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Gradient Methods for Non‑convex Optimization

1 Introduction
For most of the survey, we focus on the uncon-
strained optimization problem:

where f : Rd → R is a scalar-valued function. 
The problem models several critical ML problems 
such as least squares regression, training SVMs, 
and training neural networks. The problem has 
been extensively studied in the literature, espe-
cially for convex functions5 defined below.

Definition 1 (Convex functions) f : Rd → R is  
a convex function if for all x, y ∈ Domain(f ) and  
1 ≥ � ≥ 0, we have: f (�x + (1− �)y) ≤ �f (x)+
(1− �)f (y) . Equivalently,

where ∇f (x) is the gradient of f computed at x 
and ∇2f (x) is the Hessian of f at x.

For convex functions, it is well known that (1) 
can be solved optimally with techniques as sim-
ple as gradient descent (GD). That is, Gradient 
Descent (Algorithm 1) requires finite many itera-
tions of GD to obtain an ε-approximate solution 
to (1), i.e.,

(1)min
w∈Rd

f (w),

f (x)+ �∇f (x), y− x� ≤ f (y), or if, ∇2f (x) � 0,

f (wT ) ≤ min
w∈Rd

f (w)+ ε,
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where wT is the Tth iterate of the GD algorithm. 
Throughout the article, w∗ refers to an optimal 
solution of (1).

Note that Algorithm 1 is defined only for dif-
ferentiable functions f. While it can be extended 
to non-differentiable convex functions using 
sub-gradients, in this paper we will focus only on 
smooth differentiable functions.

Definition 2 (Lipschitz continuous gradient  
functions) f : Rd → R is L-smooth or L-Lip-
schitz Continuous Gradient if the following holds  
for all x, y ∈ Domain(f ) : �∇wf (x)− ∇wf (y)� ≤
L�x − y�. Equivalently,

Throughout the article, we use ‖x‖ to denote 
L2 norm of a vector. Similarly, ‖X‖ denotes opera-
tor norm of X.

For smooth convex optimization, it is well 
known that Algorithm 1 converges to an ε-opti-
mal solution in T = O(L/ε2) iterations, where L 
is the smoothness constant of f. Hence, the time 
complexity of the algorithm is O((d + Tf )/ε

2) , 
where Tf  is the time complexity of computing 
gradient of f at any point w.

Problem (1) is significantly more complex 
for non-convex f, as the problem is in general NP 

�∇2f (x)�2 ≤ H , or,

f (x) ≤ f (y)+ �∇f (x), y− x� + L

2
�y− x�2.
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hard. For convex f, ∇wf (w) = 0 implies global 
optimality. However, for non-convex f, such criti-
cal points do not even imply local optimality. In 
fact, finding even local optima is NP hard in gen-
eral. Hence, various methods in the literature try 
to either find the first-order or second-order sta-
tionary points of f. We first define the first-order 
stationary points (FOSP) of a function f below.

Definition 3 (First-order stationary point 
(FOSP)) w is a first-order stationary point 
(FOSP) of f : Rd → R iff the following 
holds: ∇wf (w) = 0. w is an ε-FOSP of f, iff: 
�∇wf (w)� ≤ ε . For “random” w, the equivalent 
condition is: Ew[�∇wf (w)�] ≤ ε.

Note that FOSP can be a saddle point or even 
a local maxima (see Fig. 1). Hence, several works 
in the literature have studied methods for finding 
the second-order stationary point (SOSP) defined 
below.

Definition 4 (Second-order stationary point 
(SOSP)) w is a second-order stationary point 
(SOSP) of f : Rd → R iff the following holds: 
∇wf (w) = 0, ∇2

wf (w) � 0. w is an (ε, ρ)-SOSP of 
f, iff:

�∇wf (w)� ≤ ε, ∇2
wf (w) � −√

ρεI .

That is, SOSP (see Fig. 1) avoids first-order 
saddle points. Now one can define higher order 
saddle points such as third-order stationary 
points, but in general computing fourth- or 
higher order stationary points is NP hard4.

Note that while FOSP can be obtained using 
more standard techniques such as gradient 
descent or stochastic gradient descent, SOSP 
requires more carefully designed algorithms 
such as cubic regularization or noisy stochastic 
gradient descent and requires significantly more 
involved analysis in general.

In Sect. 2 we will discuss various methods for 
finding FOSP in different settings. Section 3 dis-
cusses a few techniques for finding SOSP. Finally, 
we conclude with Sect. 4.

