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Abstract | Bike-sharing systems (BSSs) are emerging as a popular type
of shared vehicle platform where users can rent bicycles without having
to own and maintain them. BSSs are ideal for short trips and for connect-
ing to public transit systems. Bicycle usage is associated with several
unique characteristics which make planning and operation of BSSs very
different from car sharing problems and other traditional transportation
modelling approaches. In this paper, we summarize existing literature
on strategic planning which involves selecting stations, designing bike
paths, and figuring out station capacity. Research on operational meas-
ures which include day-to-day and within-day repositioning activities
are also collated. Additionally, models for understanding demand, pric-
ing and incentives, maintenance, and other technological aspects are

reviewed.
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1 Introduction

Automobile usage is on the rise in many parts of
the world and cities are actively promoting eco-
friendly transportation solutions to reduce traffic
congestion and emissions. Bike-sharing systems
(BSSs) is one such alternative which can not only
serve short-distance trips, but can also enhance
connectivity to public transportation networks.
In a BSS, customers can pick up and drop off
cycles at specific locations or anywhere in the
city depending on the type of bikes in the system,
locking technology, and payment mechanisms.
Most of the current generation BSSs are either
free-floating or station-based (Fig. 1). Station-
based BSSs may use both docked or geo-fenced
dockless bikes. A few examples of BSSs include
Capital Bikeshare (CaBi) in Washington, D.C.,,
Citi Bike in New York, Blue Bikes in Boston, and
Vélib’ in Paris.

Like any other transportation system, plan-
ning and operation of BSSs require understand-
ing the spatio-temporal demand for cycles in a
city. Demand can either be inferred from exten-
sive surveys or past data on traveller move-
ments.>. This knowledge of demand can drive
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decisions on building dedicated bike lanes, setting
up base stations,” and choosing between pay-per-
use and subscription-type services. Supply-side
aspects can also in turn influence demand. For
example, dedicated bike lanes make bike travel
safer and has the potential to increase BSS
usage.6_8

For station-based BSSs, it is important to
determine the capacity of each station and dis-
tribute the fleet across stations, although these
decisions can also be made at an operational
level.””"! Within-day stochasticity in travel pat-
terns often leads to imbalances in the availability
of bikes and parking spots. Having stations that
are full or empty can affect ridership and render
the system ineffective. To address these situa-
tions, cycles are often repositioned from one sta-
tion to another using trucks'? or by providing
price incentives to users for dropping off bikes at
nearby high-demand locations.'?

When bikes are repositioned using motor
vehicles, one must decide how many cycles to
move between stations and also determine opti-
mal vehicle routes. Repositioning done dur-
ing the day, in real-time, is classified as dynamic
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Figure 1: Docked BSS: Capital Bikeshare, US
(left) and Dockless BSS: Mobike, China (right).

1rebalancing,14’15 while that carried out at the end

of a day, when the system is inactive, is called
static rebalancing.'>!®!” Periodic maintenance of
bikes, vandalism, and theft are some other com-
mon problems faced by a service provider of a
BSS.

The rest of this review article is structured as
follows. In Sect. 2, we discuss the history of BSSs
and motivate the need for developing decision
support tools for studying planning and opera-
tional problems associated with BSSs. In Sect. 3,
we discuss research on some of the strategic prob-
lems such as bike-lane design, station locations,
and dock size selection. Section 4 details various
repositioning mechanisms that can be used when
operating a BSS. Technological aspects and some
emerging phenomena are addressed in Sect. 5
and the conclusions of this study are presented in
Sect. 6.

2 Background and History

The first BSS started in Amsterdam in 1965
(White bicycle plan) with just fifty bicycles.'®
However, a month later, all bikes were either sto-
len or dumped into canals. The white bicycle plan
was a first-generation BSS in which bikes were
free to use. Other first-generation BSS examples
include Vélos Jaunes in La Rochelle, France (1974)
and Green Bike Scheme in Cambridge, UK (1993).

Since then, BSSs have undergone many changes.
An infographic of the historical development of
BSSs through the years is shown in Fig. 2. The
second generation of BSS saw the advent of coin
deposit stations in which rides were free, but cus-
tomers had to insert coins into a slot to unlock
bikes and could retrieve them once the bikes were
returned. The first coin deposit bike program
called Bycyklen started in Copenhagen in 1991."
In 1995, it also became the first large-scale BSS
with around 1,100 bikes. This system was still vul-
nerable to theft due to anonymity of users. The
use of automated docked stations with registered
customers marked the beginning of the third gen-
eration of BSSs. This greatly reduced vandalism
and theft issues associated with the previous gen-
erations of BSSs. Such a system first appeared in
Portsmouth University, England (1996) and stu-
dents had to pay for membership and bikes could
be rented using a magnetic card. Other examples
of third generation BSSs include LE Vélo STAR

in Rennes (1998), Bicing in Barcelona (2007),
Cycle Hire in London (2010), and Citi Bike in
New York (2013). The fourth-generation bikes
came into existence in 2005 with the Vélo’v pro-
gram in France. This system was operated by an
advertising firm JCDecaux and was equipped
with smart bikes that could be accessed using a
mobile app. The smart technology-based system
provided real-time information on bike availabil-
ity.!?> Most BSSs in the recent past belong to the
fifth generation in which dockless bikes are used
in a free-floating or station-based set up. These
systems have lower setup costs and hence have
grown rapidly in many cities.

By December 2016, about a thousand cities in
the world had a bike-sharing program.”® Mobike,
a dockless BSS, is the world’s largest bike-sharing
operator. As of 2018, Mobike operated in over 19
countries and 200 cities.”” One of the large-scale
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Fourth Fifth
Generation Generation

Free bike systems,

Coin-deposit Smart cards, Smart Cards,

Dockless systems,

distinct bicycles _ systems, locks, distinct bicygles, chking starion;, E- E-bicycles. Bi
locked b'I{ 4 distinct bicycles, free locks, docking bicycles, Real-time dat ycles, blg ¢
uniocked bikes, no of charge, docking Stations, access availability, GPS ata managemen

stations stations booths tracking possibilities

Figure 2: Generations of BSSs. (Source: Midgley , Chen et al. ; Picture source:
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station-based BSSs is the Hangzhou Public Bicycle
System in China, which comprises of 2,965 sta-
tions and approximately 69,750 bicycles,”®, with
plans to expand to 175,000 bicycles by 2020.%
Bike-sharing programs have grown exponen-
tially in the last decade, particularly in Asia. For
instance, thirteen of the world’s fifteen largest
BSSs are in China.*

Although BSSs have been encouraged by pub-
lic agencies and users around the world, service
providers such as Mobike, Ofo, and Pedl had to
shut down operations in many cities due to high
maintenance costs, low profits, theft, and vandal-
ism.’’=* Some of the new technologies like global
positioning system (GPS), anti-theft alerts, and
high-tech handlebars introduced in the fourth
and fifth generation dockless bicycles have the
potential to address these issues to a certain
extent.”*?

Also, cycling is not perceived as a safe com-
mute mode, especially in mixed traffic, and the
lack of dedicated bike lanes in most places proves
to be a major hurdle for the success of BSSs. Fur-
ther, while BSSs work well in controlled environ-
ments such as office and university campuses,
scaling them to a city level can be extremely
challenging especially for dockless free-floating
systems. Often, bikes are left at remote locations
where there is no demand, and this affects the uti-
lization rates of cycles. As bicycles are fairly inex-
pensive, service providers tend to add more bikes
to the system as a knee-jerk reaction, but the
oversupply of bikes has resulted in many aban-
doned and broken bicycles, especially in China
(see Fig. 3). These observations strongly motivate
the need for planning and operating BSSs in an
efficient manner.

