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Effect of Inter‑layer Coupling on Multilayer Network 
Centrality Measures

1 Introduction
Many real-world complex systems can be mod-
eled as networks. The interacting agents of the 
system are represented by nodes and interactions 
among them are represented by a set of edges. 
Study of networks is profoundly an interdisci-
plinary area and has different sets of problems in 
different domains. The importance of a node in 
the network, also known as the node centrality, 
has applications in several domains such as find-
ing the most influential people in social networks, 
essential genes/proteins in biological networks, 
crucial infrastructures in transportation net-
works and hubs of information in information 
networks. Similar to node centrality, we can also 
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Abstract | The study of networks has been evolving because of its appli‑
cations in diverse fields. Many complex systems involve multiple types 
of interactions and such systems are better modeled as multilayer net‑
works.The question “which are the most (or least) important nodes in a 
given network?”, has gained substantial attention in the network science 
community. The importance of a node is known as centrality and there 
are multiple ways to define it. Extending the centrality measure to multi‑
layer networks is challenging since the relative contribution of intra‑layer 
edges vs. that of inter‑layer edges to multilayer centrality is not straight‑
forward. With the growing applications of multilayer networks, several 
attempts have been made to define centrality in multilayer networks in 
recent years. There are different ways of tuning the inter‑layer couplings 
which may lead to different classes of centrality measures. In this article, 
we provide an overview of the recent works related to centrality in mul‑
tilayer networks with a focus on key use cases and implications of the 
type of inter‑layer coupling on centrality and subsequent uses of the dif‑
ferent centrality measures. We discuss the effect of three popular inter‑
layer coupling methods viz. diagonal coupling between adjacent layers, 
diagonal coupling and cross coupling. We hope the colloquial tone of 
this article would make it a pleasant read for understanding the theoreti‑
cal as well as experimental aspects of the work.
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find important edges or other structures (such as 
sub-networks) in the network12, 24, 39. We focus on 
node centrality (hereafter referred to as central-
ity) in this work.

Centrality can be defined in multiple ways 
depending on the type of a network (directed/
undirected, size) or application domain. For 
example, PageRank is an appropriate centrality 
measure for ranking the web pages in response to 
a search query17, whereas betweenness centrality is 
useful for designing the packet routing strategies 
in computer networks14. In this section, we will 
introduce this term. We will not provide a thor-
ough study of centrality measures for monoplex 
(i.e., single layer) networks, which can be found 
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at32. Let A ∈ R
N×N be the adjacency matrix of 

a monoplex network with N nodes, where Aij is 
the strength of the ijth connection. Let x ∈ RN be 
the centrality vector of a network where xi rep-
resents the centrality of node i. For a given adja-
cency matrix A, the corresponding centrality 
vector x can be calculated in the ways mentioned 
in Table 1. With the advent of data collection 
methods and superior data processing techniques, 
many times we have access to multiple views of the 
data. For example, a set of authors can have mul-
tiple types of relationships among them such as 
co-authorship, citation, co-citation, etc. Networks 
that change their structure with time can also give 
rise to multiple data views. In such cases, each 
view corresponds to the network structure at one 
particular time stamp. Such networks are known 
as temporal networks and they can be modeled 
by multilayer networks. Multilayer networks have 
found immense applications in ecological sys-
tems36, biological systems19, transport systems2, 
social network analysis49, etc. With the abundance 
of applications in several domains, multilayer net-
works are known by different terminologies such 
as multiplex networks, interconnected networks, 
multidimensional networks, etc.27. The key dif-
ference between a multilayer network and a set of 
monoplex (single layer) networks is the presence 
of inter-layer edges in the former.