2  Methods for Finding FOSP
The goal of FOSP of a function f is to find a 
point w s.t. ∇wf (w) = 0 . While there exist sev-
eral techniques to achieve this goal5, most of the 
techniques use second- or higher order deriva-
tives of f and hence are not suitable for large-scale 
ML problems. In contrast, first-order techniques 
based only on gradient of f perform well in prac-
tice. In the remaining section, we will focus on 
such first-order techniques for finding FOSP.

2.1  Gradient Descent for FOSP

Figure 1: Various functions of two variables and their corresponding FOSP and SOSP.
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In this section, we study gradient descent for find-
ing FOSP. While standard analysis of GD exists 
for convex functions, it turns out that a similar 
analysis can be applied to arbitrary non-convex 
problems for finding FOSP.

Theorem 1 (GD finds FOSP) Let f : Rd → R 
be an L-smooth non-convex function. Then 
the output of Algorithm 1 with η = 1

L and 

T = O(
L(f (w0)−f (w∗))

ε2
) is an ε-FOSP (Definition 3) 

of Problem (1). w0 is the initial point provided to 
Algorithm 1, and f (w∗) = minw f (w) is the value 
at an optima.

 Proof
Using smoothness property (Definition 2), we have

f (wt+1) ≤ f (wt)+ �∇wf (wt),wt+1 − wt�

+ L

2
�wt+1 − wt�2,

ζ1= f (wt)− η

(

1− L · η
2

)

�∇wf (wt)�2,

ζ2≤ f (wt)−
L

2
�∇wf (wt)�2,

where ζ1 follows from definition of wt+1 and ζ2 
follows from η = 1

L . Theorem follows by adding 
the above equation for all T.

Note that for non-convex functions GD 
requires O(1/ε2) iterations while for convex func-
tions, it requires O(1/ε) iterations to achieve 
similar sub-optimality. Now, one can accelerate 
the convergence using momentum-based tech-
niques21, 23; however, still the gap between the 
rates for non-convex functions and convex func-
tions remains a lively area for research.

Algorithm 2 presents a pseudo-code of the 
acceleration-based algorithm for general non-
convex functions, and the below Theorem 
bounds the number of iterations required to ε
-approximately solve the FOSP problem.

Theorem 2 (Accelerated gradient descent for 
FOSP) Let f : Rd → R be an L-smooth non-
convex function. Then there exists αt ,βt ,βt s.t. 

Algorithm 2 with T = O(

√
L(f (w0)−f (w∗))

ε
) out-

puts an ε-FOSP (Definition 3) of Problem (1). w0 
is the initial point provided to Algorithm 2, and 
f (w∗) = minw f (w) is the value at an optima.

See13 for a proof of the above theorem.

2.2  Stochastic Gradient  
Methods for FOSP
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Typical ML-based optimization problems require 
optimizing a function over several data points. 
For example, deep learning requires minimiz-
ing a loss function which in itself is a sum of 
loss functions over individual data points. That 
is, the function f can be written as a finite sum 
f (w) = 1

n

∑

i fi(w).
Thus, in general, computing gradient itself 

requires O(nd), where n is the number of points 
and d is the number of parameters. Now, in gen-
eral, n is very large. For example, ImageNet9, a 
standard image classification benchmark has 
about 14M data points. So computing gradient 
itself is prohibitive.

However, one can exploit the fact that the 
function f is a finite sum function, to devise eas-
ily computable randomized gradients which in 
expectation match the actual gradient. That is, at 
tth iteration, we can sample a function fit and just 
compute gradient of the sampled function. Note 
that Eit∼Unif [1,n][∇wfit (w)] = ∇wf (w) for any 
fixed w with respect to it.

Such proxy for gradient is utilized by the 
well-known stochastic gradient descent (SGD) 
algorithm (Algorithm 3). Interestingly, similar to 
GD, analysis for SGD also follows easily from the 
smoothness definition.

where σ 2 = maxt E[�∇wfit (wt)�2] − �∇wf (wt)�2 
and ζ1 follows by definition of wt+1 and the fact 
that it is selected independent of wt.

Adding the above terms and rearranging, we have

where the second inequality follows by setting 

η =
√

f (w0)−f (w∗)

σ ·
√
L·
√
T

.

Note that while the number of iterations is 
larger for SGD (in terms of sub-optimality ε ), 
the time complexity per step is O(n) smaller12. 
Hence, the usage of such methods for deep learn-
ing where ε is not required to be extremely small.

