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Modelling Methods for Planning and Operation 
of Bike‑Sharing Systems

1 Introduction
Automobile usage is on the rise in many parts of 
the world and cities are actively promoting eco-
friendly transportation solutions to reduce traffic 
congestion and emissions. Bike-sharing systems 
(BSSs) is one such alternative which can not only 
serve short-distance trips, but can also enhance 
connectivity to public transportation networks. 
In a BSS, customers can pick up and drop off 
cycles at specific locations or anywhere in the 
city depending on the type of bikes in the system, 
locking technology, and payment mechanisms. 
Most of the current generation BSSs are either 
free-floating or station-based (Fig. 1). Station-
based BSSs may use both docked or geo-fenced 
dockless bikes. A few examples of BSSs include 
Capital Bikeshare (CaBi) in Washington, D.C., 
Citi Bike in New York, Blue Bikes in Boston, and 
Vélib’ in Paris. 

Like any other transportation system, plan-
ning and operation of BSSs require understand-
ing the spatio-temporal demand for cycles in a 
city. Demand can either be inferred from exten-
sive surveys or past data on traveller move-
ments.3,4. This knowledge of demand can drive 
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decisions on building dedicated bike lanes, setting 
up base stations,5 and choosing between pay-per-
use and subscription-type services. Supply-side 
aspects can also in turn influence demand. For 
example, dedicated bike lanes make bike travel 
safer and has the potential to increase BSS 
usage.6–8

For station-based BSSs, it is important to 
determine the capacity of each station and dis-
tribute the fleet across stations, although these 
decisions can also be made at an operational 
level.9–11 Within-day stochasticity in travel pat-
terns often leads to imbalances in the availability 
of bikes and parking spots. Having stations that 
are full or empty can affect ridership and render 
the system ineffective. To address these situa-
tions, cycles are often repositioned from one sta-
tion to another using trucks12 or by providing 
price incentives to users for dropping off bikes at 
nearby high-demand locations.13

When bikes are repositioned using motor 
vehicles, one must decide how many cycles to 
move between stations and also determine opti-
mal vehicle routes. Repositioning done dur-
ing the day, in real-time, is classified as dynamic 
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rebalancing,14,15 while that carried out at the end 
of a day, when the system is inactive, is called 
static rebalancing.12,16,17 Periodic maintenance of 
bikes, vandalism, and theft are some other com-
mon problems faced by a service provider of a 
BSS.

The rest of this review article is structured as 
follows. In Sect. 2, we discuss the history of BSSs 
and motivate the need for developing decision 
support tools for studying planning and opera-
tional problems associated with BSSs. In Sect. 3, 
we discuss research on some of the strategic prob-
lems such as bike-lane design, station locations, 
and dock size selection. Section 4 details various 
repositioning mechanisms that can be used when 
operating a BSS. Technological aspects and some 
emerging phenomena are addressed in Sect. 5 
and the conclusions of this study are presented in 
Sect. 6.

2  Background and History
The first BSS started in Amsterdam in 1965 
(White bicycle plan) with just fifty bicycles.18 
However, a month later, all bikes were either sto-
len or dumped into canals. The white bicycle plan 
was a first-generation BSS in which bikes were 
free to use. Other first-generation BSS examples 
include Vélos Jaunes in La Rochelle, France (1974) 
and Green Bike Scheme in Cambridge, UK (1993). 

Since then, BSSs have undergone many changes. 
An infographic of the historical development of 
BSSs through the years is shown in Fig. 2. The 
second generation of BSS saw the advent of coin 
deposit stations in which rides were free, but cus-
tomers had to insert coins into a slot to unlock 
bikes and could retrieve them once the bikes were 
returned. The first coin deposit bike program 
called Bycyklen started in Copenhagen in 1991.19 
In 1995, it also became the first large-scale BSS 
with around 1,100 bikes. This system was still vul-
nerable to theft due to anonymity of users. The 
use of automated docked stations with registered 
customers marked the beginning of the third gen-
eration of BSSs. This greatly reduced vandalism 
and theft issues associated with the previous gen-
erations of BSSs. Such a system first appeared in 
Portsmouth University, England (1996) and stu-
dents had to pay for membership and bikes could 
be rented using a magnetic card. Other examples 
of third generation BSSs include  LE Vélo STAR 

in Rennes (1998), Bicing in Barcelona (2007), 
Cycle Hire in London (2010), and Citi Bike in 
New York (2013). The fourth-generation bikes 
came into existence in 2005 with the Vélo’v pro-
gram in France. This system was operated by an 
advertising firm JCDecaux and was equipped 
with smart bikes that could be accessed using a 
mobile app. The smart technology-based system 
provided real-time information on bike availabil-
ity.19,25 Most BSSs in the recent past belong to the 
fifth generation in which dockless bikes are used 
in a free-floating or station-based set up. These 
systems have lower setup costs and hence have 
grown rapidly in many cities.

