)

= ln
∑

h

e−E(v,h) − ln
∑

v,h

e−E(v,h).

(12)

∂ lnL(θ |v)

∂θ

=
∂

∂θ

�

ln
�

h

e
−E(v,h)

�

−
∂

∂θ



ln
�

v,h

e
−E(v,h)





= −
�

h

p(h|v)
∂E(v,h)

∂θ
+

�

v,h

p(v,h)
∂E(v,h)

∂θ

(13)
=− Ep(h|v;θ)

[

∂E(v,h)

∂θ

]

+ Ep(v,h;θ)

[

∂E(v,h)

∂θ

]

�(g(θ , v)− f (θ)),

(14)

−
�

h

p(h|v)
∂E(v,h)

∂wij

=
�

h

p(h|v)hi vj

=
�

hi

p(hi|v)hi vj
�

h−i

p(h−i|v)

= p(hi = 1|v) vj = σ





m
�

j=1

wijvj + ci



vj .

Thus, the first term ( g(θ , v) ) can be easily obtained. 
However, the second term is exponential in the size 
of the smallest layer ( 2min(m,n) ) which follows from 
the equations below.

For a given set of training samples, 
T = {v(1), v(2), . . . , v(N )} , the log-likelihood gradi-
ent is

Since the empirical data distribution, pdata , assigns 
probability of 1/N to each sample, the summation 
of the first term above is expectation with respect 
to the data distribution. Specifically, the updates for 
weights and biases are

However, expectation under the model distribu-
tion, p(v,h; θ) , is computationally intractable since 
the number of terms in the expectation summa-
tion grows exponentially with the (minimum of) 
the number of hidden units/visible units present in 
the model. Hence, Markov chain Monte Carlo sam-
pling methods are used to obtain expectation under 
the model distribution.

2.1  Markov Chain Monte Carlo Estimation 
and Gibbs Sampling

The estimation of expectation of a function, 
g : S → R , w.r.t. a given probability distribution 
p (defined on S) can be obtained through inde-
pendent samples drawn from the distribution p 
as:

(15)

∑

v,h

p(v,h)
∂E(v,h)

∂θ
=
∑

v

p(v)
∑

h

p(h|v)
∂E(v,h)

∂θ

=
∑

h

p(h)
∑

v

p(v|h)
∂E(v,h)

∂θ
.

1

N

N
∑

l=1

∂ lnL(θ |v(l))

∂θ
=

1

N

N
∑

l=1

×

[

−Ep(h|v(l))

[

∂E(v,h)

∂θ

]

+ Ep(v,h;θ)

[

∂E(v,h)

∂θ

]]

.

�wij =
∂

∂wij
(− ln p(v|θ))

= Epmodel

[

vj hi
]

− Epdata

[

vj hi
]

�bj =
∂

∂bj
(− ln p(v|θ))

= Epmodel

[

vj
]

− Epdata

[

vj
]

�ci =
∂

∂ci
(− ln p(v|θ))

= Epmodel
[hi]− Epdata [hi].
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The estimate above is called the Monte Carlo 
estimate. Suppose obtaining samples from the 
distribution p(·) is difficult or the distribution is 
known only upto a normalizing constant. Then, 
it is advantageous to design a Markov chain with 
p(·) as the stationary distribution and obtain 
samples from the stationary distribution of that 
Markov chain to approximate the expectation as 
in Eq. (16). This is called the Markov chain Monte 
Carlo (MCMC) estimation. Unlike the samples 
obtained in the Monte Carlo estimation case, the 
MCMC samples are, in general, not independent.

It still remains to specify how to construct a 
Markov chain which converges to the required 
distribution. The Gibbs sampler considers uni-
variate conditional distributions where all of the 
random variables but one are assigned fixed val-
ues. Such univariate distributions are easier to 
simulate than complex joint distributions. The 
sampling is done by simulating n random varia-
bles sequentially from the n univariate condition-
als. More specifically, the Gibbs sampler generates 
the next state xs+1 from the current state of the 
chain xs as follows.

1. xs+1
1 ∼ p(x1|x

s
2, x

s
3, . . . , x

s
n),

2. xs+1
2 ∼ p(x2|x

s+1
1 , xs3, x

s
4, . . . , x

s
n),

3. xs+1
i ∼ p(xi|x

s+1
1:i−1

, xsi+1:n),

for i = 3, . . . , n− 1,

4. xs+1
n ∼ p(xn|x

s+1
1 , xs+1

2 , . . . , xs+1
n−1),

where p(xi|·) are conditionals obtained from the 
target distribution p(·).