Finding centrality in multilayer networks has 
immense applications such as the study of the 
emergence of congestion in transport flows45, 
ranking in evolving networks29, and analyz-
ing different life stages in the species41. In mul-
tilayer networks, the local neighborhood of a 
node can comprise nodes from the same layer 
as well as nodes from other layers. To define a 
centrality measure for multilayer networks, one 
has to come up with a way to handle the multi-
layer neighborhood of a node. Recently there 
have been several attempts at defining centrality 
measures for multilayer networks. Most of these 

methods differ in the way they handle inter-layer 
coupling. For instance, the multiple layers can be 
merged to form a monoplex network, or at the 
other extreme, the multilayer network itself can 
be treated as a giant monoplex network. The cou-
pling methods have their own implications when 
combined with the centrality measures. Despite 
the availability of several multilayer centrality 
measures, there is a lack of study on the applica-
bility of these methods. In this work, we review 
the effect of inter-layer coupling on different cen-
trality measures, and discuss their use cases.

In this article, we do not cover the entire spec-
trum of centrality measures but focus only on 
the study of different inter-layer coupling meth-
ods and their effect on the prominent centrality 
measures. Related reviews exist in the literature on 
multilayer networks in general3, 6, 25, 53, and cen-
trality measures in particular10, 21. However, these 
works largely survey the centrality measures for 
only one particular kind of inter-layer coupling. 
Our work attempts to cover the centrality works 
involving different types of inter-layer coupling.

2  Mathematical Notations
Different centrality measures require the mul-
tilayer network to be represented in different 
formats and we represent two popular ways of 
representing a multilayer network here.

2.1  Supra‑Adjacency List Representation
We represent a graph by G = (V ,E) , where V 
is a finite set of nodes with |V | = N  and E is a 
set of node–node pairs representing the edges; 
E ⊆ V × V  . Let L be the number of layers pre-
sent in the multilayer network. As defined in21, let 
VM ⊆ V × L represents the node–layer pairs such 
that (v, l) ∈ VM if and only if v is present in layer 
l. The edge set spanning both within and across 
layers can be represented by EM ⊆ VM × VM . 
A multilayer network can be represented by a 

Table 1: Centrality measures for monoplex networks. For detailed description of these measures 
and many others, please refer 32.

Centrality measure Centrality of node i Description

Eigenvector centrality xi = �
−1

∑
j Aij xj � is the leading eigenvalue

PageRank centrality xi = α
∑

j Aij
xj
kj

α is a scalar and kj is the degree of node j

HITS centrality (authority) xi = α
∑

j Aij yj α is a scalar and yj is the hub centrality of node j

HITS centrality (hub) yi = α
∑

j Aij xj α is a scalar and xj is the authority centrality of node j

Betweenness centrality xi =
∑

st
nist
gst

nist is the # of shortest paths between s and t that go through i. gst is 
the total # of shortest paths between nodes s and t
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quadruplet M = (VM ,EM ,V , L) . For example, 
the multilayer network M shown in Fig. 1 has 
V = {1, 2, 3, 4, 5} and three layers L = {L1, L2, L3}. 
The set of node–layer pairs can be represented 
as: VM = {(1, L1), (2, L1), (3, L1), (4, L1), (5, L1) , 
(1, L2), (2, L2), (3, L2), (4, L2), (5, L2), (2, L3), (3, L3),

(4, L3), (5, L3)} ⊆ V × L. The set of edges 
(intra-layer and inter-layer) can be represented 
as: EM = {{(1, L1), (2, L1)} , {(1, L1), (3, L1)} ,  
{(2, L1), (3, L1)} , {(3, L1), (4, L1)} , {(4, L1), (5, L1)} , 
{(1, L2), (2, L2)} , {(1, L2), (3, L2)} , {(1, L2), (4, L2)} , 
{(2, L3), (4, L3)} , {(4, L3), (5, L3)} , {(1, L1), (1, L2)} , 
{(2, L1), (1, L2)} , {(3, L1), (3, L2)} , {(4, L1), (4, L2)} , 
{(4, L1), (5, L2)} , {(5, L1), (5, L2)} , {(2, L1), (2, L3)} , 
{(2, L1), (3, L3)} , {(3, L1), (3, L3)} , {(4, L1), (3, L3)} , 
{(5, L1), (5, L3)} , {(2, L2), (2, L3)} , {(3, L2), (3, L3)} ,  
{(4, L2), (4, L3)} , {(5, L2), (4, L3)} , {(5, L2), (5, L3)}}.