Figure 3: Roadside dumping of bicycles in Xia-
men, Fujian province, Chinan (Source: Alan ).
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3 Strategic Planning

Strategic planning problems in the context of
a BSS typically involve designing the bike path
network and determining the number and loca-
tions of bike stations. These decisions must con-
sider construction costs, the effect of terrain,
customer service level (which can be measured
by the coverage level, bicycle availability, and user
out-of-pocket costs), and the impact on existing
automobile traffic. For instance, station location
decisions must make sure that cycles are at a con-
venient walking distance (roughly 300-500 m)
from the actual trip origins and destinations.”’
Geographical factors are crucial not only for bike
lane design, but also for locating bike stations. For
example, in Brisbane, it was observed that City-
Cycle users avoid returning bicycles to higher-ele-
vation stations.”® Stations must also be designed
such that there is enough curb-side space to
account for surges in pickups and dropoffs.

A key input to these decisions is the knowl-
edge of demand for bike sharing, which can be
estimated using census data,”® stated-preference
surveys, and by observing the travel patterns of
commuters who might potentially shift from
other modes to cycling.*’ BSS planners must
allocate bicycles at different stations in a man-
ner that is consistent with the actual demand of
customers. Most studies in literature focus on
understanding demand patterns after a BSS sys-
tem is in place. For example, statistical regression-
based forecasting and time-series methods can
be used to predict the spatio-temporal activity
of users. These have been successfully demon-
strated using data from Bicing in Barcelona*"*?
and Vélo’v in Lyon. >* Others have used a data
mining approach® to cluster BSS stations accord-
ing to the rate of bike pickups and dropoffs using
Citybike Wien data from Vienna. Clustering
methods were also used to identify ‘similar’ sta-
tions for analysing the system before and after a
policy change.** Demand prediction for existing
BSSs was also successfully done using machine
learning and artificial intelligence methods by
learning customer behaviour from observed data
and using it for prediction.*~***° However, these
predictions are yet to be fully exploited in exist-
ing research on operational planning that we will
discuss in Sect. 4.

Customer demand in existing BSSs is heavily
influenced by supply, and literature on demand
forecasting before a BSS is planned remains sparse.
Traditional demand models involving trip genera-
tions and distribution were extended to bicycling
by Turner’’ and Landis®®. A few researchers have
proposed GIS-based methods that can provide
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Branch-and-bound: is an
enumeration technique for in-
teger optimization problems
in which the feasible region is
iteratively decomposed into
smaller sets and bounds are
estimated to prune certain
search directions.

Bi-level Programs: are
optimization models in which
two objective functions are
optimized: one at the upper
and another at the lower level.
Upper level decisions affect
the lower level constraints or
objective.

Maximum likelihood: is

a statistical procedure for
estimating a distribution’s pa-
rameters in order to maximize
the probability of observing
the data.

Logit models: are a class of
random-utility econometric
models in which decision
makers’ utilities are charac-
terized by a deterministic
component and an error term
which is Gumbel distributed.

MILP: Mixed integer linear
programs are optimization
models in which the objective
function and constraints are
affine functions and some or
all variables are integral.
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macro-level bicycle demand using socio-demo-
graphic and geographical attributes.”>>> Using
daily trips by different modes and stated prefer-
ence surveys that provided mode shift propensi-
ties, " forecasted the bike trips for Philadelphia, US
assuming three different levels of system usage. In
the absence of elaborate travel demand models or
surveys, studies that understand factors influenc-
ing bike trips can be transferred to other cities for
predicting demand.”® For example, Faghih-Imani
et al.”’ analyses the role of factors such as popu-
lation density, accessibility, points of interest, and
supply-side features such as the number of stations
per unit area and capacity on bicylce trip gen-
eration and attractions. Data from Barcelona and
Seville, Spain were used in this work to estimate
model parameters using a restricted maximum
likelihood approach. In another work, Singhvi
et al.”® uses taxi data from New York City, US along
with population information to build regression
models that predict bicycle usage. Other predictors
that have been found to significantly influence bike
demand are weather™ and seasons®.

Bicycle trips may also be used for first- and
last-mile access to transit systems. In such cases,
transit ridership and accessibility must be fac-
tored in when estimating the demand for a BSS.
In the next subsections, we discuss a few math-
ematical models that have tried to incorporate
the integrated effects of various input parameters
in the design of a BSS. For better readability, we
have altered the notation from the original papers
at several places to describe similar variables and
parameters wherever possible.

3.1 Route Design

Researchers have addressed the bike network
design problem in multiple ways using different
objectives and assumptions. For example,®' for-
mulated models that connect origin-destination
(OD) pairs with bike paths while minimizing
total cost and meeting a specified bicycling level
of service. The framework considers a network
G = (R,S), where R is the set of intersections
and S is the set of roads. Each roadway segment
has an associated cost c;; to make it cyclable. The
cost associated with improving each intersection
is d;. Decision variable §;; is 1 if roadway segment
(i,j) € Sisimproved and is 0 otherwise. Similarly,
y; is 1 if intersection i € R is improved and is 0
otherwise. The objective can thus be mathemati-
cally expressed as follows.

min ( Z cijdij + Zdiyl) (1)

(i))eS ieR
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Their formulation included flow-balance
constraints, connectivity constraints for every
OD pair, a constraint that limits the path length
beyond which users will not cycle, constraints
that ensure a suitable level of service, and con-
straints that select intersections belonging to
a chosen path. Extensions in which these con-
straints are reformulated to speed up computa-
tion were also proposed. The model was solved
using a branch-and-bound method for small
problem instances and the authors studied the
effect of the level of service and the number of
OD pairs on the total cost.

Others have formulated bi-level programs for
the bike route design problem.®* At the upper
level, benefits to cars and cyclists were considered,
and at the lower level, an assignment model for
bikes and automobile traffic was optimized. A
genetic algorithm was used to solve the bi-level
formulation on medium-sized examples using a
special crossover and mutation technique.
Another optimization framework was proposed
by Mauttone et al.*’ in which the roadway net-
work could have sections with no cycling infra-
structure and the total number of discontinuities
in bike paths was minimized. A mixed-integer
multi-commodity flow problem was proposed,
and a metaheuristic was used to handle large
problem instances, including a test case from the
city of Montevideo, Uruguay. The optimal bike
path design was also addressed in®* to separate
bicyclists from motorized vehicles for an existing
transportation network. The objective was to
maximize the cyclists” utilities assuming that their
route choices could be modelled using a path-size
logit framework. The problem was formulated as
a mixed-integer linear program (MILP) and
tested on the Sioux Falls and Anaheim, US net-
works using a global solver and a metaheuristic.

While previously mentioned studies consid-
ered a single objective function, Zhu and Zhu
6 formulated a multi-objective function that
comprised of accessibility, bicycle level of ser-
vice, number of intersections, and the construc-
tion cost. (Since intersections pose safety risk for
bicyclists, they are assumed to prefer connected
bikeway networks over fragmented ones.’®®).
Accessibility was measured by not only consider-
ing the connectivity between the points of inter-
est, but by also considering the travel budget of
commuters on the road. The problem was solved
by an augmented e-constraint method using
hypothetical data from Jurong Lake District in
Singapore. A few other route design models have
been summarized in Table 1.
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Table 1: Summary of route design models.

References Description

Su et al.%® Developed a GIS-based route planner considering user preferences and the data was used to
identify and improve disconnected segments in the network

Cernj et al.®?

Integer linear programming model for tourists which maximizes the attractiveness of paths.

Constraints include flow-balance, maximum riding time, and budget limits

Teschke et al.”®

Statistical analysis was carried out to infer the effect of locations of streets or sidewalks,

characteristics of trips, personal characteristics, and temporary features like construction
sites on the risks due to cycling. These results were used to make decisions on improving

existing infrastructure

Winters and Teschke’! A population-based survey was used in multiple linear regression models to show the need
for having dedicated lanes. The likelihood of choosing routes with attributes such as
paved/unpaved, residential/arterial, and the presence of on-street parking were estimated,
and route design recommendations were provided

Putta and Furth’?