E[f (wt+1)] ≤ E[f (wt )] + E
[

�∇wf (wt ),wt+1 − wt �

+L

2
�wt+1 − wt�2

]

,

ζ1=E[f (wt )] − η

(

1− η · L
2

)

�∇wf (wt )�2

+ L

2
η2σ 2

,

min
k∈[T ]

E[�∇wf (wk)�2]

≤ 2(f (w0)− f (w∗))

η
+ Lσ 2η,

≤ σ
√

2L · (f (w0)− f (w∗))√
T

≤ ε2,

Theorem 3 (SGD finds FOSP) Let f : Rd → R 
be an L-smooth non-convex function. Then 

T = O(
Lσ 2(f (w0)−f (w∗))

ε4
)th iterate of Algorithm 3 

with η =
√

f (w0)−f (w∗)

σ ·
√
L·
√
T

 satisfies:

w0 is the initial point provided to Algorithm 3, and 
f (w∗) = minw f (w) is the value at an optima.

 Proof

Using smoothness property (Definition 2), we have

min
k∈[T ]

E[�∇wf (wk)�2] ≤ ε2.

However, the time complexity is depend-
ent on the variance quantity which can be large. 
Similar to convex optimization literature, there 
are several variance reduction techniques to fur-
ther improve the time complexity. Below we pre-
sent one such approach. Algorithm 4 presents a 
pseudo-code for the NC-SVRG algorithm and its 
iteration complexity is given by

Theorem 4 (SVRG finds FOSP) Let 
f : Rd → R be an L-smooth non-convex func-
tion. Then the output of Algorithm 4 with 

T = O(
L(f (w0)−f (w∗))·n−1/3

ε2
), m = O(n), and 

η = O(1/(Ln2/3)) satisfies
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w0 is the initial point provided to Algorithm 4, and 
f (w∗) = minw f (w) is the value at an optima.

Note that the above theorem shows that the 
total number of gradient calls made by the algo-
rithm scales as O(L(f (w0)− f (w∗)) · (n+ n2/3

ε2
)) . 

See3, 25 for a proof of the above theorem.

2.3  Summary
Finding FOSP is an important problem in the 
non-convex optimization literature and several 
algorithms have been proposed recently. In par-
ticular, a lot of progress has been made for the 
finite sum case. Table 1 summarizes the current 
state-of-the-art for finding FOSP of smooth but 
non-convex functions. Also see companion arti-
cle22 for a discussion on finding FOSP/SOSP for 
finite sum setting. Recently, several other problem 
settings have been considered. For example, if the 

min
k∈[T ]

E[�∇wf (wk)�2] ≤ ε2.
function f is given f (w) = 1

n

∑

i fi(w)+ g(w) , 
where g is a non-smooth but convex function14, 

24. Despite the progress, several critical prob-
lems still persist in the area. For example, can 
we obtain tighter rates for convergence to FOSP 
for various methods discussed above. SVRG for 
convex functions has a 

√
n term while for non-

convex functions it is n2/3 , so another interesting 
open question is can we bridge this gap in time 
complexity.

3  Methods for Finding SOSP
As discussed in the previous section, stand-
ard gradient descent type techniques can find 
FOSP, which is not entirely surprising as the 
goal is to only guarantee the first-order station-
ary ( ∇wf (w) = 0) . However, SOSP requires a 
second-order condition ∇2

wf (w) � 0 and hence 
the standard gradient descent techniques fail. For 
example, if the gradient descent method is initial-
ized at a first-order saddle point, then it will not 
even move as the gradient is 0.

Hence, it was widely believed that we require 
a “second-order” method for finding SOSP, i.e., a 
method that has access to the Hessian of the func-
tion f along with the gradient. Nesterov and Pol-
yak20 introduced one such method that updates w 
in each iteration using

Nesterov and Polyak20 showed that the above 
method converges to an SOSP in O( 1

ε1.5
) iterations 

(2)

wt+1 = arg min
w

f (wt)+ �f (wt),w − wt�

+ 1

2
(w − wt)

T∇2
wf (wt)(w − wt)

+ 1

6
�w − wt�3.

Table 1: FOSP: no. of first‑order oracle calls 
(gradient computations) required by different 
methods for converging to ε‑FOSP (Definition 3) 
of f when f is a non‑convex and a convex func‑
tion, respectively.