2.2  Supra‑Adjacency Matrix 
Representation

Following the convention used in18, we can flat-
ten the multilayer network to a 2-dimensional 
supra-adjacency matrix. This is a special kind of 
matrix which has an inherent block structure. 
For the multilayer network shown in Fig. 1, the 
supra-adjacency matrix is shown in Fig. 2. Supra-
adjacency is an NL× NL dimensional matrix 
with diagonal blocks dedicated to intra-layer 

edges and non-diagonal blocks dedicated to inter-
layer edges. Presence of intra-layer edges is indi-
cated by  and inter-layer edges is indicated by . 
Since all the edges (inter-layer and intra-layer) are 
undirected for this example, so the supra-adja-
cency matrix is symmetric.

3  Inter‑Layer Coupling Methods
There are different potential approaches for deal-
ing with multiple layers and inter-layer edges of 
multilayer networks. The first approach is to 

Figure 1: A multilayer network depicting the cross inter‑layer coupling. A node is allowed to have as 
many connections with nodes within the layer and nodes from other layers. The node set in the layers 
need not be the same among all layers, as node 1 is missing in L3.
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Figure 2: Supra‑adjacency matrix representation 
of the multilayer network shown in Fig. 1.
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ignore the layered structure of the network and 
treat nodes from all the layers like a giant net-
work. One can use existing centrality measures on 
this entire network. This approach fails to distin-
guish between intra-layer and inter-layer edges, 
and hence not appropriate for analyzing multi-
layer networks. Another approach is to calculate 
the centrality of node i in each layer separately 
and get the vector c(i) = {x[1](i), . . . x[L](i)} . 
Node centrality xi can be identified by finding 
the mean of c(i). In addition to finding the mean, 
there are several other possible ways such as find-
ing a convex combination, finding the weighted 
average4, normalizing the eigenvector relative to 
the largest eigenvalue43, etc. This seems to be a 
straightforward approach; however, it ignores the 
inter-layer coupling of the network. Setting aside 
these two naive methods, we discuss the following 
coupling methods in greater detail in this paper.

3.1  Diagonal Coupling (Adjacent Layers)
Many real-world networks change their structure 
with time; such networks are known as tempo-
ral networks. Finding centrality in temporal net-
works has many applications such as dynamic 
network analysis30, finding temporal node cen-
trality26, finding joint and marginal centrality52, 
etc. Network structure at different time stamps 
can be interpreted as multiple layers of a larger 
network16, 22. Working with the layers indepen-
dently to define temporal network centrality 
measures may lead to undesired results like sud-
den fluctuations in the university rankings from 
year to year46.

Temporal networks have a special property 
of having the inter-layer coupling only between 
adjacent layers. Which means that the network 
can have inter-layer edges only between layers 
{α,α ± 1} . This special kind of coupling leads to 
diagonal blocks in non-diagonal positions (adja-
cent to diagonal blocks) of the supra-adjacency 
matrix as shown in Fig. 3. To extend the existing 
centrality measures to temporal networks, one 
obvious way is to use the NL× NL supra-adja-
cency matrix with different attention to the inter-
layer edges,

A =










A[1] ω(I) 0 . . .

ω(I) A[2] ω(I)
. . .

0 ω(I) A[3]
. . .

.

.

.
. . .