By December 2016, about a thousand cities in 
the world had a bike-sharing program.26 Mobike, 
a dockless BSS, is the world’s largest bike-sharing 
operator. As of 2018, Mobike operated in over 19 
countries and 200 cities.27 One of the large-scale 

Figure 1: Docked BSS: Capital Bikeshare, US 1 
(left) and Dockless BSS: Mobike, China2 (right).

Figure 2: Generations of BSSs. (Source: Midgley18, Chen et al.19; Picture source:20–24).
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station-based BSSs is the Hangzhou Public Bicycle 
System in China, which comprises of 2,965 sta-
tions and approximately 69,750 bicycles,28, with 
plans to expand to 175,000 bicycles by 2020.29 
Bike-sharing programs have grown exponen-
tially in the last decade, particularly in Asia. For 
instance, thirteen of the world’s fifteen largest 
BSSs are in China.30

Although BSSs have been encouraged by pub-
lic agencies and users around the world, service 
providers such as Mobike, Ofo, and Pedl had to 
shut down operations in many cities due to high 
maintenance costs, low profits, theft, and vandal-
ism.31–33 Some of the new technologies like global 
positioning system (GPS), anti-theft alerts, and 
high-tech handlebars introduced in the fourth 
and fifth generation dockless bicycles have the 
potential to address these issues to a certain 
extent.34,35

Also, cycling is not perceived as a safe com-
mute mode, especially in mixed traffic, and the 
lack of dedicated bike lanes in most places proves 
to be a major hurdle for the success of BSSs. Fur-
ther, while BSSs work well in controlled environ-
ments such as office and university campuses, 
scaling them to a city level can be extremely 
challenging especially for dockless free-floating 
systems. Often, bikes are left at remote locations 
where there is no demand, and this affects the uti-
lization rates of cycles. As bicycles are fairly inex-
pensive, service providers tend to add more bikes 
to the system as a knee-jerk reaction, but the 
oversupply of bikes has resulted in many aban-
doned and broken bicycles, especially in China 
(see Fig. 3). These observations strongly motivate 
the need for planning and operating BSSs in an 
efficient manner.

3  Strategic Planning
Strategic planning problems in the context of 
a BSS typically involve designing the bike path 
network and determining the number and loca-
tions of bike stations. These decisions must con-
sider construction costs, the effect of terrain, 
customer service level (which can be measured 
by the coverage level, bicycle availability, and user 
out-of-pocket costs), and the impact on existing 
automobile traffic. For instance, station location 
decisions must make sure that cycles are at a con-
venient walking distance (roughly 300–500 m) 
from the actual trip origins and destinations.37 
Geographical factors are crucial not only for bike 
lane design, but also for locating bike stations. For 
example, in Brisbane, it was observed that City-
Cycle users avoid returning bicycles to higher-ele-
vation stations.38 Stations must also be designed 
such that there is enough curb-side space to 
account for surges in pickups and dropoffs.

A key input to these decisions is the knowl-
edge of demand for bike sharing, which can be 
estimated using census data,39 stated-preference 
surveys, and by observing the travel patterns of 
commuters who might potentially shift from 
other modes to cycling.40 BSS planners must 
allocate bicycles at different stations in a man-
ner that is consistent with the actual demand of 
customers. Most studies in literature focus on 
understanding demand patterns after a BSS sys-
tem is in place. For example, statistical regression-
based forecasting and time-series methods can 
be used to predict the spatio-temporal activity 
of users. These have been successfully demon-
strated using data from Bicing in Barcelona41,42 
and Vélo’v in Lyon. 3,4 Others have used a data 
mining approach43 to cluster BSS stations accord-
ing to the rate of bike pickups and dropoffs using 
Citybike Wien data from Vienna. Clustering 
methods were also used to identify ‘similar’ sta-
tions for analysing the system before and after a 
policy change.44 Demand prediction for existing 
BSSs was also successfully done using machine 
learning and artificial intelligence methods by 
learning customer behaviour from observed data 
and using it for prediction.45–49,50 However, these 
predictions are yet to be fully exploited in exist-
ing research on operational planning that we will 
discuss in Sect. 4.