Assumption: all problem parameters such and L, f (w0)− f (w∗) are 
constant

Algorithm

No. of gradient 
calls (non-con-
vex)

No. of gradient 
calls (convex)

GD (Algorithm 1)
O

(

1

ε2

)

O

(

1
ε

)

AGD (Algo-
rithm 2)

O

(

1
ε

)

O

(

1√
ε

)

Table 2: FOSP in finite‑sum setting ( f (w) =
∑

n

i=1
fi(w) : No. of first‑order oracle calls (individual gradient 

computations ∇fi(w) ) required by different methods for converging to ε‑FOSP (Definition 3) of f when f is 
a non‑convex and a convex function, respectively.

Assumption: all problem parameters such as L, f (w0)− f (w∗) are constant

Algorithm No. of gradient calls (non-convex) No. of gradient calls (convex)

GD (Algorithm 1)
O

(

n

ε2

)

O
(

n

ε

)

AGD (Algorithm 2) O
(

n

ε

)

O

(

n√
ε

)

SGD (Algorithm 3)
O

(

1

ε4

)

O

(

1

ε2

)

SVRG (Algorithm 4)
O

(

n+ n
2/3

ε2

)

O

(

n+
√
n

ε2

)

MSVRG25
O

(

min

(

1

ε4
, n

2/3

ε2

))

O

(

n+
√
n

ε2

)
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and each iteration requires computation of the 
Hessian, which can be significantly expensive. 
Several recent results can relax this Hessian com-
putation requirement if they are provided access 
to the product of the Hessian with an arbitrary 
vector, albeit with worse convergence rates1, 27. 
Unfortunately, even computing Hessian-vector 
product is significantly expensive for standard 
ML problems such as deep learning training 
which leads to the following question:

can we find SOSP using first-order methods, 
i.e., by just using gradients of f?

Interestingly, the answer is yes, assuming an addi-
tional condition on f which is that the Hessian is 
Lipschitz continuous.

Definition 5 (Lipschitz continuous Hessian) 
f : Rd → R is M-Lipschitz continuous Hessian 
if the following holds for all x, y ∈ Domain(f ) : 
�∇2

wf (x)− ∇2
wf (y)� ≤ ρ�x − y�.

Below, we describe one such technique for 
finding SOSP, and then extend it to the finite-
sum setting, and summarize with some more 
advanced results.

3.1  Noisy Gradient Descent for SOSP

As the standard gradient descent can get stuck 
in a FOSP due to 0 gradient, a natural approach 
would be to perturb the solution so that it can 
escape the first-order saddle point. Noisy gradient 
descent techniques precisely exploit this intuition; 
see Algorithm 5 for a pseudo-code of the algo-
rithm. Note that while the perturbation should 
be large enough to ensure escaping a saddle 
point, but it should not be large enough to escape 
local minima or global minima, else the method 
might not even converge. The following theorem 

shows that such a fine balance can be struck and 
the algorithm converges to a SOSP in O(1/ε2) 
iterations.

Theorem 5 (Convergence to SOSP) Let 
f : Rd → R be an L-smooth, ρ-Hessian–Lipschitz 
Continuous function. Then the output of Algorithm 5 
with T = O(poly(d/ε)) , R ≤ 5 log d/(η · √ρε) , 
and η ≤ poly(d, 1/ε, ρ, L, f (w0)− f (w∗)) is an ε
-SOSP, i.e.,

1  Proof

The proof can be broken into three parts:

1. �∇wf (wt)� > ε : during this phase, Algo-
rithm  5 performs standard Gradient 
Descent. Hence, the standard GD analy-
sis would guarantee convergence to FOSP 
( �∇wf (wt)� ≤ ε ) in O( 1

ε2
) iterations.

2. �∇wf (wt)� ≤ ε but wt is not a SOSP: for such 
wt , we need to show that after r iterations 
of gradient descent, f (wt+r) is significantly 
smaller than f (wt) thus escaping the first-
order saddle point.

E[�∇wf (wT )�2] ≤ ε2,E[∇2
wf (wT )] � −√

ρε.

3. �∇wf (wt)� ≤ ε but wt is a SOSP: for such 
wt , we need to show that after r iterations of 
gradient descent, f (wt+r) is not much larger 
than f (wt) , thus it does not escape the sec-
ond-order saddle point.

Combining all the above three parts would give 
us the desired result. As mentioned above, the 
first part follows from Theorem 1 directly.