. . .
. . .










where ω ≥ 0 is known as the layer coupling 
coefficient. Traditional centrality measures can 
directly be applied on A which will lead to a cen-
trality vector of size NL. The centrality vector can 
be interpreted to return the node centrality at 
each time stamp5. Clearly, this approach ignores 
the block diagonal structure of the matrix and 
does not distinguish between the inter-layer and 
intra-layer edges10. This issue can be circum-
vented by changing the representation of either 
the inter-layer edges or the intra-layer edges. We 
discuss both of these methods below:

3.1.1  Inter‑Layer Coupling of Centrality Matrices
The idea of this approach is to find the central-
ity matrix for each layer and directly couple it to 
the centrality matrix of its adjacent temporal lay-
ers. Let C [α] denote the centrality matrix for the 
temporal network at layer α . Let ǫ = 1

ω
 . Then the 

supra-centrality matrix48 can be represented as,

The above formulation works with the assump-
tion that C [α] is non-negative and irreducible 
for every α ∈ L . Similarly, C is also non-negative 
and irreducible for any ǫ > 0 , which leads to 
the Perron Frobenius theorem for non-negative 
matrices31 and ensures uniqueness of the largest 
eigenvalue and non-negativity of the correspond-
ing eigenvector52. Thus, the C matrix can be 
viewed as an adjacency matrix to find centrality 
using standard methods.

C =










ǫC [1] I 0 . . .

I ǫC [2] I
. . .

0 I ǫC [3]
. . .

.

.

.
. . .

. . .
. . .
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Figure 3: Supra‑adjacency matrix representation 
of multilayer network shown in Fig. 4.
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3.1.2  Incorporating Inter‑Layer Similarity
Let C [α,α+1] = diag(c

[α,α+1]

1
, c

[α,α+1]

2
, . . . , c

[α,α+1]

N ) 
be the N × N  dimensional inter-layer similarity 
matrix for layers α and α + 1 . The supra-adja-
cency matrix can then be formulated52 as:

where cα,α+1

i  denotes the similarity between the 
same physical node at two adjacent layers. The 
supra-adjacency matrix A can now be used to 
find the centrality. There are many similarity 
measures to compute cα,α+1

i  such as Adamic-Adar 
Index1, Jaccard Index, Salton Index20, Resource 
Allocation Index56, etc. For a detailed experimen-
tal study on this method, kindly refer to52.

A =










A[1] C [1,2] 0 . . .

C [2,1] A[2] C [2,3]
. . .

0 C [2,3] A[3]
. . .

.

.

.
. . .

. . .
. . .










3.2  Diagonal Coupling
In time-independent multilayer networks, the 
inter-layer coupling is not limited to adjacent lay-
ers. For example, a multilayer network can repre-
sent different relationships among authors such 
as citation, co-authorship, co-citation, etc. In such 
networks, one can observe inter-layer coupling 
among all pairs of layers as shown in Fig. 5. With-
out loss of generality, one can assume the same 
set of vertices but a possibly different set of edges 
in different layers. Finding centrality in such net-
works has multiple applications such as node 
ranking42, finding the most versatile nodes11, etc. 
For the same reason, multilayer centrality is also 
referred to as versatility. In the current section, we 
discuss two major approaches to find centrality—
eigenvector-based and path-based.

3.2.1  Eigenvector‑Based Centrality
Network structure in layer α may get influenced 
by the nodes from other layers α′ . The centrality 
measure for multilayer network must take this 
influence into account. This influence among lay-
ers can be captured by a matrix W ∈ R

L×L, where 
wαβ denotes the influence of layer α on layer β . 
Once the wαβ is fixed, we can define the local mul-
tilayer eigenvector-like centrality cα as a leading 
eigenvector of the following matrix:

Now, we can directly use this matrix to find cen-
trality with traditional methods.

Sometimes, centrality of a node v in a layer 
not only depends on the other connected nodes 
in the same layer α but also on the nodes from 

Aα =
∑

β

wαβA
[β ,β]

Figure 4: A multilayer network depicting the diagonal inter‑layer coupling of adjacent layers, for example, 
time‑series points.
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Figure 5: Supra‑adjacency matrix representation 
of multilayer network as shown in Fig. 6.
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other layers. In such networks, it becomes essen-
tial to consider the influence from the nodes 
across the layers. To find the centrality of a node 
in a particular layer, the following modified adja-
cency matrix can be used43.