Proposed methods to detect barriers in low-stress bike networks that comprise of links

belonging to dedicated bike lanes and shared lanes with low automobile traffic. Their meth-
ods were demonstrated on real-world networks of Boston and Arlington, US

3.2 Facility Location

Research on station location selection is heavily
influenced by the hub location” and maximal
covering problem.”* In the basic version of the
single hub location problem, it is assumed that
there are n nodes which act as both origins and
destinations. The objective is to find the optimal
hub location such that the cost of transporting
demand between nodes via the hub is minimized.
That is, the hub acts as a switch for all interactions
in the network. Suppose that the flow between
OD pair (3, j) is denoted by w;; and ¢;; represents
the distance between nodes i and j. The optimal
location of the hub g can be obtained by solving

mqin ZL: Z]: wij (cig + ¢gf) (2)

Note that in the absence of set up costs, there is
no requirement of a hub since,

Z Z wijcij < Z Z wij (ciq + ¢g) (3)
i i
is satisfied if triangle inequality is assumed. How-

ever, if K is the cost associated with setting up
each inter-city route, a hub is needed if

Z Z Wij (ciq + cqj) + Kn

i
nn—1) (4)
< Z Z wijcij + I(T
i

The Kn term on the left-hand side of inequality
(4) corresponds to the cost of connecting each of
the n stations to the hub. On the other hand, if
routes were to be built between each pair of sta-
tions without creating a hub, the construction
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cost would be Kn(n — 1)/2, since () arcs have to
be built.

The bike station design problem is not exactly
similar to this model since it involves a pick up
and a drop off. Such scenarios resemble a two-
hub facility location problem.””> Suppose 1 and
2 represent two hub locations and let u; be 1 if
an origin or a destination i is serviced by hub 1
and be set to 0 otherwise. Likewise, let v; be 1 if
an origin or a destination i is serviced by hub 2
and is 0 otherwise. Note that when a node can be
served by both hubs, the one nearest to the node
is assumed to serve the node and the binary vari-
able corresponding to the other hub is set to 0.
The goal is to send the OD flows passing through
both hubs. The hub locations are chosen such
that the overall transportation cost is minimized.

min Z Z Wij (uiv,' (ci1 +c12 +¢j2)
b (5)
+ ujvi(cio +c1 + le))

The problem of locating multiple facilities
is also widely addressed in the literature using a
maximum covering model or a p-median prob-
lem.”*”” In the maximum covering model, the
objective is to locate a fixed number of facilities
to maximize the total demand that can be cov-
ered assuming that demand located farther than
S units from a hub cannot be served. Mathemati-
cally, it can be expressed as

m]ax Z a;yi (6)
iel
where I and ] are the set of demand nodes and

facility sites respectively, a; is the demand at node
i, decision variable x; is 1 if a facility is opened at
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j €J and is 0 otherwise, N; = {j € J |d;j < S} is
a subset of facility sites which can serve demand
from i, and y; is 1 if the demand at i can be served
and is 0 otherwise.

The x and y variables are connected using
constraints ) .y, % > y; Vi€ Iand ) ;% = p,
where p is the total number of facilities.

The p-median problem on the contrary mini-
mizes the total cost of serving the demand and
can be expressed as

min Z Z aiCijwij 7)
iel jeJ

where c; represents the unit cost of serving
demand at i using a facility at j and wy; is the frac-
tion of the total demand a; served by the facility
at j. (Hence, it must satisfy > 5;c; wjj = 1Vi € I.)
As before, a binary variable x; is used to repre-
sent facility location decisions and Zje] Xj=p
ensures that p such locations are opened. Finally,
the x and the w variables are connected using an
additional constraint w;; <w;Viel,je].

There are a few key differences in bicycle net-
works that prohibit the direct use of standard
facility location models. For instance, the hub
location model implicitly assumes that the flow
from a certain node can first be sent to hub 1 or
2 (whichever is closer) and it can be redirected
to the destination. However, in a BSS, some trips
may not be feasible if the stations are far from
the actual origins and destinations. Second, there
are more than two hubs in a bike network. On
the other hand, the maximum covering and the
p-median problems can be used to model unmet
demand, but they are applicable to single com-
modity, single source/destination-type flows
whereas locating bike stations involves a multi-
commodity, multiple OD pair problem.

One of the first models to tackle these issues
was proposed by Lin and Yang®’ using multiple
objectives and found the optimal bicycle loca-
tions along with the paths needed for connectiv-
ity. The formulation, explained below, balances
the cost incurred and the level of service provided
to customers.

Let d,s denote the distance between nodes r
and s (which could be trip origins or destinations
or bike stations). Different components of the
objective are weighted by parameters to convert it
to cost units. For example, o, 8, and y represent
the unit travelling cost from the trip origin to the
pickup bike station, between the pickup and the
dropoff bike station, and the dropoff bike sta-
tion to the trip destination respectively. Assume
that the yearly mean travel demand between OD
pair (3, j) is 4; and decision variable y;x; is 1 if the

@ Springer i’?}}%&?&

demand between i and j passes through bike sta-
tions k and / and is 0 otherwise. Denoting the set
of origins, destinations, and bike stations as I, J,
and K, respectively, the transportation cost com-
ponent of the objective was formulated as

> > du Y Y vkl

iel keK leK jeJ

FBY Y dud > vk 8)

keK leK iel jeJ
YD DAY vl
leK jeJ iel keK

To address the issue of unmet demand, the
authors introduce a penalty term

8 ( DSOS aw > D vty

iel keK leK je]

D) WDHH I

jeJ leK  keK iel

9)

where 8 is the additional unit cost of uncovered
demand and ¢, is 1 if a bike station located at s
cannot cover demand starting or ending at r. In
addition, setup costs

Zﬁoxk + Z Z CkiZki (10)

keK keK leK

are introduced to model the cost of constructing
stations and bike lanes. Here, the binary decision
variable x is 1 if a station is opened at k and zj; is
set to 1 if a bike lane is needed between stations k
and I The associated costs are f; and ¢y respec-
tively. Finally, the authors also include a couple of
extra terms in the objective that reflect the aver-
age holding costs and the cost of replenishing
bicycles assuming some stochasticity in demands.

Consistency between the decision variables is
achieved using constraints. For example, if bike
stations are opened at two nodes, a bike lane
could be built between them using

2ziy < xp +x;Vk € K, 1 € K\{k} (11)

Similarly, demand can be routed between two sta-
tions only if a bike lane connects them and this is
modelled using

Vi <z Vi€ Lk e K,l e K\{k},je] (12)

Finally, constraint (13) is used to route the
demand between each OD pair along some path
connecting the OD pair.

S Y w=tvictjes 0
keK leK\{k}

Some researchers have also proposed tools
to locate bike stations while simultaneously

J. Indian Inst. Sci.lVOL 99:41621-645 December 2019ljournal.iisc.ernet.in



modelling the interactions with other modes. For
example, Romero et al.” capture the mode choices
between cars and a BSS using a multinomial logit
framework within a bi-level optimization pro-
gram that determines the optimal bike station
locations. Using data from Santander City, Spain,
a genetic algorithm was used to demonstrate the
applicability of their model. Results indicate that
optimally located bikes can induce a significant
mode shift from cars to cycles. In another line
of related, but tangential, work on car sharing,
Kumar and Bierlaire”® developed regression mod-
els that predict the demand for shared services as
a function of transit ridership, personal car usage,
and other land use attributes and integrated the
outputs with an optimization model to select car
stations. A few other facility location models have
been summarized in Table 2.

3.3 Capacity Allocation
After deciding the locations of the bike stations
and paths, another key strategic decision that is
crucial to a station-based BSS is the capacity allo-
cation of bikes at each station. Many studies have
modelled this jointly with the location decisions
of bicycles.gl’83 In this section, we will discuss one
model proposed by Lin et al.® that builds on the
formulation by Lin and Yang®’ discussed earlier.
In addition to (8)—(10),° introduce a term
I rex Sk that reflects the overall holding costs,
where h is the inventory holding cost of a bicycle
and s; is a non-negative decision variable repre-
senting the inventory level at station k. The yearly
travel demand between OD pair (3, j) is assumed
to follow a Poisson distribution with rate 4;; and

Modelling Methods for Planning and Operation

hence the daily demand at station k was com-
puted using

Ap = %Z Z Zyiklj)~l‘}'Vk ek

iel leK\{k} jeJ

(14)

where T is the number of days in a year. Assuming
that the lead time for replenishing bikes at a sta-
tion k is 7, and a desired level of service is set by
the probability of running out of stock (1 — yx),
the inventory level required s; can be expressed as

S e M (A ) -

q! - yk} (15)

S = min {s :
q=0
Vk € K

Constraints (14) and (15) are both non-linear
and make the problem highly intractable. The
authors proposed an iterative greedy heuristic
in which for a given set of bike stations, lanes
and inventory levels are chosen one at a time to
reduce the overall costs. Their method was dem-
onstrated on a hypothetical test network and sen-
sitivity of optimum inventory levels with respect
to the frequency of replenishment and network
design was studied.

Some researchers have proposed MILPs to
address the capacity allocation problem. For
instance, Sayarshad et al.3* formulated a multi-
period optimization model in which the demand
was known, and the objective function included
revenue from trips, relocation costs, capital and
maintenance costs, and a penalty for unmet
demand. A similar multi-period MILP was sug-
gested by Martinez et al.’ and it also included
relocation decisions. Heuristics that decompose

Table 2: Summary of facility location models.

References Description

Garcia-Palomares et al.3

A GIS-based method was used to study bike location for two objectives: p-median and

maximum coverage models. Quantitative accessibility analysis to identify the stations that
are relatively isolated was carried out using data from Madrid, Spain

Yan et al.”®

Mixed-integer programming models for deterministic and stochastic demand instances

where the goal was to minimize the cost of routing demand as well as fixed costs of

locating bike stations

Frade and Ribeiro®°

A maximum coverage model that captures relocations over time using constraints. Budget

constraints that feature inventory, maintenance, and relocation costs are also modelled

Park and Sohn®'

Maximum coverage and p-median model were solved using taxi data from Seoul, South

Korea. Their model also suggested station capacity using the frequency of bike trips and

a clustering technique
Zhang et al 2

Analysed re-design strategies for an existing BSS using historic demand usage and crowd

suggestions. Objectives included increasing convenience at a minimum cost

Dobesova and Hybner®3

Used ArcGIS to locate a minimum number of bike stations (and determined their capacities)

while maximizing coverage. An existing bike network and the number of inhabitants in
different regions were taken as inputs
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the problem by time periods were proposed and
tested on a network from Lisbon, Portugal. A few
other capacity allocation models have been sum-
marized in Table 3.

4 Operational Planning

As discussed in Sect. 3, strategic planning can be
used to locate stations and allocate an optimum
number of bicycles at those locations. However,
at an operational level, uncertainty in demands
and maintenance requirements create supply
imbalances rendering re-optimization necessary.
For station-based systems, these types of stochas-
tic events might make some stations go empty,
preventing customers to rent a bicycle. It may
also happen that some stations become full and
force customers to wait or return their cycles at
another station. Supply imbalances in free-float-
ing systems do not affect dropoffs but demand
fluctuations can make it difficult to find a bike
in the first place. Such departures from strategic
plans can lead to loss of customers and affect the

overall performance of a BSS. Figure 4 shows a
snapshot of the inventory levels for a portion of
Citybike Wien in Vienna, Austria and CaBi, Wash-
ington D.C., US and one can notice bicycle sta-
tions which are nearly full or empty.

To address these situations, day-to-day and
within-day operational measures such as relocat-
ing bicycles from one place to another is a must.
These repositioning tasks are usually carried out
using trucks or bike-trailers (see Fig. 5). In addi-
tion, one can provide incentives that might nudge
customers to pick up (or drop off) their bicycles
at nearby stations that are close to capacity (or
short of bicycles). Repositioning strategies are
mainly classified as static and dynamic depending
on the timing of repositioning. Some authors also
classify it as online and offline methods and the
subtle distinction in the nomenclature will be dis-
cussed in Sect. 4.3.

Table 3: Summary of capacity allocation models.

References Description

Caggiani et al.® A bi-level optimization model which uses data from an existing BSS was proposed to create spatio-
temporal clusters. The model optimizes the number of times out-of-stock events occur subject to a

budget constraint

Celebi et al 8¢ An optimization method that determines station locations and capacity using a set covering
method. A queuing model is used to estimate service levels and unmet demand is minimized

using a dynamic program

Freund et al.®’ Optimization formulation to minimize out-of-stock events under budget constraints by re-allocat-
ing dock capacity. A polynomial-time allocation algorithm was also proposed

Cavagnini et al.8  Two-stage stochastic programming formulation in which capacity allocation is made in the first
stage and relocation decisions are made in the second stage. Demand scenarios and associated
probabilities are assumed, and the objective minimizes the total expected penalty for re-balanc-

ing and stock-out

Lu® A robust optimization approach is used for multi-period fleet allocation to minimize the total system
cost that includes holding and redistribution costs and penalties for lost customers

© hide caption

[ [ ——
[ [ —
L T—

iy ?gsmlonawmosxemp:y

! @ suonsenoe

Error o station
shut down

Figure 4: Station inventory levels of Citybike Wien (left) and CaBi (right). (Source: Citybike Wien System
Map , Capital Bikeshare System Map ).

@ Springer ﬁggfs

J. Indian Inst. Sci.lVOL 99:41621-645 December 2019ljournal.iisc.ernet.in



Figure 5: Rebalancing using a trailer. (Source:

Panhard ).

Repositioning period . .
p sp Forecasting period

A S !

Current night
Next day

Figure 6: Static bicycle repositioning. (Source:

Zhang et al. ).

4.1 Static Repositioning

In static repositioning, bicycles are rebalanced
during the night when customer movements
are minimal. Past data may be used to forecast
demand for bikes at different stations and guide
the repositioning operation. The repositioning
and forecasting periods do not overlap as shown
in Fig. 6 and hence real-time demand variations
are not addressed. Nevertheless, moving bicycles
during the night is convenient from the opera-
tor’s perspective since there are no parking and
congestion issues. Modelling within-day demand
fluctuations requires a more dynamic approach
and will be discussed in Sect. 4.2.

Most research on static repositioning is geared
towards addressing the following key questions.
First, how many cycles should be moved between
different pairs of stations. (This problem is also
referred to as the inventory balancing problem.)
Second, what is the most efficient way to route
vehicles which move these bicycles (which con-
stitutes the routing problem). These two problems
are often jointly solved using optimization mod-
els with integer decision variables.

A commonly used target stock level in the
inventory balancing problem is the number
determined from the capacity allocation problem.
Alternately, researchers have also proposed mod-
els in which the inventory level at the end of the
rebalancing procedure falls within an ideal pre-
determined interval.” The limits of such intervals
can be obtained from Markovian queuing models
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Figure 7: Markov chain for station inventory.

(Source: Schuijbroek et al. ).

with different objectives by forecasting the opera-
tions on the subsequent day.

For example, Schuijbroek et al.'” suppose that
C is the capacity of a station and the state transi-
tions for the number of bicycles at the station
occur according to a non-stationary M;/M;/1/C
(in Kendall notation) process. That is, the inter-
arrival times for returns and pickups at time ¢ are
distributed exponentially with rates A(¢) and u(z)
respectively (see Fig. 7). These transition rates are
estimated using maximum likelihood methods.
Additional assumptions are often needed when
developing a demand forecasting tool since lost
demand due to empty or full stations is censored
and is not a part of the observed data.

Assuming that a station starts with s cycles
after static repositioning, let p(s,s’,t) be the
probability of finding s’ bikes at time ¢ on the
next day. These transition rates satisfy Chapman-
Kolmogorov equations. To calculate the expected
fraction of successful pickups and dropoffs, the
authors define

JE (&)1 = p(s,0,6))dt

86,0, T) =
) m@adt

(16)

JE A A = pes, ¢, e)dt
I a)de

g6, C,T) = (17)

where T is the time limit for the next day’s opera-
tions. The bounds for the desired inventory level
at the end of the static rebalancing procedure is
defined as

s™ = min {s:g(5,0,7) > B~} (18)
s™ =max {s:g(s,C,T) > Bt} (19)
where 8~ and B are desired service levels for the

next day.

Many studies also allow deviations from the
desired inventory levels but penalize them in
objective functions.”*> The penalty could just be
an absolute value of the difference between the
desired and achievable inventory level or could
factor in the next day’s operations. For instance,
Raviv et al.”> assume a penalty for out-of-stock
pickup and dropoff events as ¢ and ¥ respectively

@ Springer ﬁ}%&‘;

Kendall notation: A/S/c/K
represents queuing processes

using arrival process (A),
service time (S), number

of servers (c), and capacity
limit (K). Thus, M/M/1/C

indicates that the arrivals

are

Poisson and service times are
exponential in a single-server

queue with capacity C.
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and define a function to describe the expected
shortage using

T
F(s) = /0 (ps.0.06 +p(5, G000 )t (20)

An approximation of this function was used as
a penalty term in the objective function of an
MILP. The authors used data from Tel-O-Fun in
Tel Aviv, Israel to estimate the model parameters.

Inventory levels after rebalancing have also
been set using a chance constraint approach®.
In this method, the number of pickups (§i+) and
dropoffs (&) at a station i € N are assumed
random and one of the constraints in the
model ensures that the probability of success-
ful pickups and dropoffs are greater than a pre-
specified parameter p. Specifically, let r; and C;
denote the current inventory level and capac-
ity of station i respectively. If u; indicates the
number of bicycles moved from station i to sta-
tion j, then the number of available bikes at a
station i is r;+& + Zj (uji — ujj). Likewise,
the number of available spaces at station i is
Ci—ri+ “g‘ﬁ' + Zj(u,'j — uji). The chance con-
straint can thus be written as

Plri+§& + Z (wii — uj) > &7,

]

Ci—ri+& + Z (i — wi) (21)
j

z§ VieN|[=zp

After deciding the target inventory levels or their
intervals, the routing problem needs to be solved
to figure out how a single or multiple vehicles can
redistribute cycles in an optimal manner. The sin-
gle vehicle routing problem can be formulated as
a one-commodity pickup and delivery travelling
salesman problem (1-PDTSP).”” To mathemati-
cally model this problem, consider a complete
graph (without self-loops) G = (N,A) where
N ={0,1,...,n} represents the set of bike sta-
tions and A is the set of arcs. The assumption
that the graph is complete is not necessary but
is made only to simplify the notation. Suppose
node 0 represents the depot where the vehicle
(with capacity Q) that is used to move bicycles
begins its trip and suppose nodes 1,. .., n denote
the other stations in the network. Let c;; be the
travel costs between i and j and binary decision
variable x;; be 1 if the vehicle takes arc (i, j) and
is 0 otherwise. Each station i is assumed to have a
demand/supply g; = r; — s; which is the deficit or

@ Springer i’?}}%&?&

excess when compared to the desired inventory s;.
If g; > 0, station i is a pickup node and if g; < 0,
it is a dropoff node. A second decision variable
y;j represents the total number of cycles that are
carried by the vehicle on arc (3, j). Supposing that
the total deficit equals the total excess (this can be
easily relaxed assuming that the depot has extra
inventory or space for extra cycles), the 1-PDTSP
can be formulated as follows.

min Z CijXij (22)
(ij)eA

s.t. le'jzthiZI VieN (23)
jeEN heN

Zin,»zl VS CN,S# (24)

ieS jes

So-Somea VN g

jeN heN

0<y; <Qxj V(,j)eA (26)

x;; € {0,1} V(@,jeA (27)

Constraint (23) ensures that each station is vis-
ited exactly once and (24) eliminates subtours.
Flow conservation of the cycles is guaranteed
using (25) and inequality (26) forces the flow
variables to be zero on links that are not traversed
by the vehicle. This formulation was extended
by Raviv et al.”® to the multiple vehicle scenario
using a three-index formulation with less restric-
tive assumptions. Suppose that previous notation
is modified such that x;;, is a decision variable
which is 1 if vehicle v € V traverses arc (3, j) and
is 0 otherwise. Similar to (23), flow conservation
of vehicles can be expressed as

me,:thiV:l VieN,veV (28)
jEN heN

> xmp <1 YicN\{0LveV (29)
jEN

Note that (29) makes sure that each vehicle can
visit a station at most once. It is also possible that
a station is visited by more than one vehicle. Just
like the 1-PDTSP, Raviv et al.”® define another
variable y;j, which indicates the number of cycles
carried by vehicle v while traversing arc (i, j).
These are linked to the x;j, variables in a manner
similar to (26) as shown below

0<yjy <Quxijy Y(i,j)eAveV (30)

where Q, is the capacity of vehicle v. Two new
decision variables Zit and z;, are introduced which
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represent the number of bikes added and removed
by vehicle v at station i respectively. Hence, we
may write g;=ri—s; = ,cy(z;, — z;;) and
flow conservation of bicycles (25) can be recast as

Z)’i]’v - Z)’hiv =z, —z, VieNyveV
JeN heN
(31)

Assuming that we need not meet the desired
inventory level exactly (i.e., we need not clear
the excess or deficits), the following sets of con-
straints on the z variables follow naturally.

Y z,<n  VieN (32)
veV
Zz;fq—n VieN (33)
veV
S(a-m)=0 vvev (34)
ieN

Subtour elimination constraints for each vehicle
were described in the form proposed by Miller
et al.”® as shown in (35) using an additional con-
tinuous decision variable w;, and a sufficient large
number M.

Wiy — Wiy +M1A - xijv) >1

VieN,je N\{0},veV (35)
The complete formulation is shown below.
min Zf(s,) + o Z Cij injv (36)

ieN (ij)eA veV

s.t. (28) — (35)

Xy € {0, 1}, y55 > 0 V(i,j)eAveV

(37)
z,zm €Ly YieN,veV (38)
Wiy, >0 VieN,veV (39)

where f(s;) is a penalty function for reaching
an inventory level s; at station i. In addition, the
authors also impose a constraint on the maxi-
mum duration of operations assuming a fixed
loading and unloading time per bike. Note that
the formulation assumes that bikes can be picked
up at stations with excess and dropped off at
places where there is a deficit, but stations can-
not be used as buffers. This assumption is also
referred to as the monotonicity condition for fill
levels®. The time-indexed and sequence-indexed
formulations in® further relaxed some of these
model assumptions by dividing the time avail-
able into smaller intervals and allowed vehicles
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to revisit stations. Models in literature also allow
exchanging bikes between vehicles.

The optimization program by Raviv et al.”’
has been a starting point for many MILP formu-
lations in static repositioning research. For
instance, instead of penalty functions, Erdogan
et al.”’ use pre-determined inventory levels and
Schuijbroek et al.!” use the bounds obtained from
equations (18) and (19) as extra constraints. Oth-
ers have included service times and unloading
and loading costs as part of the objective.”>**
Most MILP models, however, tend to be compu-
tationally intractable for large problem instances.
To address these issues, solution methods such as
branch-and-cut;”>'® heuristics such as cluster-
first-route-second which solves the multiple vehi-
cle problem using single vehicle problems;'”!"!
and metaheuristics such as tabu search'® have
been proposed. A summary of the papers that
address static rebalancing is presented in Table 4.
Almost all of them use integer programming
methods and hence integrality constraints have
not been explicitly mentioned in the table.

4.2 Dynamic Repositioning

While static repositioning helps reset a BSS to a
state with ideal inventory levels, it can perform
poorly when the spatio-temporal demand pat-
terns exhibit high variance. It also cannot han-
dle non-recurring forms of demand fluctuations
such as those due to weather, special events, etc.
In such situations, a BSS operator must reposi-
tion bicycles during the day and in real-time to
match supply and demand. Hence, this opera-
tion is more challenging to carry out than its
static counterpart. Unlike in Fig. 6, repositioning
and forecasting periods of dynamic repositioning
procedures overlap.

Two approaches are popular in literature on
dynamic repositioning. The first divides the oper-
ating period into a finite number of time steps
and assumes perfect knowledge of time-varying
demand. This allows us to extend the static repo-
sitioning formulations to determine the number
of cycles to be moved between stations and the
vehicle routes at each time step. For example,
Ghosh et al.'”® formulated a dynamic reposition-
ing model in which the goal was to reduce the
lost customer demand. To understand their for-
mulation, assume that N, A, and T are the set of
nodes, arcs, and time steps respectively and let xfjv
be a binary variable which is 1 if a vehicle v starts
to move between stations i and j at time step .
Define another binary variable x/, which captures
initial conditions by taking a value 1 if vehicle v

@ Springer jﬁ%g?&

Branch-and-cut: is solution
method which combines
branch-and-bound with a
cutting plane method for im-
proving the linear program-
ming relaxation solutions at
the nodes of the search tree.

Metaheuristics: are generic
higher-level heuristic proce-
dures that can be applied to
a wide range of optimiza-
tion problems. They have
been successfully applied in
transportation logistics to
find approximate solutions.
Examples include genetic
algorithms, simulated anneal-
ing, and tabu search.
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is at station i at time £ = 0 and is O for all other
times. That is, vehicles are not required to be pre-
sent at the depot at the start of the rebalancing
procedure. Additionally, it is assumed that vehi-
cles can travel between a pair of stations within
one-time step. This assumption is reasonable if
the duration of each time step is large. If not, the
underlying graph can be modified by creating
dummy nodes and arcs. Just like the static case,
flow conservation constraints (28) and (29) can
equivalently be written as

fo thw =%, VieNveV,teT
jEN heN

(40)
> ) xh,<1 VieNteT (41)

jeN veV

Constraint (40) equates the number of vehi-
cles coming into station i to the number going
out of i. Inequality (41) restricts the number of
vehicles that can be present at a station to avoid
overcrowding.

Extending other notation in a similar man-
ner, let { be the inventory level of bikes at station
i at time £ and let z;* and z;,* be the number of
bicycles added and removed by a vehicle v at sta-
tion i at time ¢ respectively. Denote using u” the
number of bicycles trips made by customers from
station i at time step t to station j at time ¢ + ¢’.
(Customers take different times to travel between
stations, but vehicles are assumed to take one
time step.) Flow conservation of bicycles can thus
be expressed as

T D i S e

t'<t heN t'>t jeN
+t —t
+ Z (Ziv —Zjy ) (42)
v
=rVieN,teT

If y% is the number of bicycles present in vehicle
v at time step ¢, the flow balance of bicycles from
and into each vehicle is ensured by imposing con-
straint (43).

t+1_yv+z( —t

ieN

ztt>\7’te T,veV

(43)

Let the demand at time ¢ for travelling between
station i and station j in ¢’ time steps be dfjt/. The
actual number of customer trips starting from a
station at each time step should not exceed the
number of bicycles present in the station at that
time. When the demand at a station is greater
than its supply, bounds on rentals to destinations

@ Springer :@@P&iﬁ

are assumed to be proportional to the demand to
those stations.
Mathematically, this is modelled using (44).

tt
ut <ri'—Y _VieN,jeNteT,t' eT

(44)

The actual flow of bicycles between the stations
must also be less than or equal to the demand.
Further, for each station i, the inventory level
must not exceed the station capacity C;. These
conditions are implied in constraints (45) and
(46).

o§u§j <d“ VieN,jeN,teT,t' eT
(45)

0<ri<C VieNiteT (46)

As before, let Q, denote the capacity of vehicle v.
A vehicle can be loaded or unloaded at a station
only when present at that station. These observa-
tions are ensured using (47) and (438).

'z, <Q)) «f, VieNteT,veV
jeN

(47)

0<z!z.5y,<Q VieNteTveV
(48)

Let b% be the revenue generated from one bicy-
cle trip that departs from station 7 at  and reaches
station j at time £ 4 ¢’ and ¢;; be the vehicle cost of
traversing (i, 7). With these constraints, objective
(49) is maximized to improve the overall profit
which includes the revenue generated from all
bicycle trips and the total routing cost of reposi-

tioning vehicles.
LEDID DI D IEDIPIE ¥

(ij)eA teT t'>t (ij)eA veV teT
(49)
12:00 14:00 16:00

10:00 13:00 15:00 17:00 19:00

Time window 1 E
1
Time window 2

Time window 8

Time window 4

Figure 8: Rolling horizon method for dynamic

bicycle repositioning. (Source: Zhang et al. ).
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The MILP model is NP-hard and hence does
not scale well with the problem size. To tackle
this issue, Ghosh et al.'®® proposed a Lagrangian
Dual Decomposition (LDD) approach in which
the original problem is decomposed into a mas-
ter problem and two slaves (one for repositioning
and the other for routing).

Since the repositioning variables z and the
routing variables x in constraint (47) are coupled,
it is relaxed by introducing dual variables /. The
Lagrangian function £(«) can thus be written as

min { Z Z Z o, (2 +2,f)

ieNveV teT

IS )

(ij)eA teT t'>t

+ min { YD - Qvafmf,v}
(ij)eAveV teT

The first component of (50) only involves repo-
sitioning and the second component is related to
vehicle routing. For a given «, these slaves are sep-
arately solved and the o vector is updated using
a sub-gradient descent method for the master
problem max, > L£(). To speed up computation,
an additional clustering approach was used to
create abstract stations and the proposed method
was tested on CaBi and Hubway data sets. Com-
parison with other benchmark solutions showed
a reduction in lost demand.

The formulation discussed so far was extended
to stochastic demand settings using a robust opti-
mization approach.'?! In this framework, the BSS
operator and the users/environment were viewed
as players in a two-player game. At each iteration,
the environment generates a demand scenario
which maximizes the lost demand considering
the repositioning strategy of the operator. The
operator reacts by proposing a new repositioning
strategy that minimizes the lost demand consid-
ering the worst demand scenario presented by the
environment and the process is continued until
both objectives converge.

The second popular approach for dynamic
repositioning is to use rolling horizon models in
which the overall problem is broken down into
multiple dynamic rebalancing problems. The
observed demand in each time interval is used to
update forecasts for the next interval and rebal-
ancing decisions are recomputed.'>!'?? For exam-
ple, in the set up shown in Fig. 8, using forecasts
of demand between 10:00 and 13:00, a reposition-
ing strategy is first constructed for the roll period
which, for time period 1, begins at 10:00 and ends
at 12:00. At 12:00, a new repositioning strategy is

@ Springer i’?}}%&?&

obtained from updated demand forecasts for the
interval 12:00 to 15:00 and the process continues
till the end of the time horizon. This method has
a greater practical applicability since it can react
to current conditions by adjusting the initial con-
ditions for each roll period.

A few other models which addresses the
dynamic rebalancing problem are summarized in
Table 5.

4.3 Offline and Online Repositioning
Some authors have also classified repositioning
activities as offline and online methods. Offline
algorithms assume perfect knowledge of input
data and do not react to changing system states.
Hence, they can be both static and dynamic.
When applied in a dynamic setting (see 23125103
for example), one can view offline methods as
open-loop control measures. They are suitable
in situations with stable demand patterns. How-
ever, if the demand exhibits high variance or if
there is supply-side uncertainty due to traffic,
weather, broken bikes, etc., the recommended
solutions may be infeasible since re-optimiza-
tion is not done in such methods. It can, how-
ever, be used to compute value-of-information
benchmarks by determining how well the system
could be operated in retrospect, using data on the
events that occurred. In that way, dynamic offline
algorithms are still useful compared to static
repositioning methods.

Online methods on the other hand can react
to the current inventory level and potentially
other external factors such as the day of the week,
temperature, and precipitation.'*> Most online
methods in the literature are posed using a roll-
ing horizon'*'** or a Markov decision process
(MDP) and reinforcement learning (RL) frame-
work.?>13* MDPs prescribe the sequence of
actions to be taken at different system states by
considering the rewards/costs incurred for vari-
ous state-action pairs and the stochastic nature of
transitions between states after an action is taken.
In the context of bike repositioning, states typi-
cally comprise of inventory levels and locations
of repositioning vehicles and their contents. State
transitions may occur when customers pick up or
drop off bicycles or when vehicles remove or add
cycles to stations.

Transition probabilities depend on the arrival
processes of customers and the time it takes for
vehicles and cycles to move between stations.
Owing to large state and action spaces, the opti-
mal policies to these problems are solved using
RL, particularly off-policy RL methods. In these
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methods, the optimal policy is learnt using a sim-
ulator which generates demand data after train-
ing it on a real-world dataset. This procedure is
done offline (not to be confused with the earlier
description of offline repositioning methods) and
a near-optimal policy is generated in the form of
a look-up table that prescribes the action to take
in each state. Using this policy, one could imple-
ment the suggested actions, in the field, in an
online manner.

An MDP model proposed by Legros'”
attempted to minimize the long-run rate of
unmet demand. Suppose that 7} and T2 represent
the expected arrival rate of customers who are
not able to rent and return a bike at station 7 up
to time f respectively. Also let ¢} and ¢? be the unit
costs incurred by the operator due to the non-
availability of bikes and docks at station i respec-
tively. Then, the objective was written as

mn{ i S @riedzn} e
ieN

The time-varying nature of arrival processes was
modelled by dividing the time horizon into inter-
vals within which the parameters of the random
processes could be assumed constant. Next, a
rebalancing problem for a single station was cast
as an average cost MDP and was extended to the
multi-station case using approximate relative
value functions and policy improvement steps.

A spatio-temporal RL approach was used in'*
for online repositioning of bikes in a BSS with an
objective to minimize lost demand. To reduce the
problem complexity, a clustering algorithm was
used to group stations and multiple trikes (repo-
sitioning tricycles which typically carry 3—4 bikes)
were used within each cluster. A deep neural net-
work was used to learn the optimal value func-
tions and the model was tested on real-world Citi
Bike data. Another MDP model was proposed
in'** to solve the dynamic repositioning problem
with a similar objective. A coordinated lookahead
policy heuristic was used to address the curse of
dimensionality. The resulting policy was tested on
data sets from BSSs in Minneapolis and San Fran-
cisco, US and was shown to perform better than
benchmark policies in reducing lost demand.

Online problems have also been formulated
as multi-stage stochastic programs.'*® This model
extends'” by considering demand scenarios
drawn from known distributions that are con-
structed from data. They proposed a sample aver-
age approximation which was solved using a LDD
method and a greedy online anticipatory heuris-
tic on CaBi and Hubway problem instances.
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4.4 Incentivizing Users

Apart from using vehicles and bike-trailers to
rebalance a BSS, operators can provide incentives
to customers and influence them to pick up or
drop off bikes at desired stations to avoid stations
from becoming empty or full. Incentive design
may be ideal if it is cheaper than deploying repo-
sitioning vehicles but is relatively difficult since
user behaviour can be unpredictable. Researchers
have presented different models to address this
problem.

A deep RL framework was proposed in™”’ to
rebalance dockless BSSs. The problem was mod-
elled as an MDP in which the actions at each
time step are the prices for renting bikes in dif-
ferent regions of the network. A policy gradient
approach was used to develop a novel hierarchi-
cal reinforcement pricing (HRP) algorithm, the
objective of which was to maximize the total
number of satisfied customers with a limited
rebalancing budget. Experiments for HRP were
conducted based on datasets from Mobike.

A two-choice model and a mean-field approx-
imation was proposed in'*® for incentivizing
users to rebalance a homogeneous BSS in which
unmet pickup demands are assumed lost. Users
are requested to provide two nearest destination
stations and they are incentivized to return their
bicycles to the station with lower inventory. It was
found that this incentivizing scheme improved
the redistribution rate significantly, even when a
small fraction of users complied.

Another approach was developed by Pfrom-
mer et al.'* to rebalance a BSS using vehicle-based
redistribution and user-based price incentives.
Their model predictive control algorithm com-
puted dynamic rewards depending on the current
and predicted future system states to optimize
the operating costs while ensuring a desired ser-
vice quality. A Monte Carlo model was formu-
lated using historical data from the London Cycle
Hiring and results showed that on weekends, the
incentive scheme alone could improve the service
level. On weekdays, however, price incentives were
found to be insufficient for achieving the desired
service level, especially during rush-hours.

A bilevel optimization formulation was pre-
sented in'* where link-level incentives/prices
are decided at the upper level to minimize the
number of imbalanced stations. The lower level
assigns users to routes and destinations assum-
ing that they take the minimum cost paths. The
proposed method attempted to create hubs in
the system through which most of the demand is
routed and ensured that only a small number of
vehicles are deployed for further repositioning. A

137 t

@ Springer jﬁ%g?&

Curse of dimensionality: is a
term coined by Richard Bell-

man to describe the complex-
ity of dynamic programs that
result from high-dimensional
state, action, and disturbance

spaces.
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heuristic approach named iterative price adjust-
ment scheme was used to solve the problem.

A different kind of incentive mechanism
design problem was proposed in'*’ where reposi-
tioning activity was crowd sourced. Their model
first determines all repositioning tasks and inter-
ested customers could bid for carrying out these
tasks using bike trailers. Instead of bids," pro-
posed a dynamic incentive scheme in which the
system offers its users incentives to change their
pickup or dropoff location using a finite set of
possible prices (subject to an overall budget con-
straint) and observes binary acceptance/rejection
decisions. An online learning mechanism varies
these prices across time and customers and using
their acceptance/rejection decisions, a cost curve
F(p) representing the probability of accepting an
alternate station when offered a price incentive
p is discovered. The proposed mechanism was
deployed for one month on a real-world BSS,
MVGmeinRad, in Europe. Rental requests were
made on a smart phone app with information on
intended pickup and dropoff stations. About 60
percent of the offered incentives were accepted by
users during the pilot implementation.

5 Technological Aspects

BSSs are going through a transformative phase
in which technological advancements to improve
existing systems are constantly being tested and
deployed. For instance, a study by Woodcock
et al.'"*! uses secondary data sources to estimate
the disabled-life adjusted years (DALY) of BSS
users in London by considering levels of air pol-
lution and traffic injuries. With modern day tech-
nology, it is possible to track bicycle activity of
registered members and the health impacts can
be more accurately captured and relayed to users
via their apps in real-time. In this section, we
examine potential future improvements to BSSs
and discuss related research issues.

5.1 Electric Bikes

Electric bicycles that use rechargeable batteries
and a motor to assist pedalling have the potential
to replace traditional bikes of a BSS. These offer
greater ease of cycling especially in cities with
uneven terrains and can support long-distance
trips. In January 2018, Limebike (currently known
as Lime) unveiled a pedal-assisted electric bicy-
cle’*? which was made operational in cities like
Seattle, Miami, and San Francisco in the US. Cur-
rently, E-bikes of Lime and JumpBike are opera-
tional in many cities across the globe.

@ Springer i’?}}%&?&

Use of E-bikes in a BSS brings with it a new set
of problems. First, the demand for E-bikes may be
very different from that of traditional BSSs since
factors such as age, gender, trip purposes, and
destinations influence the adoption of these sys-
tems. When compared with regular bikes, E-bikes
may also attract a significant portion of travel-
lers using other motorized forms of transport.
Demand forecasts for E-bikes can be obtained
using stated preference surveys'*> and other
methods as explained in Sect. 3. For instance,'*
use a multinomial logit model on data collected
from a survey in Beijing to analyse the impact of
socio-demographic factors, environmental condi-
tions, and transit supply on E-bike usage.

Second, E-bike batteries need to be recharged
which, depending on the vehicle design, can be
done at the stations or using solar energy.'*’
Hence, there are other dimensions to station loca-
tion such as connection with the grid and the
amount of daylight received. Stochastic demand
results in fluctuations in charging patterns and
this needs to be considered when designing a
low voltage grid network of bike stations with
recharging capabilities.'*® E-bikes can also be
recharged by swapping batteries."*’ The move-
ment of charged batteries and the swapping
activities can also be modelled as a logistical
optimization problem. For instance,'*® generated
different demand scenarios using Poisson distri-
butions and determined the number of E-bikes
and batteries to be placed at different stations
using Monte Carlo simulations. A pilot experi-
ment was also run at the University of Tennessee,
Knoxville campus, where E-bikes powered by Li-
ion batteries were deployed.

5.2 Locking Mechanisms

Cycles in a BSS are prone to theft which neces-
sitates the use of foolproof locking mechanisms.
Most BSS operators provide keyless locks on their
bicycles. For example, Ofo used a number lock
system in the early stages and later adopted a bar/
QR code. Mobike also uses a smart lock mecha-
nism which can be unlocked using a mobile
app.'* Even though GPRS-based smart locks
are in use, network connectivity issues are not
uncommon. To address this problem, a narrow
band Internet of Things (NBIoT)-based smart
bike locks are being developed.'*® Other options
include bluetooth low energy (BLE) powered
smart locks'>' and electromechanical locking sys-
tem for E-bikes (which can also verify if the bicy-
cle was returned to a dock).'*
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5.3 Impact of Pricing Schemes

One of the major challenges of BSS operators is to
draw more customers to use their services. User
satisfaction is not only dependent on the spatial
location of stations and the availability of bikes
or empty docks, but also on the pricing scheme.
Low rental fares can increase ridership but also
reduces revenue. Revenue also decreases when the
cost of rentals is high since the demand for bike-
sharing will drop in such situations. In this con-
text, some studies have focused on understanding
the optimal pricing policy and the sensitivity of
users to BSS pricing.

In June 2016, CaBi introduced a single-trip
fare (STF) scheme to allow customers to take
a trip up to 30 min for $2. The timing of this
scheme coincided with a SafeTrack metro rail
maintenance program because of which an
increase in bike rentals was anticipated and the
number of docks was increased by about 23%.
Before STF, CaBi also had a 24-h pass and a 3-day
pass, priced at $8 and $17 respectively, for unlim-
ited trips less than 30 min. It also had monthly
and annual subscription passes that cost $28 and
$85. The presence of different options allowed'*
to study the impact of the price differences on
the ridership across price classes. They found
that rentals by casual users rose to about 79% per
dock but there was not much change in the rid-
ership of those with monthly and annual passes.
It was also found that there was a decrease in the
revenue generated from users having a 24-h pass
and a 3-day pass, indicating that some of them
started to shift to the STF scheme.

The price sensitivities were further analysed
in'>? where STF was decreased from $2 to $1.50
and annual membership changed from $85 to
$73. This new pricing scheme improved both rev-
enue and ridership. Further analysis was made
using an ordered logit regression model which
suggested that low-income groups were relatively
more sensitive to price changes and women were
about 30% more price sensitive than men in the
case of the STF pricing scheme.

Although changes to pricing structure in BSSs
are usually infrequent, such opportunities can
be put to good use to infer the effect of prices on
revenue and ridership.

5.4 Periodic Bike Maintenance

Another crucial problem in the operation of a
BSS is to identify broken or faulty bicycles that
need repair.”* Bicycles typically face issues with
tyre punctures, broken chains, and braking sys-
tems.'*® In addition, GPS devices, locks, and dock
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slots at stations could also malfunction. These
problems warrant periodic maintenance of bicy-
cles and the BSS infrastructure. Operators often
allow users to report issues with their rented bicy-
cles using mobile apps. This information can be
used to deploy maintenance vehicles and crew to
repair faulty cycles at bike stations or to take bro-
ken bikes to dedicated repair stations. Decisions
support tools for locating repair stations and
routing of maintenance crew can be built using
optimization models and these operations can be
combined with repositioning.!*® BSS operators
must, from time to time, perform a cost benefit
analysis to decide if bicycles must be discarded or
repaired and reintroduced into the fleet.'>> Some
of the latest bicycles are equipped with tyreless
tubes, disk brakes, and chainless drive shaft all of
which can drastically reduce the frequency and
extent of maintenance required for the upkeep of
a BSS.

6 Conclusions

The growth of bike sharing systems has spurred
considerable research, especially in the last dec-
ade, on problems related to its planning and
operations. BSSs have the potential to transform
into a competitive transportation mode in many
cities around the world. It has a positive effect on
the environment and the health of individuals
and can also serve as a cost-effective intermediate
public transportation mode to address last- and
first-mile issues that plague most transit systems.
In this paper, we reviewed the history of BSSs and
literature on various mathematical models that
can help planners and operators design, improve,
and optimize new or existing BSSs. We also briefly
examined the effects of pricing schemes, techno-
logical aspects such as E-bikes, and the mainte-
nance challenges posed by the broken bicycles.

Specifically, we examined literature on stra-
tegic and operational planning models. Strate-
gic planning involves forecasting the demand
for BSSs, designing stations and bike paths, and
determining dock capacity. Potential directions
for future research on route design must consider
the effects of elastic demand induced by supply-
side changes, automobile congestion on route
choices of travellers, multi-modal trip making
behaviour and transit connectivity, and socio-
economic characteristics of demand between dif-
ferent zones.

When designing station locations and capaci-
ties, most studies assume knowledge of demand
which lacks spatio-temporal complexity. Diurnal
patterns of travel are known to cause a reversal
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of origins and destinations between the morning
and evening peak periods. While these effects have
been widely studied in the context of rebalancing,
they do play a major role in station location and
capacity allocation as well. Stylized versions of spa-
tio-temporal variation in demand, time to travel
between stations, and relocation strategies must be
used to make these decisions at a strategic level.

Our synthesis of literature on operational
aspects of BSSs predominantly included static and
dynamic repositioning. Static repositioning mod-
els assume that bikes are redistributed at night
when bike usage is negligible. Dynamic reposi-
tioning operations on the other hand are carried
out during the day when the system is in use.
Models for rebalancing consider single or multi-
ple vehicles/bike-trailers which can make single or
multiple visits to stations and can also feature user
incentives. Many of these formulations were tested
on real-world data sets and were found to improve
the operational efficiency when compared to a
do-nothing policy. However, supply-demand
interactions are modelled only to a limited extent
in existing literature. Although, econometric and
machine learning models have been found to
uncover influential factors and have good pre-
dictive power for short- and long-term demand,
embedding them within optimization frameworks
for managing supply is an uphill task. A right bal-
ance between predictive demand models and sup-
ply optimization is much needed for data-driven
tools that can practically be used for BSSs.
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