Customer demand in existing BSSs is heavily 
influenced by supply, and literature on demand 
forecasting before a BSS is planned remains sparse. 
Traditional demand models involving trip genera-
tions and distribution were extended to bicycling 
by Turner51 and Landis52. A few researchers have 
proposed GIS-based methods that can provide 

Figure 3: Roadside dumping of bicycles in Xia‑
men, Fujian province, Chinan (Source: Alan36).
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macro-level bicycle demand using socio-demo-
graphic and geographical attributes.53–55 Using 
daily trips by different modes and stated prefer-
ence surveys that provided mode shift propensi-
ties,40 forecasted the bike trips for Philadelphia, US 
assuming three different levels of system usage. In 
the absence of elaborate travel demand models or 
surveys, studies that understand factors influenc-
ing bike trips can be transferred to other cities for 
predicting demand.56 For example, Faghih-Imani 
et al.57 analyses the role of factors such as popu-
lation density, accessibility, points of interest, and 
supply-side features such as the number of stations 
per unit area and capacity on bicylce trip gen-
eration and attractions. Data from Barcelona and 
Seville, Spain were used in this work to estimate 
model parameters using a restricted maximum 
likelihood approach. In another work, Singhvi 
et al.58 uses taxi data from New York City, US along 
with population information to build regression 
models that predict bicycle usage. Other predictors 
that have been found to significantly influence bike 
demand are weather59 and seasons60.

Bicycle trips may also be used for first- and 
last-mile access to transit systems. In such cases, 
transit ridership and accessibility must be fac-
tored in when estimating the demand for a BSS. 
In the next subsections, we discuss a few math-
ematical models that have tried to incorporate 
the integrated effects of various input parameters 
in the design of a BSS. For better readability, we 
have altered the notation from the original papers 
at several places to describe similar variables and 
parameters wherever possible.

3.1  Route Design
Researchers have addressed the bike network 
design problem in multiple ways using different 
objectives and assumptions. For example,61 for-
mulated models that connect origin-destination 
(OD) pairs with bike paths while minimizing 
total cost and meeting a specified bicycling level 
of service. The framework considers a network 
G = (R, S) , where R is the set of intersections 
and S is the set of roads. Each roadway segment 
has an associated cost cij to make it cyclable. The 
cost associated with improving each intersection 
is di . Decision variable δij is 1 if roadway segment 
(i, j) ∈ S is improved and is 0 otherwise. Similarly, 
γi is 1 if intersection i ∈ R is improved and is 0 
otherwise. The objective can thus be mathemati-
cally expressed as follows.

Branch-and-bound: is an 
enumeration technique for in-
teger optimization problems 
in which the feasible region is 
iteratively decomposed into 
smaller sets and bounds are 
estimated to prune certain 
search directions.

(1)min

(

∑

(i,j)∈S

cijδij +
∑

i∈R

diγi

)

Their formulation included flow-balance 
constraints, connectivity constraints for every 
OD pair, a constraint that limits the path length 
beyond which users will not cycle, constraints 
that ensure a suitable level of service, and con-
straints that select intersections belonging to 
a chosen path. Extensions in which these con-
straints are reformulated to speed up computa-
tion were also proposed. The model was solved 
using a branch-and-bound method for small 
problem instances and the authors studied the 
effect of the level of service and the number of 
OD pairs on the total cost.

Others have formulated bi-level programs for 
the bike route design problem.62 At the upper 
level, benefits to cars and cyclists were considered, 
and at the lower level, an assignment model for 
bikes and automobile traffic was optimized. A 
genetic algorithm was used to solve the bi-level 
formulation on medium-sized examples using a 
special crossover and mutation technique. 
Another optimization framework was proposed 
by Mauttone et al.63 in which the roadway net-
work could have sections with no cycling infra-
structure and the total number of discontinuities 
in bike paths was minimized. A mixed-integer 
multi-commodity flow problem was proposed, 
and a metaheuristic was used to handle large 
problem instances, including a test case from the 
city of Montevideo, Uruguay. The optimal bike 
path design was also addressed in64 to separate 
bicyclists from motorized vehicles for an existing 
transportation network. The objective was to 
maximize the cyclists’ utilities assuming that their 
route choices could be modelled using a path-size 
logit framework. The problem was formulated as 
a mixed-integer linear program (MILP) and 
tested on the Sioux Falls and Anaheim, US net-
works using a global solver and a metaheuristic.