For the RBM case, all of the hidden units can 
be sampled simultaneously, because they are con-
ditionally independent from each other given the 
visible units. Similarly, all of the visible units can 
be sampled simultaneously, since they are con-
ditionally independent from each other given 
the hidden units. This sampling method which 
update many variables simultaneously is called 
block Gibbs sampling. As seen earlier, the condi-
tionals are given by sigmoid functions.

2.2  Contrastive Divergence
The MCMC methods work well if the samples are 
obtained when the Markov chain converges to the 
stationary distribution. The samples are needed 
for every iteration of the gradient ascent on the 

(16)
µ = Ep[g(x)] ≈

1

N

N
∑

i=1

g(xi)

where xi ∈ S and xi ∼ p(·).

log-likelihood. The computational cost becomes 
large if one waits for the chain to converge at 
each iteration. To reduce the computational cost, 
Markov chain has to be initialized close to the 
model distribution. One way to acheive this is 
by initializing the Markov chain with the sam-
ples from the data distributon. This algorithm is 
called contrastive divergence algorithm19, which 
is a popular algorithm to learn RBM. In this algo-
rithm, a single sample, obtained after running a 
Markov chain, initialized with data samples, for K 
steps, is used to approximate the expectation as:

Here, ṽ(K ) is the sample obtained after K transi-
tions of the Markov chain (defined by the current 
parameter values θ ) initialized with the training 
sample v . In practice, the mini-batch version of 
this algorithm is used. The algorithm is called 
CD-k if we run the Markov chain for k steps.

It can be interpreted as minimizing the dif-
ference between the two Kullback–Leibler diver-
gences19, i.e.,

where pk is the distribution of the chain after k 
steps. As the parameter k → ∞, the CD-k algo-
rithm is equivalent to ML. However, in practice, 
a small k is used. As the learning progresses, the 
mixing rate of the Markov chain decreases rap-
idly50. This algorithm is effective in many sce-
narios in approximating the direction of gradient 
ascent. However, it is shown in many empirical 
studies that the likelihood can diverge on spe-
cific training sets after an initial increase in likeli-
hood10, 13, 41.

The fixed points of CD differ from those of 
ML and CD-k gives a biased estimate of the gra-
dient. This bias depends on the number of units 
in the RBM and the maximum change in energy 
that can be produced by changing a single unit14. 
The bias is also affected by the distance in varia-
tion between the model distribution and the ini-
tial distribution of the Gibbs chain14. The studies 
in1, 5 reveal that the bias in CD-k approximation 
can lead to convergence to parameters that do not 
reach the maximum likelihood. The CD-k update 
is not a gradient of any function, and counter-
intuitive regularization function that causes CD 

(17)

∇θ f (θ) =− Ep(v,h;θ)[∇θ E(v,h; θ)]

=− Ep(v;θ)Ep(h|v;θ)[∇θ E(v,h; θ)]

≈− Ep(h|ṽ(K );θ)

[

∇θ E(ṽ
(K ),h; θ)

]

� f̂ ′(θ , ṽ(K )).

(18)

dKL(pdata(v) � p(v|θ)) = dKL(pdata(v) � p(v|θ))

− dKL(pk(v) � p(v|θ)),
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learning to cycle indefinitely is constructed in43. 
The CD-k appoximation can also be viewed as a 
stochastic approximation algorithm. The conver-
gence conditions are analyzed in22, 50, 51.

2.2.1  Other Approaches
There are two main classes of approaches to 
make the learning of RBM more efficient. The 
first is to design an efficient MCMC method to 
get good representative samples from the model 
distribution and thereby reduce the variance of 
the estimated gradient. The persistent contras-
tive divergence (PCD) algorithm45 was initially 
proposed to train Boltzmann machines49, then 
later shown to perform better than CD in the 
context of RBM45. The algorithm is similar to CD 
learning. The only change is in the Gibbs chain 
initialization. Specifically, the Gibbs chain is not 
reinitialized to the training vector after k-steps for 
each parameter update; instead, it starts the chain 
at samples from the previous iteration (termed 
fantasy particles). In the fast persistent contrastive 
divergence (FPCD) algorithm46, an additional set 
of weights are introduced and shown to perform 
better by improving the mixing rate of the persis-
tent chain. The regular and the fast weights both 
contribute to the effective weight update. The fast 
weights are also calculated similar to the regular 
updates, but with much stronger weight decay 
and a faster learning rate. Other such algorithms 
based on modifying the MCMC sampling pro-
cedure include the population (pop-CD)36, and 
average contrastive divergence (ACD)26. Another 
popular algorithm, parallel tempering (PT)9, is 
also based on MCMC. However, in general, such 
advanced MCMC methods are computationally 
intensive.