Where A⊗ is the Khatri-Rao product of the fol-
lowing matrices:

A⊗ can be viewed as a giant adjacency matrix and 
can be used to find centrality by the measures 
defined on monoplex networks. To read up on 
the existence and uniqueness of the leading eigen-
vector of A⊗ , please refer to43.

3.2.2  Path‑Based Centrality
Betweenness centrality is a prominent path-
based centrality measure. To extend betweenness 

A⊗ =








w11A
[1,1] w12A

[2,2] . . . w1LA
[L,L]

w21A
[1,1] w22A

[2,2] . . . w2LA
[L,L]

.

.

.
.
.
.

. . .
.
.
.

wL1A
[1,1] wL2A

[2,2] . . . wLLA
[L,L]








∈ R
NL×NL

W =






w11 . . . w1L

.

.

.
. . .

.

.

.

wL1 . . . wLL




 and(A[1,1]A[2,2] . . .A[L,L])

centrality measure to multilayer networks, we 
have to accommodate the fact that a path can 
comprise of nodes and edges from multiple lay-
ers. Let σiα jβ be the count of edge distinct shortest 
paths from (i,α) to (j,β) . The cross betweenness 
centrality C(v) of a node-layer pair (v,µ) is 
defined as the fraction of times (v,µ) occurs on 
the shortest path between any origin–destination 
pair {(i,α), (j,β)} . Mathematically,

where σ vµ

iα jβ
 is the number of times node–layer 

pair (v,µ) occurs on the shortest path from (i,α) 
to (j,β) . Here ǫ is a tuning parameter which bal-
ances between the importance of inter-layer and 
intra-layer edges. Cross betweenness centrality of 
a node can be computed in O(NLE) 7.

3.3  Cross Coupling
This is the most general case of coupling among 
all the methods discussed in this article. A node–
layer pair (i,α) can be influenced by the nodes in 
the same layer ((j,α) : i �= j) as well as nodes of 
any other layer ((j,β) : α �= β) as shown in Fig. 1. 
Note that the coupling techniques discussed 
in earlier sections are the special cases of this 

C(vµ) =
�

i,j∈V :i �=j



ǫ
�

α∈L

σ vµ

iα jα

σiα jα
+ (1− ǫ)

�

α,β∈L:α �=β

σ vµ

iα jβ

σiα jβ





Figure 6: A multilayer network depicting the diagonal inter‑layer coupling. Every node in a layer is con‑
nected to its counterpart in all other layers.
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particular coupling, which makes it important 
to extend (or reformulate) the centrality meas-
ures for these networks. We do so by adopting as 
is the framework of random walk on weighted 
(monoplex) graphs, and only changing the graph 
on which this framework is applied (viz., apply-
ing this random walk framework as is to a large 
weighted graph constructed out of our multilayer 
network as described below).

To define the centrality measures first, we 
introduce the random walk operator for a mul-
tilayer network M = (VM ,EM ,V , L) . A weighted 
multilayer network can have weights associated to 
the edges. Let wij(α,β) be the weight of the edge 
between (i,α) and (j,β) . Let siα =

∑
j,β wij(α,β) 

be the node strength of (i,α) . We can write the 
transition probability from (i,α) to (j,β) as

where ǫ > 0 is a constant. Note that Tiα
jβ  is a four-

dimensional matrix (also known as tensor). At 
time t, let piα(t) be the probability of finding the 
random walker at (i,α) . Then,

The steady state solution for the random walk can 
be given by the leading eigentensor44,

Intuitively a random walker should visit the 
nodes with high strength more frequently than 
the nodes with lesser strength. This is also evident 
from our formulation as, πiα ∝ siα . The transi-
tion tensor Tiα

jβ  can be defined in multiple ways9, 
but in this article we focus on the one similar to a 
random walk on monoplex networks35.