While previously mentioned studies consid-
ered a single objective function, Zhu and Zhu 
65 formulated a multi-objective function that 
comprised of accessibility, bicycle level of ser-
vice, number of intersections, and the construc-
tion cost. (Since intersections pose safety risk for 
bicyclists, they are assumed to prefer connected 
bikeway networks over fragmented ones.66,67). 
Accessibility was measured by not only consider-
ing the connectivity between the points of inter-
est, but by also considering the travel budget of 
commuters on the road. The problem was solved 
by an augmented ǫ-constraint method using 
hypothetical data from Jurong Lake District in 
Singapore. A few other route design models have 
been summarized in Table 1.

MILP: Mixed integer linear 
programs are optimization 
models in which the objective 
function and constraints are 
affine functions and some or 
all variables are integral.

Bi-level Programs: are 
optimization models in which 
two objective functions are 
optimized: one at the upper 
and another at the lower level. 
Upper level decisions affect 
the lower level constraints or 
objective.

Maximum likelihood: is 
a statistical procedure for 
estimating a distribution’s pa-
rameters in order to maximize 
the probability of observing 
the data.

Logit models: are a class of 
random-utility econometric 
models in which decision 
makers’ utilities are charac-
terized by a deterministic 
component and an error term 
which is Gumbel distributed.
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3.2  Facility Location
Research on station location selection is heavily 
influenced by the hub location73 and maximal 
covering problem.74 In the basic version of the 
single hub location problem, it is assumed that 
there are n nodes which act as both origins and 
destinations. The objective is to find the optimal 
hub location such that the cost of transporting 
demand between nodes via the hub is minimized. 
That is, the hub acts as a switch for all interactions 
in the network. Suppose that the flow between 
OD pair (i, j) is denoted by wij and cij represents 
the distance between nodes i and j. The optimal 
location of the hub q can be obtained by solving

Note that in the absence of set up costs, there is 
no requirement of a hub since,

is satisfied if triangle inequality is assumed. How-
ever, if K is the cost associated with setting up 
each inter-city route, a hub is needed if

The Kn term on the left-hand side of inequality 
(4) corresponds to the cost of connecting each of 
the n stations to the hub. On the other hand, if 
routes were to be built between each pair of sta-
tions without creating a hub, the construction 

(2)
min
q

∑

i

∑

j

wij

(

ciq + cqj
)

(3)

∑

i

∑

j

wijcij ≤
∑

i

∑

j

wij

(

ciq + cqj
)

(4)

∑

i

∑

j

wij

(

ciq + cqj
)

+ Kn

<
∑

i

∑

j

wijcij + K
n(n− 1)

2

cost would be Kn(n− 1)/2 , since 
(n
2

)

 arcs have to 
be built.

The bike station design problem is not exactly 
similar to this model since it involves a pick up 
and a drop off. Such scenarios resemble a two-
hub facility location problem.73 Suppose 1 and 
2 represent two hub locations and let ui be 1 if 
an origin or a destination i is serviced by hub 1 
and be set to 0 otherwise. Likewise, let vi be 1 if 
an origin or a destination i is serviced by hub 2 
and is 0 otherwise. Note that when a node can be 
served by both hubs, the one nearest to the node 
is assumed to serve the node and the binary vari-
able corresponding to the other hub is set to 0. 
The goal is to send the OD flows passing through 
both hubs. The hub locations are chosen such 
that the overall transportation cost is minimized.

The problem of locating multiple facilities 
is also widely addressed in the literature using a 
maximum covering model or a p-median prob-
lem.74–77 In the maximum covering model, the 
objective is to locate a fixed number of facilities 
to maximize the total demand that can be cov-
ered assuming that demand located farther than 
S units from a hub cannot be served. Mathemati-
cally, it can be expressed as

where I and J are the set of demand nodes and 
facility sites respectively, ai is the demand at node 
i, decision variable xj is 1 if a facility is opened at 

(5)

min
∑

i

∑

j

wij

(

uivj(ci1 + c12 + cj2)

+ ujvi(ci2 + c21 + cj1)
)

(6)max
J

∑

i∈I

aiyi

Table 1: Summary of route design models.