Escaping first-order stationary point 
For this second part, lets recall update for 
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wt+r = wt+r−1 − η∇wf (wt+r−1) . Now, as f is 
Hessian Lipschitz Continuous, we can essentially 
replace f by a quadratic function without signifi-
cant error. That is, define

where H = ∇2
wf (wt) . Also, define

where ̂wt+1 = wt+1 = wt + ζt.
It is easy to observe that

That is, ̂wt+r+1 is the result of r power-method 
updates on M = I − ηH . Note that as wt is a sad-
dle point, i.e., �min(H) ≤ −√

ρε where �min(A) 
is the smallest (or most negative) eigenvalue of 
A. Hence, ̂wt+r+1 converges to the eigenvector of 
M corresponding to largest eigenvalue, i.e., it con-
verges to the eigenvector corresponding to most 
negative eigenvalue of H. Hence, f̂ (̂wt+R) should 
be significantly smaller than f (wt).

Formally, using E[ζt ] = 0 and E[ζtζTt ] = η2I:

The inequality follows using R = 5 log(d)
η
√
ρε

 and 

η ≤ 1/�H� ≤ 1/L . Finally, using Hessian Lipschitz 

f̂ (w) = f (wt)+
1

2
(w − wt)

TH(w − wt),

̂wt+r+1 = ̂wt+r − η∇wf̂ (̂wt+r), 1 ≤ r ≤ R,

̂wt+r+1 − wt = (I − ηH)rζt .

f̂ (̂wt+R) = f (wt)+
η2

2
tr((I − ηH)2RH)

≤ f (wt)− η/2.

Note that the above proof requires O(poly(d)) 
iterations, while for convex functions, convergence 
is independent of d and only depends on L. Jin 
et al.17 resolved this gap, by showing that a vari-
ant of the above algorithm converges in O() itera-
tions. The main weakness of the above analysis is 
that it only analyzes a quadratic approximation 
of the problem and then uses Hessian continuity 
arguments to show that the algorithm converges 
to SOSP. Jin et al.17 directly analyzes how the iter-
ates escape saddle point, leading to a tighter result 
albeit with more involved arguments.

Note that while cubic regularization converges 
in O(1/ε1.5) iterations, noisy gradient descent 
requires O(1/ε2) iterations. A natural question 
is can be use a noisy version of the accelerated 
gradient descent19 to similarly escape the saddle 
points but with lesser number of iterations. Jin 
et al.18 show that it is possible but there is still a 
gap w.r.t. cubic regularization. That is, it shows 
that a noisy accelerated gradient descent method 
converges to ε-approximate SOSP in O(1/ε1.75) 
iterations. Devising the first-order methods that 
can achieve same iteration complexity as the 
cubic regularization technique for finding SOSP 
or a proof of lower bound for first-order methods 
remains an important open question.

3.2  Noisy Stochastic Gradient Descent 
for SOSP

continuity and straightforward arguments, we get 
f (wt+R) ≤ f̂ (̂wt+R)+ η/4 . Hence, we get

Entrapment near SOSP For this third part, we again 
use f̂ (w) = f (wt)+ 1

2 (w − wt)
TH(w − wt). 

Using similar arguments, and the 
fact that R = log d/η

√
ρε , we have: 

f (wt+R) ≤ f (wt)− η2/4. Hence, once entrapped 
near SOSP, the algorithm does not leave the 
neighborhood.

The theorem follows by combining the above 
three observations.

(3)f (wt+R) ≤ f (wt)− η/4.

Similar to FOSP, it is critical for several ML 
problems to design SOSP algorithms that can 
work with the finite sum setting, i.e., when 
f (w) = 1

n

∑n
i=1 fi(w) . For this setting, we can use 

gradient of a randomly sampled fi as a proxy for 
the gradient of f, which leads to Algorithm 6. The 
convergence rate for the algorithm is similar to the 
one given in Theorem 5. Similar to FOSP, the con-
vergence rate for Algorithm 6 also depends on the 
variance term maxw E[�∇wfi(w)�2] − ∇wf (w)

2 . 
Several recent results address this concern using 
variance reduction techniques [].
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3.3  Summary
Finding SOSP is critical in several domains. 
Even in deep learning, it is widely believed that 
second-order saddle points are reasonable solu-
tions but first-order saddle points are not desir-
able. Several recent results have addressed the 
problem, we summarize a few results as follows: 
Open problems Note that all the above results 
require the Hessian to be Lipschitz continuous 
which is a stricter condition than the smoothness 
condition required by standard convex optimi-
zation problems. A natural open question is to 
design and analyze algorithms for convergence 
to SOSP that do not require such assumption on 
Hessian. Another important open question is to 
bridge the gap between iteration complexity of 
the cubic regularization and the first-order meth-
ods discussed above. Finally, further exploiting 
structure in f, like non-convex + smooth/non-
convex + strongly-convex, to provide faster algo-
rithms is another interesting research direction 
(Tables 2, 3, 4).