We can use this formulation to define differ-
ent centrality measures on multilayer networks. 
Following the discussion from11, in PageRank, 
a walker can move from one node to its neigh-
bor with probability r and it can teleport to any 
other node with probability (1− r) . Considering 
the uniform probability of getting a node picked 
while teleportation, the transition tensor can be 
given by,

where uiαjβ is the unit tensor of rank 4. PageRank 
centrality for multilayer networks is given by the 
solution of this master equation. As we discussed 
in Sect. 3.2.2, betweenness centrality is another 
important centrality measure. There we measured 

Tiα
jβ =

wij(α,β)

max(siα , ǫ)
,

pjβ(t + 1) =
∑

(i,α)∈VM

Tiα
jβ piα(t).

Tiα
jβ �iα = ��jβ .

Riα
jβ = rT iα

jβ +
(1− r)

NL
uiαjβ ,

the betweenness centrality as the fraction of 
times a node j occurs on all pair shortest paths. 
However, in many real-world networks, infor-
mation does not necessarily propagate through 
the shortest path. For example, packets over the 
internet or rumors over a social network are not 
always restricted to following the shortest path15, 

47. In such cases, the shortest path between-
ness centrality is not the right choice to make. 
One possible proxy for the betweenness is the 
random-walk betweenness, which is the number 
of random walks between any pair of nodes that 
pass through a node j 33. To analytically compute 
this number, it is convenient to use the absorbing 
random walk. Since we are interested in count-
ing the number of times a node j appears on the 
random walk, we assume node v as the absorbing 
state. For multilayer networks, we can define an 
absorbing random walk by the following 4-rank 
tensor,

Following the discussion from44, the number of 
times a random walker passes through a node j in 
layer β , irrespective of time step, is given by,

where δ is a 4 − d tensor such that δiαjβ = δijδ
α
β and 

δ represents the Kronecker delta. It can be noticed 
that the number of times the random walker vis-
its node j depends on the layers where j and start-
ing node are located. Let o be the starting node, 
the matrix representation of a random walker 
which can start from any layer σ and pass through 
j in any layer is given by,

where uβ and uσ are unit column vector and 
unit row vector, respectively. The final between-
ness centrality vector can be obtained by averag-
ing over all possible origin–destination pairs as 
follows,

For theoretical justification and empirical evi-
dences kindly refer to44. In addition to using the 
supra-adjacency list and supra-adjacency matrix 
representation of multilayer networks, there are 
other popular approaches such as represent-
ing the multilayer network as a collection of 
nodes and multilinks23. To observe the effect of 

(T[v])
iα
jβ =

{
0 if j = v

T iα
jβ otherwise

(τ[v])
iα
jβ =

[
(δ − T[d])

−1
]iα

jβ
,

(τ[v])
o
j =

1

L
(τ[v])

oσ
jβ u

βuσ ,

τj =
1

N (N − 1)

N∑

v=1

(τ[v])
o
j uo
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inter-layer cross-coupling on a node, one can find 
the centrality using the measures defined in this 
section and subtract it from the centrality cal-
culated by the measures defined in the previous 
sections.

4  Conclusion
Multilayer networks can capture multiple types 
of interactions among nodes. Due to the variety 
of applications of multilayer networks, different 
aspects of these networks have been studied such 
as their robustness against node attacks13, 54, 55, pro-
cess spreading8, 50 and evolutionary games51. In this 
paper, we discussed different types of inter-layer 
coupling in multilayer networks, their use-cases, 
and their implications on centrality measures. Cur-
rently, the study of multilayer networks is confined 
to layers which capture homogeneous entities and 
their pairwise relationships to one another. Many 
complex systems are better modelled by other 
richer graph structures such as hypergraphs28, 38, 40, 
and knowledge graphs34, 37. It can be a promising 
future direction to extend the multilayer network 
framework to capture such complex graph struc-
tures and study their properties.
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