References Description

Su et al.68 Developed a GIS-based route planner considering user preferences and the data was used to 
identify and improve disconnected segments in the network

Černá et al.69 Integer linear programming model for tourists which maximizes the attractiveness of paths. 
Constraints include flow-balance, maximum riding time, and budget limits

Teschke et al.70 Statistical analysis was carried out to infer the effect of locations of streets or sidewalks, 
characteristics of trips, personal characteristics, and temporary features like construction 
sites on the risks due to cycling. These results were used to make decisions on improving 
existing infrastructure

Winters and Teschke71 A population-based survey was used in multiple linear regression models to show the need 
for having dedicated lanes. The likelihood of choosing routes with attributes such as 
paved/unpaved, residential/arterial, and the presence of on-street parking were estimated, 
and route design recommendations were provided

Putta and Furth72 Proposed methods to detect barriers in low-stress bike networks that comprise of links 
belonging to dedicated bike lanes and shared lanes with low automobile traffic. Their meth-
ods were demonstrated on real-world networks of Boston and Arlington, US
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j ∈ J  and is 0 otherwise, Ni = {j ∈ J |dij ≤ S} is 
a subset of facility sites which can serve demand 
from i, and yi is 1 if the demand at i can be served 
and is 0 otherwise.

The x and y variables are connected using 
constraints 

∑

j∈Ni
xj ≥ yi ∀ i ∈ I and 

∑

j∈J xj = p , 
where p is the total number of facilities.

The p-median problem on the contrary mini-
mizes the total cost of serving the demand and 
can be expressed as

where cij represents the unit cost of serving 
demand at i using a facility at j and wij is the frac-
tion of the total demand ai served by the facility 
at j. (Hence, it must satisfy 

∑

j∈J wij = 1 ∀ i ∈ I .) 
As before, a binary variable xj is used to repre-
sent facility location decisions and 

∑

j∈J xj = p 
ensures that p such locations are opened. Finally, 
the x and the w variables are connected using an 
additional constraint wij ≤ xj ∀ i ∈ I , j ∈ J .

There are a few key differences in bicycle net-
works that prohibit the direct use of standard 
facility location models. For instance, the hub 
location model implicitly assumes that the flow 
from a certain node can first be sent to hub 1 or 
2 (whichever is closer) and it can be redirected 
to the destination. However, in a BSS, some trips 
may not be feasible if the stations are far from 
the actual origins and destinations. Second, there 
are more than two hubs in a bike network. On 
the other hand, the maximum covering and the 
p-median problems can be used to model unmet 
demand, but they are applicable to single com-
modity, single source/destination-type flows 
whereas locating bike stations involves a multi-
commodity, multiple OD pair problem.

One of the first models to tackle these issues 
was proposed by Lin and Yang37 using multiple 
objectives and found the optimal bicycle loca-
tions along with the paths needed for connectiv-
ity. The formulation, explained below, balances 
the cost incurred and the level of service provided 
to customers.

Let drs denote the distance between nodes r 
and s (which could be trip origins or destinations 
or bike stations). Different components of the 
objective are weighted by parameters to convert it 
to cost units. For example, α , β , and γ represent 
the unit travelling cost from the trip origin to the 
pickup bike station, between the pickup and the 
dropoff bike station, and the dropoff bike sta-
tion to the trip destination respectively. Assume 
that the yearly mean travel demand between OD 
pair (i, j) is �ij and decision variable yiklj is 1 if the 

(7)
min

∑

i∈I

∑

j∈J

aicijwij

demand between i and j passes through bike sta-
tions k and l and is 0 otherwise. Denoting the set 
of origins, destinations, and bike stations as I, J, 
and K, respectively, the transportation cost com-
ponent of the objective was formulated as

To address the issue of unmet demand, the 
authors introduce a penalty term

where δ is the additional unit cost of uncovered 
demand and qrs is 1 if a bike station located at s 
cannot cover demand starting or ending at r. In 
addition, setup costs

are introduced to model the cost of constructing 
stations and bike lanes. Here, the binary decision 
variable xk is 1 if a station is opened at k and zkl is 
set to 1 if a bike lane is needed between stations k 
and l. The associated costs are fk and ckl respec-
tively. Finally, the authors also include a couple of 
extra terms in the objective that reflect the aver-
age holding costs and the cost of replenishing 
bicycles assuming some stochasticity in demands.

Consistency between the decision variables is 
achieved using constraints. For example, if bike 
stations are opened at two nodes, a bike lane 
could be built between them using

Similarly, demand can be routed between two sta-
tions only if a bike lane connects them and this is 
modelled using

Finally, constraint (13) is used to route the 
demand between each OD pair along some path 
connecting the OD pair.

Some researchers have also proposed tools 
to locate bike stations while simultaneously 

(8)

α
∑

i∈I

∑

k∈K

dik
∑

l∈K

∑

j∈J

yiklj�ij

+ β
∑

k∈K

∑

l∈K

dkl
∑

i∈I

∑

j∈J

yiklj�ij

+ γ
∑

l∈K

∑

j∈J

dlj
∑

i∈I

∑

k∈K

yiklj�ij

(9)

δ

(

∑

i∈I

∑

k∈K

qik
∑

l∈K

∑

j∈J

yiklj�ij

+
∑

j∈J

∑

l∈K

qjl
∑

k∈K

∑

i∈I

yiklj�ij

)

(10)

∑

k∈K

fkxk +
∑

k∈K

∑

l∈K

cklzkl

(11)2zkl ≤ xk + xl ∀ k ∈ K , l ∈ K\{k}

(12)yiklj ≤ zkl ∀ i ∈ I , k ∈ K , l ∈ K\{k}, j ∈ J

(13)

∑

k∈K

∑

l∈K\{k}

yiklj = 1 ∀ i ∈ I , j ∈ J
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modelling the interactions with other modes. For 
example, Romero et al.9 capture the mode choices 
between cars and a BSS using a multinomial logit 
framework within a bi-level optimization pro-
gram that determines the optimal bike station 
locations. Using data from Santander City, Spain, 
a genetic algorithm was used to demonstrate the 
applicability of their model. Results indicate that 
optimally located bikes can induce a significant 
mode shift from cars to cycles. In another line 
of related, but tangential, work on car sharing, 
Kumar and Bierlaire78 developed regression mod-
els that predict the demand for shared services as 
a function of transit ridership, personal car usage, 
and other land use attributes and integrated the 
outputs with an optimization model to select car 
stations. A few other facility location models have 
been summarized in Table 2.

3.3  Capacity Allocation
After deciding the locations of the bike stations 
and paths, another key strategic decision that is 
crucial to a station-based BSS is the capacity allo-
cation of bikes at each station. Many studies have 
modelled this jointly with the location decisions 
of bicycles.81,83 In this section, we will discuss one 
model proposed by Lin et al.6 that builds on the 
formulation by Lin and Yang37 discussed earlier.

In addition to (8)–(10),6 introduce a term 
h
∑

k∈K sk that reflects the overall holding costs, 
where h is the inventory holding cost of a bicycle 
and sk is a non-negative decision variable repre-
senting the inventory level at station k. The yearly 
travel demand between OD pair (i, j) is assumed 
to follow a Poisson distribution with rate �ij and 

hence the daily demand at station k was com-
puted using

where T is the number of days in a year. Assuming 
that the lead time for replenishing bikes at a sta-
tion k is τk , and a desired level of service is set by 
the probability of running out of stock (1− γk) , 
the inventory level required sk can be expressed as

Constraints (14) and (15) are both non-linear 
and make the problem highly intractable. The 
authors proposed an iterative greedy heuristic 
in which for a given set of bike stations, lanes 
and inventory levels are chosen one at a time to 
reduce the overall costs. Their method was dem-
onstrated on a hypothetical test network and sen-
sitivity of optimum inventory levels with respect 
to the frequency of replenishment and network 
design was studied.

Some researchers have proposed MILPs to 
address the capacity allocation problem. For 
instance, Sayarshad et al.84 formulated a multi-
period optimization model in which the demand 
was known, and the objective function included 
revenue from trips, relocation costs, capital and 
maintenance costs, and a penalty for unmet 
demand. A similar multi-period MILP was sug-
gested by Martinez et al.5 and it also included 
relocation decisions. Heuristics that decompose 

(14)�k =
1

T

∑

i∈I

∑

l∈K\{k}

∑

j∈J

yiklj�ij ∀ k ∈ K

(15)
sk = min

{

s :

s−1
∑

q=0

e−�kτk (�kτk)
q

q!
≥ γk

}

∀k ∈ K

Table 2: Summary of facility location models.

References Description

García-Palomares et al.53 A GIS-based method was used to study bike location for two objectives: p-median and 
maximum coverage models. Quantitative accessibility analysis to identify the stations that 
are relatively isolated was carried out using data from Madrid, Spain

Yan et al.79 Mixed-integer programming models for deterministic and stochastic demand instances 
where the goal was to minimize the cost of routing demand as well as fixed costs of 
locating bike stations

Frade and Ribeiro80 A maximum coverage model that captures relocations over time using constraints. Budget 
constraints that feature inventory, maintenance, and relocation costs are also modelled

Park and Sohn81 Maximum coverage and p-median model were solved using taxi data from Seoul, South 
Korea. Their model also suggested station capacity using the frequency of bike trips and 
a clustering technique

Zhang et al.82 Analysed re-design strategies for an existing BSS using historic demand usage and crowd 
suggestions. Objectives included increasing convenience at a minimum cost

Dobešová and Hỳbner83 Used ArcGIS to locate a minimum number of bike stations (and determined their capacities) 
while maximizing coverage. An existing bike network and the number of inhabitants in 
different regions were taken as inputs
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the problem by time periods were proposed and 
tested on a network from Lisbon, Portugal. A few 
other capacity allocation models have been sum-
marized in Table 3.

4  Operational Planning
As discussed in Sect. 3, strategic planning can be 
used to locate stations and allocate an optimum 
number of bicycles at those locations. However, 
at an operational level, uncertainty in demands 
and maintenance requirements create supply 
imbalances rendering re-optimization necessary. 
For station-based systems, these types of stochas-
tic events might make some stations go empty, 
preventing customers to rent a bicycle. It may 
also happen that some stations become full and 
force customers to wait or return their cycles at 
another station. Supply imbalances in free-float-
ing systems do not affect dropoffs but demand 
fluctuations can make it difficult to find a bike 
in the first place. Such departures from strategic 
plans can lead to loss of customers and affect the 

overall performance of a BSS. Figure 4 shows a 
snapshot of the inventory levels for a portion of 
Citybike Wien in Vienna, Austria and CaBi, Wash-
ington D.C., US and one can notice bicycle sta-
tions which are nearly full or empty.

To address these situations, day-to-day and 
within-day operational measures such as relocat-
ing bicycles from one place to another is a must. 
These repositioning tasks are usually carried out 
using trucks or bike-trailers (see Fig. 5). In addi-
tion, one can provide incentives that might nudge 
customers to pick up (or drop off) their bicycles 
at nearby stations that are close to capacity (or 
short of bicycles). Repositioning strategies are 
mainly classified as static and dynamic depending 
on the timing of repositioning. Some authors also 
classify it as online and offline methods and the 
subtle distinction in the nomenclature will be dis-
cussed in Sect. 4.3.

Table 3: Summary of capacity allocation models.

References Description

Caggiani et al.85 A bi-level optimization model which uses data from an existing BSS was proposed to create spatio-
temporal clusters. The model optimizes the number of times out-of-stock events occur subject to a 
budget constraint

Çelebi et al.86 An optimization method that determines station locations and capacity using a set covering 
method. A queuing model is used to estimate service levels and unmet demand is minimized 
using a dynamic program

Freund et al.87 Optimization formulation to minimize out-of-stock events under budget constraints by re-allocat-
ing dock capacity. A polynomial-time allocation algorithm was also proposed

Cavagnini et al.88 Two-stage stochastic programming formulation in which capacity allocation is made in the first 
stage and relocation decisions are made in the second stage. Demand scenarios and associated 
probabilities are assumed, and the objective minimizes the total expected penalty for re-balanc-
ing and stock-out

Lu89 A robust optimization approach is used for multi-period fleet allocation to minimize the total system 
cost that includes holding and redistribution costs and penalties for lost customers

Figure 4: Station inventory levels of Citybike Wien (left) and CaBi (right). (Source: Citybike Wien System 
Map90, Capital Bikeshare System Map91).
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4.1  Static Repositioning
In static repositioning, bicycles are rebalanced 
during the night when customer movements 
are minimal. