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Conductive Polymers and Hydrogels for Neural 
Tissue Engineering

1 Introduction
Our nervous system, consisting of two main com-
ponents: the central nervous system (CNS) and 
the peripheral nervous system (PNS), has a vital 
and complex role in conveying signals for physi-
ological processes in limbs and organs as well as 
controlling sensory and motor functions. Dam-
age or injury to the nervous system may result 
in serious dysfunction of limbs or organs caus-
ing lifelong disabilities and reduced quality of 
life accompanied by major economic and social 
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Abstract | Conventional approaches for the rescue and repair of the 
damaged neural tissue generally remain ineffective and do not pro-
vide functional recovery due to the difficulties in mimicking the complex 
anatomical functioning of the nervous system. Mimicking the natural 
microenvironment of the glial, neuronal, and stromal cells of the nerv-
ous system through the use of functional biomaterials-based platforms, 
and further combining these platforms with stem cell-based therapies 
has been considered as a promising alternative strategy for the efficient 
regeneration and functional recovery of the damaged neural tissue. The 
functionalities of biomaterial-based platforms provide 3D matrices with 
desired pore sizes, porosities, elasticities, and wettability along with 
various chemical, biological, and topographical cues that favor cellular 
attachment, growth, proliferation, directed alignment, and differentiation 
as well as proper nutrient flow for neural tissue regeneration. In addition, 
considering the inherent presence of electrical fields and synapses in 
the nervous system, application of electrical stimuli through conductive 
biomaterials-based platforms in the form of films, hydrogels, fibers, com-
posites, and flexible electronic interfaces has also been used to enhance 
the nerve regeneration process. These platforms providing electrical 
stimuli have been particularly used for controlling neurite extension, 
directed migration of neuronal and glial cells, and differentiation of stem 
cells. In this review, we will summarize the recent advances in conduc-
tive biomaterials-based platforms and the use of electrical stimuli to con-
trol cellular behavior to enable neural regeneration.
Keywords: Conductive biomaterials, Electrical stimuli, Neural regeneration
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burdens. According to reports, it is expected 
that people will continue to experience increas-
ing rates of spinal cord injuries, traumatic brain 
injuries, peripheral nerve injuries, and neurode-
generative disorders along with many other nerv-
ous system problems around the globe, causing 
significant economic burden ranging from $3 
to $800 billion in the US alone.1–5 Among these, 
peripheral nerve injuries (PNIs) affect ~ 3% of 
trauma patients (mostly young adults of work-
ing age and U.S. veterans) in the U.S alone.6–8 
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According to estimates, over 200,000 peripheral 
nerve repair procedures are performed in the 
U.S,6–8 causing ~ $150 billion in medical expendi-
tures spent annually.9 It is also expected that the 
U.S. transected peripheral nerve repair market 
will exceed $1.6 billion by 2022.6–8, 10

The PNS, consisting of neuronal, glial, and 
stromal cells, has the intrinsic capacity for spon-
taneous regeneration and regrowth of axons to 
a certain extent. Besides the neurons, glial and 
stromal cells play a key role in maintaining the 
proper function of the peripheral nerves. Injury-
induced Schwann cell (SCs) reprogramming, 
which involves upregulation of trophic factors 
and cytokines, myelin clearance by activation 
of myelin autophagy in SCs and macrophage 
recruitment, and formation of Bungner bands 
are some of the cellular functions orchestrat-
ing spontaneous regeneration and regrowth of 
axons.11–16 Despite the key responses of SCs to 
injury, the regenerative capacity of PNS remains 
insufficient, particularly for large PNIs (> 1 cm), 
without any additional surgical/therapeutic inter-
ference.8 Although it is possible to enable func-
tional recovery using autologous nerve grafts, this 
strategy has limitations such as multiple surgery 
requirement, biological complexity, donor site 
morbidity, and lack of graft tissue.17 Alternatively, 
cell-based therapies offer promising outcomes for 
PNIs.18 Implantation of SCs using different plat-
forms (scaffolds, conduits, films, etc.) has shown 
enhanced axonal regeneration across nerve gaps 
in many studies;19–23 however, lack of availability 
and slow in vitro growth of SCs restrict clinical 
translation.7, 8, 24 Stem cells, isolated and derived 
from various connective tissue sources, offer 
promising translational strategies for PNIs with-
out any ethical concerns due to their accessibil-
ity, plasticity, and multipotency.25–28 Most studies 
use autologous transplantation of stem cells for 
PNIs.18 Although they have reported improved 
axonal regeneration through synergetic interac-
tions of stem cells with host SCs and enhanced 
paracrine activity,29–34 the multipotency of stem 
cells and lack of direct control in complex in vivo 
environment and the design of a platform mim-
icking extracellular matrix (ECM) raise concerns 
regarding the implanted cells’ fate, especially over 
the duration of the nerve regeneration and limit 
the clinical use of MSCs.35, 36 Because of these 
reasons, designing a cell-laden, implantable plat-
form with desired 3D microstructural/mechani-
cal properties that mimics the complex ECM 
microenvironment is critical in neural tissue 
regeneration.35, 36 Hence, a multifunctional plat-
form possessing biological, chemical, and physical 

cues and mimicking cellular microenvironment 
significantly affects and determines successful 
control of cellular behaviors such as growth, pro-
liferation, directed migration, differentiation, and 
in turn, neural tissue regeneration.18, 37–41

The inherent ability of neuronal cells to send 
electrical signals along axons42–45 and the positive 
effects of electric fields on paracrine activity,46 
cellular alignment and migration47, 48, and recov-
ery from peripheral nerve injuries49–51 are known. 
It is also previously reported that electrical stimu-
lation is an effective cue in stimulating not only 
the neuronal cells, but also various other cell 
types’ behavior such as proliferation or differen-
tiation.52 Therefore, besides the biological, chemi-
cal, and physical cues, the designed platforms 
should also have conductivity to enable electrical 
stimulation for the enhancement of neural tissue 
regeneration.

In this review, we first discuss electrically 
conductive biomaterials-based platforms such 
as films, hydrogels, fibers, composites, and flex-
ible electronic interfaces. Then, we summarize 
the application of electrical stimulation through 
these platforms to control cellular behavior such 
as neurite extension, directed migration and dif-
ferentiation, and neural tissue regeneration. 
Finally, we will conclude this work with future 
perspectives.

2  Conductive Polymers (CPs)
Polymers with loosely held electrons in their 
backbones are generally classified as conductive 
polymers (CPs) possessing common polymeric 
properties along with electrical features simi-
lar to metals and semiconductors. The source of 
electrical conductivity comes from the atoms at 
the backbone with weak π bond enabling delo-
calization and free movement of electrons, which 
in turn results in formation of electrical current 
through mobile charges.53 Most CPs are syn-
thesized through doping process (oxidation or 
reduction), in which a charge is transferred from 
dopant molecules to polymer chains via charge 
carriers (polarons and bipolarons).52 The effi-
ciency of the doping process and properties of 
the formed CPs depend on many different fac-
tors, including polaron, chain and conjugation 
lengths, charge transfer efficiency, and type of the 
dopants and molecular size. Typical CPs are pol-
yacetylene (PA), polythiophene (PT), poly(3,4-
ethylenedioxythiophene) (PEDOT), polypyrrole 
(PPy), poly(p-phenylene) (PPP), and polyaniline 
(PANI).54
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PA, which is also called acetylene black, can 
be synthesized by Ziegler–Natta catalysis, radia-
tion methods, or by the controlled combustion 
of acetylene under air.55 This material shows 
excellent biocompatibility, electrical conduc-
tivity, and a large specific surface area, which 
favor biochemical56 and electrochemical sensor 
applications.57 PT with high conductivity  (103 S 
 cm−1)58 and transparency59 can be synthesized 
by different electrochemical and chemical meth-
ods.60 The most popular derivative of PT, highly 
conductive and stable, PEDOT, is mostly used in 
electroanalytical applications.52, 61, 62 PPy, which 
can easily be synthesized by various chemical 
methods, has high conductivity, stability, and bio-
compatibility. The conductivity and biocompat-
ibility of PPy may further be improved through 
hybridization with other materials, including 
myocytes, biotin, alginate, and silk fibroin.52, 55, 

61–64 Because of these features, PPy is eligible for 
many biomedical applications, including neural 
tissue engineering.52, 55, 61–64 PPP with thermal, 
optical, electrical, and chemical properties can 
be synthesized by electrochemical and chemi-
cal methods.52, 62, 64 PPP-based thin films can be 
conventionally used in light-emitting diodes, 
photodetectors, and other optoelectronic devices 
as well as dental applications and cellular align-
ment.64 PANI, which is a nontoxic and stable 
polymer with high electrical conductivity, has 
simple and cost-effective chemical and electro-
chemical synthesis routes. The conductivity of 
PANI can be controlled through determination of 
oxidation state,65 increasing crystallinity and con-
jugation length of the polymer,66 or the polymer 
chain structure (i.e. 1D: nanofibres, nanorods, 
and nanotubes, 2D: ribbons, nanobelts, and nan-
oplates and 3D: microspheres, nanospheres, and 
granules). The properties of PANI facilitate its 
application in biosensing, medicine, and tissue 
engineering.52, 55, 62–64

CPs are attractive biomaterials for tissue 
engineering applications due to their physical 
and chemical properties, along with their ability 
to convey electrical signals to cells and provide 
favorable platforms controlling and promoting 
specific cellular responses such as cell adhesion, 
growth, and proliferation, combination of which 
enhance tissue regeneration.52, 61–63 Although CPs 
show good in vitro and in vivo biocompatibility 
and support the in vitro adhesion, proliferation, 
and differentiation for different cell types, their 
non-degradability limits their in vivo applica-
tion.67 However, these properties of CPs can be 
controlled based on the dopant type and selected 
synthesis method and conditions in such a way 

that CPs can retain their electroactivity, while 
gaining biodegradability.62, 67 Another limitation 
of using CPs is their stiff, brittle, and insoluble 
nature, which makes them mechanically poor 
and difficult to manipulate and process. However, 
blending CPs with other degradable synthetic or 
natural polymers (such as PLA, PLGA, PCL, chi-
tosan, and silk fibroin) is a widely used strategy to 
fabricate conductive and biodegradable platforms 
for tissue engineering applications.62, 67

Overall, the chemical, physical, and electrical 
properties of CPs can be controlled and manipu-
lated by polymer chemistry and synthesis meth-
ods. Hence, various CP-based platforms in the 
form of films, hydrogels, fibers, composites, and 
flexible electronic interfaces can be obtained by 
physically compositing or forming co-networks 
with other polymers for neural tissue engineering 
applications.

3  Carbon‑Based Conductive Materials
Carbon-based conductive materials, such as gra-
phene and carbon nanotubes (CNTs), are another 
group of biomaterials that can be incorporated 
into non-conducting polymers to provide struc-
tural reinforcement and impart novel properties 
such as electrical conductivity, enhancing cell 
attachment, directed growth, proliferation, and 
differentiation.63, 68–70

Graphene-based materials can be obtained 
through mechanical exfoliation, chemical vapor 
deposition, and liquid-phase exfoliation. Gra-
phene oxide (GO) is formed through sp2 and sp3 
hybridization of carbon atoms and has the ability 
to be easily dispersed in water and interact with 
different inorganic and organic materials ena-
bling various conductive ink formulations.71, 72 
However, the conductivity of GO-based materi-
als is limited due to the presence of oxides, which 
can be improved by reducing GO through ther-
mal or laser processing leading to reduced GO 
(rGO) with enhanced physical and electrical 
properties.73

These materials offer several advantages, 
including exceptional electrical and thermal con-
ductivity, mechanical strength, chemical stability, 
non-toxicity, and biocompatibility, which make 
them well suited for tissue scaffolds capable of 
mediating cell growth, proliferation, and differ-
entiation.74–83 The intimate cell-graphene-based 
material interaction is most likely due to the π–π 
interactions of aromatic amino acids in the cell 
membrane that orient proteins with the graphene 
layer.78, 84, 85 The hydrophobic nature of graphene 
can also potentially facilitate the immobilization 
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of extracellular matrix (ECM) proteins78, 86 and 
facilitate physicochemical interactions to further 
enhance cellular attachment and proliferation.78, 

79 Therefore, graphene-based materials can be 
used in the fabrication of conductive and bio-
compatible platforms; however, non-degradable 
nature of graphene could be a limitation for 
in vivo applications.

CNTs, with cylindrical shape, nano-scale 
dimensions, and high aspect ratio, can be fabri-
cated by laser cutting, arc discharge, or chemi-
cal vapor deposition. The high aspect ratio, low 
density, and electrical and physical properties 
of CNTs favor their use in biomedical applica-
tions.87, 88 The structure of CNTs has the poten-
tial to induce oxidative stress in the cells, when 
applied in the form of suspension causing toxic 
response.89, 90 However, the toxic effect of CNTs 
could be eliminated through the surface func-
tionalization or immobilization of CNTs to a 
platform.52 Nevertheless, graphene and CNTs are 
promising materials for producing conductive 
and biocompatible platforms for neural tissue 
engineering.

4  Conductive Polymer‑Based Platforms 
and Electrical Stimulation

The presence of endogenous electrical fields dur-
ing the embryonic development91–93 and the 
inherent ability of neuronal cells to send electri-
cal signals along axons42–45 are well known in the 
literature. Based on this fact, there have been vari-
ous attempts to control cellular alignment and 
migration,47, 48 differentiation,79, 94, 95 paracrine 
activity,46 neurite extension, and recovery from 
nerve injuries49–51 through the application of 
electrical stimuli.46, 96–99 Electrical stimuli can be 
applied through different platforms such as films, 
hydrogels, scaffolds/conduits, fibers, composites, 
and flexible electronic interfaces (Table 1). In the 
following sections, we will summarize the use 
of different platforms to control cellular behav-
ior via applied electrical stimuli with a specific 
emphasis on neural regeneration (Table 1).

4.1  Films
Recording the electrical and neural signals 
through implantable electrodes and probes is 
important to provide direct measurement of cel-
lular function or communication between the 
brain/nervous system and machines. CPs are con-
sidered as potential coating materials, creating 
thin films on the probe surfaces due to their high 
surface area and conductivity, which can enable 
effective ion exchange between recording sites 

and the surrounding tissue.127, 128 It was reported 
that platinum electrodes coated with PANI via 
in situ polymerization enhanced the aggregation 
of retinal fragments and demonstrated long-term 
stability along with significant promise for the 
reduced inflammation and scar formation.129 In 
another study, microfabricated electrode arrays 
were coated by PEDOT: PSS providing high 
charge injection accompanied by safe and effi-
cient stimulation of central auditory system.130

CPs can also be used to fabricate stand-alone 
films as implantable platforms to electrically 
stimulate cells. It was reported that PC12 cells 
seeded on PPy films responded to the applied 
electrical stimuli (100 mV) by showing signifi-
cant neurite extension (18.14 μm)100 due to elec-
trical stimuli-induced protein adsorption from 
serum-containing medium.131 Besides self-stand-
ing films, the CPs can also be used as coating 
materials on biodegradable polymer-based films/
membranes. In a study, PC12 cells demonstrated 
neuronal differentiation and neurite outgrowth 
as a result of the electrical stimuli applied though 
PPy-coated poly(D,L-lactide-co-ε-caprolactone) 
membranes. These platforms also demonstrated 
significant axonal regeneration on rat sciatic 
nerve model.101

As an alternative to coatings or composites 
with other polymers, CPs-based copolymers can 
also be developed. It was shown that electrically 
stimulated PC12 cells significantly extended neu-
rites on conductive films made up of PLA and 
carboxyl-capped aniline pentamer-based copoly-
mer.102 The copolymer-based conductive films 
can further be modified with biologically active 
components. N-hydroxyl succinimidyl ester pyr-
role; copolymer-based films were further modi-
fied with NGF through surface immobilization. 
The synergistic effect of NGF and electrical 
stimulation resulted in neurite extension of PC12 
cells.103

The electrically conductive platforms can 
also be used in combination with Schwann cells, 
which are the key players of the peripheral nerv-
ous system contributing to myelination and 
axonal regeneration. Schwann cells, seeded on 
polypyrrole–chitosan based composite films, 
demonstrated enhanced cell viability and parac-
rine activity (secretion of NGF and brain-derived 
neurotrophic factor (BDNF) (Fig. 1a), along 
with upregulated gene expression (Fig. 1b) upon 
applied constant potential gradient (100 mV/
mm).104

Overall, conductive polymer-based films 
demonstrated potential to control cell behavior; 
however, lack of a natural 3D microstructure is 
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limiting complete mimicry of the ECM. For this 
reason, 3D hydrogels or scaffolds could be a bet-
ter alternative.

4.2  Hydrogels and Scaffolds/Conduits
Besides electrical conductivity, the platforms 
should also have certain properties such as 3D 
porous structure, optimal mechanical properties, 

and topographical/physical cues to ensure com-
plete mimicry of naturel ECM of the cells.132 
CPs-based hydrogels, scaffolds, or conduits with 
proper 3D microstructural and mechanical prop-
erties are considered as promising platforms ena-
bling electrical stimuli-based cell manipulation 
within a 3D microstructure to promote neuronal 
proliferation and differentiation.

Figure 1 a Representative images of DAPI staining of Schwann cells. Magnification: × 200. The cell num-
ber count and MTT values in each group (*p < 0.05, one‐way ANOVA). b mRNA levels of NGF and BDNF 
with or without electrical stimuli (ES) 12 and 24 h after ES. (*p < 0.05 and **p < 0.01, one‐way ANOVA) 
Reproduced with permission from Huang et al.104 Copyright 2009 Wiley Periodicals, Inc.
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Hydrogels have a hydrated, flexible, and soft 
nature that makes them ideal for soft tissue appli-
cations. The added property of electrical conduc-
tivity through polymerization or cross-linking 
with CPs, further facilitates their use in neural 
tissue engineering.61, 132 For example, Guarino 
et al. (2013) developed macroporous hydrogel 
platforms with a conductivity of 1.1 × 10−3 mS 
 cm−1 through in situ precipitation of PANI in 
polyethyleneglycol diacrylate (PEGDA) matrix, 
which was then followed by UV cross-linking and 
sodium chloride particle leaching, leading to for-
mation of microporous structure (136–158 μm 
pore size). These platforms provided improved 
biological response of PC12 and human mesen-
chymal stem cells (hMSCs) due to their favorable 
3D microstructure and electrical conductivity.105 
Similarly, Shi et al. (2014) developed conduc-
tive PPy and cellulose-based nanoporous hydro-
gels with a conductivity of 80 mS  cm−1, through 
in situ polymerization of PPy monomers within 
nanoporous cellulose gel matrix. Their results 
indicated that PC12 cells showed enhanced 
viability, adhesion, proliferation, and induced 
neurite extension on the developed conductive 
hydrogel platforms.106 In another study, Yang 
et al. (2016) developed PPy/alginate hydrogels 
with enhanced mechanical and electrical proper-
ties via chemical polymerization of PPy within 
ionically cross-linked alginate hydrogel net-
work as multifunctional neural tissue engineer-
ing platforms. Their in vitro studies showed that 
the developed PPy/alginate hydrogel platforms 
improved the adhesion and growth of hMSCs as 
well as inducing the expression of neural differ-
entiation markers (i.e., Tuj1 and MAP2) (Fig. 2a). 
In addition, the in vivo studies demonstrated 
that the platforms are sufficiently biocompatible, 
suggesting the promise of further examining the 
influence of electrical and mechanical signals on 
stem cells and/or neural cells using these plat-
forms (Fig. 2b).107

Using a different approach, Bu et al. (2018) 
synthesized sodium alginate, PPy, and carboxym-
ethyl chitosan-based hydrogel with a conductivity 
of 2.41 mS  cm−1 as a supporting platform to be 
used in the conduit systems for peripheral nerve 
regeneration. They used a different synthesis 
approach, where calcium cross-linked alginate/
carboxymethyl chitosan hydrogels with con-
trolled release properties were further coated with 
conductive PPy particles, to easily manipulate the 
hydrogel properties, such as swelling, gelation, 
elasticity, porosity, and electrical conductivity. 
These platforms provided improved cell adhesion 
and proliferation properties for PC12 and bone 

marrow-derived MSCs as well as high in vivo 
biocompatibility.108

Conductive carbon-based materials, such as 
GO or CNTs, can also be used in hydrogel formu-
lations as an alternative to CPs. Considering this, 
Jafarkhani et al. (2018) mixed conductive GO 
with chitosan powder, and further reacted with 
lactic acid to synthesize conductive hydrogels pos-
sessing different mechanical and structural prop-
erties. Their results suggested that the optimum 
mechanical and structural properties enhanced 
the nerve cell growth by 20%, demonstrating the 
potential benefit of these platforms.109 Similarly, 
Zhao et al. (2018) developed polyacrylamide, GO, 
gelatin, and sodium alginate-based composite 
hydrogel for peripheral nerve regeneration appli-
cations. They reported that the microstructural 
and mechanical properties of hydrogels can be 
controlled by the amount of GO, which in turn 
determines the adhesion and proliferation of 
Schwann cells along with the expression of myeli-
nation markers (Sox10, GAP43, and myelin basic 
protein).110

As an alternative to GO, CNTs can also be used 
as potential conductive carbon-based material. In 
a study by Koppes et al. (2016), the researchers 
used single-walled carbon nanotubes (swCNTs) 
to optimize the electrical properties of collagen-
based hydrogels. They reported that the electrical 
conductivity of hydrogels was increased without 
any negative effect on hydrogel matrix properties 
(such as microstructure or elasticity) as the swC-
NTs among increased, which in turn improved 
neurite outgrowth by sevenfold through the 
applied electrical stimuli compared to all other 
control groups.111 In a different study, Shin et al. 
compared the influence of swCNTs and/or PPy-
incorporated hyaluronic acid (HA) hydrogels on 
human neural stem/progenitor cells (hNSPCs) 
differentiation.

The hydrogels (with swCNTs and/or PPy) 
provided dynamic and electrically conductive 3D 
microenvironments that are supportive for neu-
ronal differentiation of hNSPCs. The platforms 
improved electrophysiological cellular func-
tion through the upregulation of calcium chan-
nel expression, activation of depolarization, and 
increase in calcium influx, hence demonstrating 
the future promise of these platforms to improve 
neuronal regeneration.112 As an alternative to 
swCNTs, Imaninezhad et al. (2018) developed 
multi-walled CNTs (mwCNTs) incorporating 
polyacrylamide/polyethylene glycol hydrogels, 
which provided significant alignment and direc-
tional extension in neurite outgrowth of PC12 
cells in response to electrical stimulation.113 In 
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another study Liu et al. (2017) demonstrated 
the potential of combined use of GO and CNTs 
through cross-linkable bonds. They covalently 
embedded the cross-linked GO/CNTs into 
oligo(poly(ethylene glycol) fumarate) hydrogel 
to provide surface charge and electrical conduc-
tivity of ~ 5.75 × 10−2 mS  cm−1. The composite 
hydrogel platforms showed good biocompatibil-
ity accompanied by enhanced proliferation and 
spreading of PC12 cells. The electrical stimuli 
applied through the hydrogel platforms in the 
form of conduits promoted the neurite extension 
of PC12 cells depicting potential for neural tissue 
engineering.114

Scaffolds can be considered in the form of a 
template with defined 3D geometrical shapes 
and internal configuration, filled with conduc-
tive material-based hydrogels, and further freeze-
dried to obtain 3D porous microstructure.132 For 
example, Wang et al. (2017) developed PEDOT/
chitosan/gelatin-based scaffolds through in situ 
interfacial polymerization of PEDOT nanopar-
ticles on porous chitosan/gelatin scaffolds. The 
electrical conductivity, hydrophilicity, mechani-
cal properties, and thermal stability of the scaf-
folds were improved through the incorporation 
of PEDOT, which at on the other hand, reduces 
the water absorption and biodegradability of 
scaffolds. Nevertheless, their results indicated 
that these platforms significantly promoted 
PC12 cell adhesion, proliferation, and neurite 
growth by upregulating protein and gene expres-
sion levels through their conductive nature.115 
In another study, Gupta et al. (2019) investi-
gated the influence of morphological differ-
ences between graphene nanoplatelets (GNP) 
and multi-walled carbon nanotubes (MWCNT) 
on neural cell regeneration. They developed 
GNP- and MWCNT-incorporated chitosan scaf-
folds with different electrical conductivity and 

mechanical properties. They reported that the 
cellular responses, such as protein adsorption, 
cell adhesion, cytotoxicity, and alignment, change 
with respect to the material properties.133 The 
same group developed MWCNT-aligned chi-
tosan scaffolds to control the directional neuronal 
growth and cellular alignment via electrical cues. 
Their results indicated that this platform can 
successfully control the alignment in 50–60% of 
neurons.134

Conduits are considered a special form of 
hydrogels and scaffolds with cylindrical tube 
geometry, and particularly used for peripheral 
nerve regeneration applications. For example, 
electrical stimulation via PANI-based conduits, 
providing electrical field of 10 mV/cm to 2 V/
cm, demonstrated enhanced hMSCs growth 
and proliferation through the alteration of 
cytoskeletal arrangement producing long filo-
podial extensions and leading to formation of 
neural-like cells.116 Similarly, electrical stimuli 
applied through a blend of PANI/Poly-l-Lactic 
acid (PLLA) conduit resulted in neurite exten-
sion of 24 ± 4 μm in rat nerve cells.117 In another 
work, Xu et al. (2014) developed PPy/poly(dl-
lactic acid) (PDLLA)-based conduits with the 
conductivity range of 5.65 to 15.56 mS  cm−1 via 
oxidative polymerization. The PC12 cells seeded 
on PPy/PDLLA conduits showed increased neu-
rite extension upon the applied 100 mV electri-
cal stimuli for 2 h (Fig. 3a). The same conduits 
were used for the in vivo treatment of 1 cm 
long rat sciatic nerve transection model and the 
results indicated that the used conduits provided 
functional recovery (Fig. 3b) similar to that of 
autologous nerve grafts, a gold standard for the 
peripheral nerve injury treatment.98

As a brief summary, the 3D microstructured 
platforms with multiple functionalities in the 
form of hydrogels, scaffolds, and conduits hold 
significant promise to pave the way for the devel-
opment of new strategies to enhance neural tissue 
regeneration.

4.3  Electrospun Fibers
Fibers can be considered as another type of 3D 
scaffolds possessing inherent characteristics to 
mimic the ECM microenvironment for tissue 
engineering applications. Although most of the 
fibers used are non-conductive, electrical con-
ductivity can be provided through CPs coating 
or direct fabrication of fibers using CPs. Electro-
spinning is the most common process enabling 
fiber fabrication using a wide range of polymers, 
including CPs, at nano- and micrometer-scale, 

Figure 2 a In vitro hMSC culture onto PPy/Alg 
hydrogels for 4, 24, and 72 h. Scale bars: 200 μm. 
Cell numbers on the samples. Relative Tuj1 and 
MAP2 gene expression levels of the cells cultured 
on the PPy[10]/Alg and TCP for 14 days. Individ-
ual bars indicate the average ± the standard error 
of the mean. An asterisk (*) denotes a statistical 
significance between two groups (p < 0.05). b 
HE staining of histological sections subcutane-
ously implanted with various PPy/Alg gels for 1, 
4, and 8 weeks. Scale bars represent 100 μm 
Reproduced with permission from Yang et al.107 
Copyright 2016 WILEY‐VCH Verlag GmbH & Co. 
KGaA, Weinheim.

◂
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supporting adhesion, and guiding extension 
of neurons for nerve regeneration.132, 135 For 
instance, Lee et al. (2009) developed electri-
cally conductive random or aligned fiber struc-
tures through the coating of PPy on electrospun 
poly(lactic-co-glycolic acid) (PLGA) nanofibers. 

Their random nanofibers provided a favorable 
microenvironment for the growth and differen-
tiation of PC12 cells and hippocampal neurons, 
while application of electrical stimuli (10 mV/
cm) through the nanofibers resulted in formation 
of high number of neurites with longer neurite 

Figure 3 a Percentage of neurite-bearing PC12 cells and median neurite length on PPY/PDLLA compos-
ite films with varying PPY composition (n = 4, *p < 0.05). b Intraoperative photographs of the PPY/PDLLA 
nerve conduits. “P” signifies the proximal end and “D” signifies the distal end. Histology images stained 
with methylene blue and transmission electron microscopy (TEM) micrographs. Recovery of sciatic nerve 
function. Sciatic function index (SFI) as a function of implantation time (top). Footprint stamps in walking 
track analysis after 6 months of implantation (bottom). (A) PPY/PDLLA. (B) PDLLA. (C) Autograft. (D) Nor-
mal left leg Reproduced with permission from Xu et al.98 Copyright 2013 Elsevier Ltd.

Figure 4 a The expression of NF200 on poly-l-lysine-coated random and aligned nanofibers. b The neu-
rite extension of DRG neurons on poly-l-lysine-coated random and aligned nanofibers Reproduced with 
permission from Wang et al.123 Copyright 2018 Elsevier B.V.
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size. They further reported that the same electri-
cal stimuli applied via the aligned nanofibers led 
to even longer neurites and more neurite-bearing 
cells than that of the random ones.118 In a simi-
lar study, Xie et al. (2009) developed electrospun 
poly(ε-caprolactone) (PCL) and poly(l-lactide) 
(PLA)-based nanofibers, further coated with PPy 
through in situ polymerization. They observed 
that dorsal root ganglia (DRG) cells attached 
to grown and extended neurites in the direc-
tion of nanofiber alignment in the presence of 
electrical stimuli revealing the potential of these 
platforms for neural tissue engineering appli-
cations.119 In the work of Shafei et al. (2017), a 
novel approach based on electrospinning and 
vapor-phase polymerization, was used to fab-
ricate highly conductive (1.9 S  cm−1) PCL/PPy 
nanofibers supporting PC12 cell viability and 
neurite extension.120 In similar work, Ghasemi-
Mobarakeh et al. (2009) designed conductive 
nanofiber scaffolds made of PANI–PCL–gelatin, 
which enhanced PC12 cell proliferation and neu-
rite outgrowth (~ 30 μm) upon electrical stimula-
tion (DC voltage of 100 mV/mm for 1 h).121 In 
a different study, Wu et al. (2015) used a differ-
ent material to fabricate electroactive nanofibers. 
They applied in situ polymerization of conduc-
tive PANI on the surface of non-conductive scaf-
fold material, tobacco mosaic virus (TMV), in 
the presence of dopant, poly(styrenesulfonate) 
(PSS). They concluded that the synergetic effect 
of electrical and topographical cues promoted 
the directed neurite outgrowth of PC12 cells.122 
In another study, Wang et al. (2018) developed 
surface modified, electrically conductive, aligned 
nanofibrous scaffolds composed of poly(lactic-
co-glycolic acid) (PLGA) and multi-walled 
carbon nanotubes (MWCNTs) in the form of 
conduits for neural regeneration. They observed 
that the topographically aligned nanofibers pro-
vided directed cellular alignment and neurite out-
growth for PC12 (Fig. 4a) and DRG (Fig. 4b) cells 
in the presence of electrical stimulation (voltage 
of 40 mV). In addition, the synergetic effect of 
nanofiber alignment and electrical stimuli also 
enhanced the cell attachment, proliferation, and 
myelination of Schwann cells.123

Besides the in vitro work on PC12 or DRG 
cells, the studies on the stem cells also show great 
potential for neural tissue repair. In that sense, 
the use of fibers providing topographical, bio-
chemical, and electrical cues to control the stem 
cell behaviors such as differentiation into desired 
cell lineages, including neuronal or glial cells, has 
also been investigated. In the work of Yow et al. 
(2011), PPy-incorporated collagen fibers with 

significant mechanical and electrical properties 
were prepared using interfacial polyelectrolyte 
complexation. After applying 10 days of electri-
cal stimuli to the hMSCs seeded on the developed 
fibers in proliferating medium, they observed 
that hMSCs upregulated the expression of neural 
markers, such as noggin, MAP2, neurofilament, 
β tubulin III, and nestin, indicating their differ-
entiation into neuronal-like phenotypes, accom-
panied by slight reduction in hMSCs viability.124 
In addition to the CPs, carbon-based conductive 
materials can also be used in combination with 
biodegradable and biocompatible non-conduc-
tive polymers in the form of nanofibers for the 
differentiation of stem cells. For instance, Zhu 
et al. (2018) developed polyacrylonitrile and 
conductive carbon-based nanofibrous scaffolds 
with high flexibility and conductivity using high 
temperature annealing method. They reported 
that the neural stem cells seeded on the scaf-
folds demonstrated neuronal differentiation and 
maturation through the upregulation of neuronal 
gene expression levels and MAP2 protein upon 
the application of biphasic electrical stimulation 
(AC voltage of 5 V for 4 h during 7 days).125 In a 
different study, Guo et al. (2016) developed gra-
phene–PEDOT hybrid microfibers to differenti-
ate MSCs into neural-like phenotypes through a 
self-powered electrical stimulation without bio/
chemical cues.76

Overall, these studies demonstrated the 
potential use of conductive CPs-based fibers as 
promising platforms for neural tissue engineering 
applications.

4.4  Flexible Electronic Interfaces
The graphene is a well-known material due to 
its excellent mechanical and electric proper-
ties, allowing its use in combination with other 
biomaterials as mechanical support or as con-
ductive fillers to design functional and biocom-
patible hydrogel or scaffold platforms for tissue 
engineering applications.64 Alternatively, con-
ductive graphene has also been widely used in 
the development of implantable and flexible bio-
electronic interfaces to be used in neural tissue 
engineering.69 These flexible electronic interfaces 
with high resolution and low feature size conduc-
tive graphene circuits are mostly fabricated via 
inkjet printing, 3D printing/bioprinting, chemi-
cal vapor deposition (CVD), or various other 
graphene pattern transfer methods and used to 
control cellular function. For instance, Lee et al. 
(2015) used CVD-grown graphene substrate to 
enhance the neuronal differentiation of hMSCs 
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Figure 5 a 3D printed circuit embedded in gelatin matrix. b MSCs attachment and formation of 3D cellu-
lar network. c Immunolabeling of Schwann cell marker after electrical stimuli Reproduced with permission 
from Uz et al.94 Copyright 2019 American Chemical Society.
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under low-frequency electromagnetic fields (ELF-
EMF; 50 Hz, 1 mT). They demonstrated that suc-
cessful differentiation was obtained as a result of 
ELF–EMF induced cell adhesion, upregulation 
of intracellular calcium influx, and activated 
focal adhesion kinase signaling pathway, produc-
ing extracellular matrix molecules. However, the 
success of this approach was relying on not only 
the electrical stimuli, but also the use of many 
different chemicals and growth factors trigger-
ing neuronal differentiation in their cell cul-
ture media. These chemicals and growth factors 
are expensive and not suitable for use in in vivo 
applications, limiting the clinical translation of 
this approach.79 To address this issue, for the first 
time, we used inkjet printer and laser-annealed 
graphene-based interdigitated circuits on polyim-
ide substrates as flexible bioelectronic interface to 
control the stem cell differentiation via sole elec-
trical stimuli, free from any additional chemical 
induction. Our results indicated that the MSCs 
were successfully differentiated into Schwann 
cells by applying voltage of 100 mV at 50 Hz for 
10 min per day for 15 days. We reported high 
immunolabeling of Schwann cell markers along 
with enhanced paracrine activity.95 Considering 
the fact that the used polyimide substrate was not 
porous and biodegradable, we developed a novel 
method, enabling effective fabrication of biode-
gradable and flexible electronic interfaces via sim-
ple polymer casting method.126 In this method, 
first conductive graphene-based micropatterns 
(or circuits) were developed on molds via micro-
fluidic filling, inkjet printing or CVD. Then, by 
applying a polymer casting method, we were able 
to transfer the graphene patterns (or circuits) to 
the target substrate, by which we can control the 
microstructure, mechanical properties and also 
biodegradability. This is a versatile method that 
can be used for various synthetic or natural bio-
degradable polymers. The obtained biodegrad-
able and implantable and flexible bioelectronic 
interfaces that demonstrated successful differen-
tiation of MSCs into Schwann cells under same 
electrical stimuli conditions.126 Although these 
flexible electronic platforms are porous and bio-
degradable, they still do not possess actual 3D 
microstructure creating a favorable microenvi-
ronment for the formation of 3D cellular net-
work. Considering this, we created a 3D printed 
graphene-based circuit and embedded it into a 
gelatin matrix possessing actual 3D microstruc-
ture and desired mechanical properties (Fig. 5a, 
b). Following the application of electrical stimuli, 
we observed MSCs to Schwann cell differentiation 

accompanied by significantly enhanced paracrine 
activity (Fig. 5c), which was due to the synergistic 
effort of 3D microstructural/mechanical proper-
ties and electrical stimuli.94

The application of biodegradable and 
implantable bioelectronic interfaces for the con-
trol of stem cell differentiation and fate commit-
ment is a promising approach for future neural 
regeneration strategies. This is a new hot topic 
in the field and more research is needed in this 
aspect.

5  Potential Cellular Mechanisms
The influence of electrical fields during the 
embryonic development along with the exist-
ing electrical signals throughout our body, par-
ticularly in our nervous system, has been known 
for centuries. However, the exact role of electri-
cal fields and signaling such as time-dependent 
voltage gradients, ion fluxes or regulation of 
synapses in developmental processes have only 
recently been investigated.46, 47, 50 In the literature, 
there have been some efforts to connect cellular 
behaviors, such as proliferation,136 migration,137 
protein/growth factor secretion,138 adhesion, and 
differentiation,139 with the applied electrical stim-
uli through the regulation of various signaling 
pathways such as FAK and p3875, 76, 79, 140–142 ion 
channels and ERK pathway,143–145 MAPK, PI3K, 
and ROCK,97, 146 and ROS.97, 147 Some studies 
have also suggested that the electrically induced 
intracellular  Ca2+ signaling along with the sign-
aling pathways related to ferritin serve as a novel 
regulatory mechanism controlling the neural dif-
ferentiation of MSCs.148 For the CPs, it is claimed 
that the expulsion of negative ions through the 
neutralization of CPs or uptake of positive ions 
such as  Na+ from the medium has several effects 
on cellular processes, including protein adsorp-
tion and the cell cycle.64 Despite the promis-
ing attempts to elucidate the effect of electrical 
stimuli on cellular processes, further investigation 
needs to be performed to understand the physic-
ochemical mechanisms of this phenomenon.

6  Conclusions and Future Perspectives
The conductive polymer or carbon-based plat-
forms hold significant potential to manipulate 
cellular behavior and promote neural regenera-
tion. However, most of the ongoing research is at 
pre-clinical level as opposed to clinical trials for 
the application of conductive platforms for neu-
ral tissue engineering. Thus, the properties of 
these platforms need further improvements to 



504

M. Uz, S. K. Mallapragada

1 3 J. Indian Inst. Sci.| VOL 99:3 | 489–510 October 2019 | journal.iisc.ernet.in

provide precise control of cellular mechanisms 
to enable clinical translation. The improvements 
in microstructural and mechanical properties 
of these platforms along with the electrical con-
ductivity and biodegradability can enable bet-
ter mimicry of the ECM, which in turn allows 
enhanced control of implanted cells and facili-
tate clinical translation. There are still number 
of unknown questions regarding the relation-
ship between the electrical properties and cel-
lular functions, particularly from a mechanistic 
perspective. Therefore, elucidating the regulated 
genes, proteins, and cellular pathways upon elec-
trical stimuli with a desirable mimicry of ECM 
environment will pave the way for the develop-
ment of novel and functional platforms. In addi-
tion, most of the conductive materials are not 
biodegradable. Therefore, the use of conductive 
platforms that are also biodegradable, in tissue 
engineering applications, can potentially open the 
way for minimally invasive implantation, which 
can prevent additional surgical interventions 
improving the comfort of patients. Furthermore, 
development of conductive and biodegradable 
polymeric platforms that are capable of manipu-
lating cells through remotely applied electrical 
stimuli will be the next generation approach to 
provide a minimally invasive strategy for patients, 
not only for neural tissue engineering, but also 
for other tissue engineering areas, including skin, 
muscle, and cardiac and even brain–computer 
interfaces. In conclusion, the conductive polymer 
and hydrogel-based platforms are promising and 
have a lot of potential to address neural tissue 
engineering problems, but there are still certain 
gaps in this field that need immediate attention to 
accelerate clinical translation.
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