The second approach is to design better opti-
mization strategies which are robust to the noise 
in estimated gradient4, 11, 29. Most approaches to 
design better optimization methods for learning 
RBMs are second-order optimization techniques 
that either need approximate Hessian inverse 
or an estimate of the inverse Fisher matrix. The 
AdaGrad12 method uses diagonal approximation 
of the Hessian matrix, while TONGA38 assumes 
block diagonal structure. The Hessian–Free 
(H–F) method29 is an iterative procedure which 
approximately solves a linear system to obtain the 
curvature through matrix–vector product. The 
H–F method is used to design natural gradient 
descent for learning Boltzmann machines11. A 
sparse Gaussian graphical model can be used to 
estimate the inverse fisher matrix to desvise fac-
torized natural gradient descent procedure16. All 

these methods either need additional computa-
tions to solve an auxiliary linear system or are 
computationally intensive methods to directly 
estimate the inverse Fisher matrix. The cen-
tered gradients (CG) method30 is motivated by 
the principle that by removing the mean of the 
training data and the mean of the hidden activa-
tions from the visible and the hidden variables, 
respectively, the conditioning of the underly-
ing optimizing problem can be improved31. The 
RBM log-likelihood function is a difference of 
convex functions, since both f and g in Eq. (13) 
can be written as log-sum-exponential function 
form. This property is exploited in4 to devise a 
majorization–minimization optimization algo-
rithm called the stochastic spectral descent (SSD) 
algorithm. A stochastic variation of difference of 
convex programming (DCP) can also be used to 
exploit the difference of convex functions prop-
erty of the RBM log-likelihood function35, 47.

There are methods which avoid eval-
uation of the partition function by 
modifying the cost function; for example, pseu-
dolikelihood, ratio matching and score matching 
methods. Suppose we have N training samples, 
T = {v(1), v(2), . . . , v(N )} , then the learning pro-
ceeds by maximizing/minimizing the following 
objective functions. (In the equations below v−d 
denotes all visible units excluding the dth unit.)

•   Pseudolikelihood: 

•   Ratio matching: 

•   Generalized score matching 

The main motivation for all these approaches 
is to avoid the intractability associated with the 

(19)

LPLθ (v(1), v(2), . . . , v(N ))

=
1

Nm

N
∑

i=1

m
∑

j=1

log p
(

v
(i)
j |v

(i)
−j , θ

)

(20)

LRMθ (v(1), v(2), . . . , v(N ))

= −
1

Nm

N
∑

i=1

m
∑

j=1

(

1− p
(

v
(i)
j |v

(i)
−j , θ

))2

(21)

LGSMθ (v(1), v(2), . . . , v(N )) = −
1

Nm

N
�

i=1

m
�

j=1

×





1

p
�

v
(i)
j |v

(i)
−j , θ

� −
1

pdata

�

v
(i)
j |v

(i)
−j , θ

�





2
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gradient of the log partition function. These 
methods avoid the estimation of the gradient of 
the log partition function, since they use the con-
ditional distribution, i.e., p

(

vj|v−j

)

 . In the condi-
tional distribution, the partition function appears 
both in the numerator and denominator and 
hence cancels out. While these approaches result 
in computationally efficient learning algorithms, 
their performance is not always comparable to 
that of CD-k.

3  Generalization
So far, we have considered RBM model where 
both visible and hidden nodes are binary. When 
visible nodes are binary, an RBM can model a 
distribution only over {0, 1}m . When we need a 
generative model for continuous data, we need 
continuous valued visible units. The basic RBM 
model can be generalized to take care of such 
situations. For example, the visible units can be 
modified to have Gaussian distribution. If we 
consider Gaussian visible units and binary hid-
den units, i.e., v ∈ RNv and h ∈ {0, 1}Nh then the 
energy function can be defined as6,

where σ 2 is the variance associated with the 
Gaussian visible unit. This model is the most 
popular Gaussian RBM (GRBM). The maximum 
likelihood estimation-based learning of GRBM 
is more involved than that of binary RBM. There 
are many attempts to make the learning more 
efficient by defining the energy function associ-
ated with the GRBM in several different ways23, 

48. For natural images, sparse penalty was shown 
to provide meaningful representations for natu-
ral images25. However, simple mixture models 
outperform the GRBM models in terms of final 
likelihood values44. With the reparameterization 
of energy function and an improved learning 
algorithm the GRBM model is shown to extract 
meaningful representations6. The analysis in 
Wang et al.48 showed that the failures in learn-
ing GRBMs are due to the inefficiency in training 
algorithms rather than the model itself. Several 
training recipes based on the knowledge of the 
data distribution were also suggested. These algo-
rithms require carefully chosen learning rate, 
since a large learning rate results in divergence 
of the log-likelihood and a small learning rate 
leads to very slow convergence. One needs 

E(v,h|θ) =
∑

i

(vi − bi)
2

2σ 2

−
∑

i,j

wijvi hj

σ 2
−

∑

j

cj hj ,

careful parameter initialization and restricting 
of the gradient during the update, for avoiding 
the divergence of the log-likelihood. The GRBM 
model is not efficient in modeling natural images, 
as the extracted hidden features do not represent 
sharp edges occuring at the object boundaries. 
Also, these features are not expressive enough 
to gain some advantages in classification tasks37. 
Based on this, some modifications of the GRBM 
are suggested whereby the hidden units can play 
a role in modeling of covariances of the visible 
units37. It is argued in Courville et al.7 that the 
difficiency in GRBM is becuase of binary hidden 
units. That paper proposed spike and slab RBM 
in which hidden units are modeled as the ele-
ment-wise product of a real-valued vector with a 
binary vector. Each hidden unit is associated with 
a binary spike variable and the real vector-valued 
slab variable. There are many such generaliza-
tions of RBMs proposed.

Another interesting generalization is to the 
case where the visible units are not binary but take 
only finitely many values. We mention one such 
model. A family of RBMs with shared parameters 
called the Replicated Softmax model20, extracts 
semantic representations from an unstructured 
collection of documents. Each RBM has softmax 
visible units that takes on values in some discrete 
alphabet, i.e., v ∈ {1, 2, . . . ,K }N . The hidden 
units are binary and we have h ∈ {0, 1}F . We can 
essentially use the binary RBM by coding the vis-
ible unit states as ‘one-of-K’ binary vectors. Let V 
be a N × K  observed binary matrix with vik = 1 
if visible unit i takes on the kth value. The energy 
function is defined as,

Thus, essentially the binary RBM method can 
take care of such cases.

4  Multi‑layered Networks with RBM
One of the developments that contributed to the 
initial success of deep learning is greedy layer-
wise training of stacked RBMs which provided 
good initialization for training neural networks 
with many hidden layers. The RBMs can be 
stacked to form multiple layers yeilding differ-
ent models. For example, the deep beleif network 
and the deep Boltzmann machine have RBM as a 
building block but their connections differ.

(22)

E(V,h; θ) = −

N
∑

i=1

F
∑

j=1

K
∑

k=1

Wijkhjvik

−

N
∑

i=1

K
∑

k=1

vikbik − N

F
∑

j=1

hjcj
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4.1  Deep Belief Network
Deep belief network (DBN) is a generative model 
containing many layers of hidden units, in which 
each layer captures correlations between the 
activities of hidden units in the layer below. The 
top two layers form an undirected bipartite graph 
similar to RBM. The lower layers form a directed 
sigmoid belief network, as shown in Fig. 3. A 
DBN with only one hidden layer is an RBM.

The joint distribution represented by the DBN 
shown in Fig. 3 consisting of two hidden layers 
and a visible layer, is given by,

where θ = {w1,w2,b, c1, c2} . A deep, hierarchi-
cal model can be learnt through layer-by-layer 
training where each pair of consecutive layers 
can be considered as an RBM. More specifically, 
the bottom layer is first trained to maximize 
Epdata [log p(v)] using CD or PCD. Once the 
parameters of the bottom layer are learnt, the 
hidden unit samples are generated by clamp-
ing the visible unit with the data. These samples 
serve as the data for training the next layer. This 
can be thought of as approximately maximizing 
Epdata(v)Ep(1)(h(1)|v)

[

log p(2)(h(1))
]

 , where p(1) 
and p(2) are the distributions represented by the 
first and second RBM, respectively. This learning 
algorithm can be repeated for as many layeres as 
required. The above training procedure increases 
the variational lower bound on the log-likelihood 
of the data as the number of layers increases18.

The learnt weights of the DBN are consid-
ered as initial weights of the MLP which consists 
of an additional classification layer. This MLP is 
fine-tuned for the classification task. The initial 
success of DBN is due to this algorithm which 
provided an efficient way to initialize the weights 
of an MLP and thereby improve the performance 
of MLP on many discriminative tasks both in 
terms of traning time and the classification 
accuracy18.

4.2  Deep Boltzmann Machine
The deep Boltzmann machine (DBM) is also a 
generative model which has RBM as a building 
block. As mentioned earlier, learning fully con-
nected Boltzmann machine is computationally 
intensive. Therefore, the hidden units are stacked 
in a layer-wise manner where each layer learns 
internal representations that become increasingly 
complex capturing higher-order correlations. 
Unlike DBN, in DBM all the connections are 
undirected as shown in Fig. 4.

(23)

p(v,h1,h2; θ) = p(v|h1; θ) p(h1,h2; θ),

The energy function of the DBM shown in 
Fig. 4 is,

where θ = {W1,W2} are the weights connect-
ing visible to hidden and hidden to hidden layers. 
The learning of DBM is similar to the learning of 
DBN given in 4.1

5  Evaluation
Since RBM is a generative model, the learnt RBM 
is to be evaluated based on the distribution learnt. 
Normally, the quality of the learnt RBM is evalu-
ated based on the average log-likelihood on a 
test sample. The average log-likelihood on N test 
samples is given by,

(24)
E(v,h1,h2; θ) = −v

T
W

1
h
1 − h

1T
W

2
h
2,

(25)L =
1

N

N
∑

i=1

logp(v(i)),

Figure 3: Deep belief net with two hidden layers 
denoted as {h1,h2}.

Figure 4: Deep Boltzmann machine with two hid-
den layers denoted as {h1,h2}.
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where p(v(i)) is the probability (or the likelihood) 
of the ith test sample, v(i) . The model with higher 
average test log-likelihood is better. The test log-
likelihood can also be used in devising a stopping 
criterion for the learning and for fixing the hyper-
parameters through cross validation.

The likelihood p(v) can be written as 
p∗(v)/Z . While p∗(v) is easy to evaluate, the nor-
malizing constant Z, called the partition function, 
is computationally expensive. Therefore, various 
sampling-based estimators have been proposed 
for the estimation of the log-likelihood. The first 
approach is to approximately estimate the parti-
tion function using the samples obtained from 
the model distribution. Since sampling from the 
model distribution of an RBM is complicated, 
a useful sampling technique is the importance 
sampling where samples obtained from a simple 
distribution, called the proposal distribution, are 
used to estimate the partition function.

5.1  Simple Importance Sampling
The expectation of a function f(x) with respect 
to a given distribution p(x) can be approximated 
by taking average over independent samples from 
p(x). When the distribution is too complex (rug-
ged and high dimensional), generating inde-
pendent samples is difficult. In such situations, 
a simple distribution from which independent 
samples can easily be generated is used to assist in 
obtaining the approximate expectation. The algo-
rithm works as follows.

Suppose it is possible to generate independent 
samples from a distribution q(x), which can be 
written as q(x) = q∗(x)

Zq
 . Here, Zq is the normaliz-

ing constant given as Zq =
∫

q∗(x)dx . We assume 
that we know p(x) upto a normalizing constant, 
i.e., p(x) = p∗(x)

Zp
 and it is easy to calculate p∗(x) . 

Now we can write expectation of f(x) with respect 
to p(x) as,

To elimenate Zp in the above equation consider 
the following ratio,

Now, substituting the value of Zp in Eq. (26) 
yields,

(26)Ep[f (x)] =

∫

f (x)
p∗(x)

Zp
dx

(27)

Zp

Zq
=

∫

p∗(x)

Zq
dx

=

∫

p∗(x)

q∗(x)
q(x)dx

The above equation can be written in terms of the 
N samples obtained from the distribution q(x) as,

Note that this method can also be used to esti-
mate the partition function as given in Eq. (27),

It is known that for a high-dimensional setting, 
the variance of ẑ is very high and can be infi-
nite sometimes when the proposal distribution, 
q(x), is not a good approximation of the true 
distribution27.

5.2  Annealed Importance Sampling
The importance sampling method-based parti-
tion function estimator suffers from a large vari-
ance if the proposal distribution is not a good 
approximation to the target distribution. This is 
due to the large variance of importance weights. 
To overcome the issue with choosing the proposal 
distribution in importance sampling algorithm, 
a sequence of intermediate probability distribu-
tions can be used to move gradually34. If the two 
consecutive intermediate distributions differ by a 
small amount, then the variance of importance 
weights will be under control. The intermedi-
ate distributions p0, p1, . . . , pk , with p0 = pA(x) 
(proposal distribution) and pk = pB(x) (target 
distribution), are chosen such that they should 
satisfy the following properties.

•   pk(x)  = 0 whenever pk+1(x) �= 0.
•   The unnormalized probability p∗k(x) is easy to 

calculate ∀k.
•   For each k, it is possible to get sample x′ given 

x through Markov transition Tk(x
′
|x) which 

leaves pk(x) invariant.

(28)

Ep[f (x)] =

∫

f (x)
p∗(x)

Zq

∫ p∗(y)

q∗(y)
q(y)dy

dx

=

∫

f (x)

p∗(x) q(x)

q∗(x)
∫ p∗(y)

q∗(y)
q(y)dy

dx

(29)

Ep[f (x)] ≈

∑N
i=1 wif (xi)
∑N

i=1 wi

,

where xi ∼ q(x)and wi =
p∗(xi)

q∗(xi)

(30)ẑ =
Zp

Zq
=

1

N

N
∑

i=1

wi
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Then, the successive application of importance 
sampling method through the sequence of dis-
tributions allows one to find expectations with 
respect to the target distribution. Annealed 
importance sampling is often used for estimating 
the average test log-likelihood of RBM models.

There are other approaches to estimate the 
average test log-likelihood directly by marginal-
izing over the hidden variables from the model 
distribution. However, the computational com-
plexity grows exponentially with the minimum of 
the number of visible and hidden units present in 
the model. Hence, an approximate method which 
uses a sample-based estimator called conserva-
tive sampling-based likelihood estimator (CSL)2. 
A more efficient method called reverse annealed 
importance sampling estimator (RAISE)3 imple-
ments CSL by formulating the problem of mar-
ginalization as a partition function estimation 
problem.

6  Conclusions
The RBM model has played an important role 
in the recent spectacular developments in neural 
network models and deep learning. The RBM is a 
generative model and it can extract patterns from 
the given data in an unsupervised manner. It is 
a very useful method for unsupervised feature 
learning. RBMs have also played an important 
role in unsupervised pretraining for weight ini-
tialization of deep neural networks. As mentioned 
earlier, the RBM is a building block for DBNs and 
DBMs. The pre-trained networks are used as an 
efficient initialzation of MLPs which are fine-
tuned later for the specific tasks. RBMs have been 
used in a variety of applications such as collabo-
rative filtering39, to analyze connectivity structure 
of brain using fMRI images40, constructing topic 
models from unstructured text data20, modeling 
of natural images8, etc.

In this paper, we presented a tutorial introduc-
tion to the RBM model and provided some dis-
cussion on learning an RBM from data through 
maximum likelihood estimation. We described 
the popular CD-k algorithm and also discussed 
many other methods that were proposed. We 
also discussed generalizations of the basic model 
both in terms of real-valued visible units as well 
as multilayer networks constructed using RBMs.

Many other successful variants of RBM have 
also been proposed to further improve the abil-
ity of the model in representing different types of 
data. For instance, Conditional restricted Boltz-
mann machine (CRBM) was proposed for col-
laborative filtering, Gaussian–Bernoulli restricted 

Boltzmann machine (GRBM) was proposed for 
real-valued continuous data, recurrent temporal 
Boltzmann machine (RTBM) was devised to rep-
resent sequential data, and convolutional RBMs 
are developed to capture the spatial structure in 
images and to learn accoustic filters from spectro-
gram of speech data.

RBMs represent useful generative models and 
unlike some of the other generative models (e.g., 
GANs), RBMs are also very effective as discrimi-
native models. However, learning an RBM is com-
putationally expensive. This is mainly because 
of the intractability of the partition function. 
As discused here, one uses the MCMC sampling 
techniques to estimate gradients of the likeli-
hood function for learning. Better methods for 
learning RBMs is currently an important research 
problem. The problem of constructing RBMs 
with real-valued visible units is also a problem of 
much current interest. Designing proper architec-
tures for RBMs with multiple hidden layers is also 
an interesting problem. RBMs, along with CNNs, 
provided the initial push for the deep learning 
revolution over the past few years and are likely 
to be important for the field in the years to come.
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