4  Discussion
Non-convex optimization is critical to several 
ML problems with applications in deep learning, 
recommendation systems (matrix completion), 
dimensionality reduction (PCA, sparse-PCA), 
robust learning, etc. Most of these problems are 
NP hard in general, and come up with certain 
structure that helps make them more tractable in 
practice.

In this survey, we focus on a canonical uncon-
strained non-convex function optimization for-
mulation. However, several other formulations 
are equally critical in ML domain. For example, 
optimizing non-convex functions over convex 
sets. Another form is optimizing convex function 
over non-convex sets which represents several 
critical problems such as PCA, sparse regression, 
tensor decomposition. We refer readers to15 for a 
survey of some of these techniques.

For unconstrained non-convex optimization, 
we discussed a few scalable techniques for FOSP 
as well as for SOSP. While SOSPs are desirable in 
practice, especially for deep learning techniques, 
most of the existing practical algorithms use 
variants of SGD (Algorithm 3) with momentum 

Table 3: SOSP: no. of first‑order oracle calls (gradient computations) required by different methods 
for converging to ε‑SOSP (Definition 3) of f when f is a non‑convex and a convex function, respectively.

Assumption: all problem parameters such as L, f (w0)− f (w∗) are constant

Algorithm Iteration complexity (non-convex) Oracle type

NGD (Algorithm 5)
O

(

1

ε2

)

Gradient

NAGD18
O

(

1

ε1.75

)

Gradient

Cubic regularization (2)
O

(

1

ε1.5

)

Hessian

Hessian-free cubic1, 7
O

(

1

ε1.75

)

Hessian-vector product

Table 4: SOSP in finite‑sum setting ( f (w) = 1

n

∑
n

i=1
fi(w) : no. of first order oracle calls (individual gradi‑

ent computations ∇fi(w) ) required by different methods for converging to ε‑SOSP (Definition 3) of f 
when f is a non‑convex and a convex function, respectively.

Assumption: all problem parameters such as L, f (w0)− f (w∗) are constant

Algorithm No. of gradient calls (non-convex) No. of gradient calls (convex)

Noisy GD (Algorithm 5)
O

(

n

ε2

)

O
(

n

ε

)

Noisy AGD18
O

(

n

ε1.75

)

O

(

n√
ε

)

Noisy SGD10, 17
O

(

1

ε4

)

O

(

1

ε2

)

Noisy SVRG2
O

(

n+ n
3/4

ε2

)

O

(

n+
√
n

ε2

)
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term for acceleration. While theoretically we can 
only guarantee convergence to FOSP for such 
algorithms, in practice this simple algorithm 
converges to a SOSP26. One possible reason for 
the same might be the fact that SGD itself adds 
significant amount of noise thus avoiding sad-
dle points but currently existing SGD analysis are 
unable to provide a general result without some 
assumptions on noise added by SGD in each iter-
ation8, and remains an active area of research. In 
addition, studying and possibly bridging the gap 
between time complexity for finding FOSP for 
convex functions and non-convex functions is an 
important problem.

Several recent results have shown that several 
non-convex optimizations do not admit spuri-
ous local minima or SOSP; hence, convergence 
to SOSP is enough to guarantee global optimal-
ity6, 11. Past few years have seen a flurry of activity 
in the SOSP domain, with several new and scal-
able techniques. However, still a few fundamen-
tal questions remain open. For example, can we 
obtain solutions as efficient as cubic regulariza-
tion (in terms of iteration complexity) using the 
first-order methods? Does randomly initialized 
gradient descent method already converge to 
SOSP without any additional noise? Similarly, 
does SGD’s iterations add enough randomness to 
escape first-order saddle points efficiently?

Finally, statistics play a critical role in non-
convex optimization problems in ML, which rep-
resent exciting new opportunities. For example, 
standard matrix completion problem is an NP-
hard problem but by imposing statistical restric-
tions on the generated data, we can reduce the 
problem to an SOSP problem which can be solved 
in polynomial time (in 1/ε)11. Similarly, sparse 
linear regression/compressed sensing problems 
admit optimal solution to L0 constrained non-
convex optimization problems due to statistical 
nature of the observations16. It is widely believed 
that techniques that are aware of both the statis-
tical as well as optimization aspects of ML prob-
lems can produce strong results.
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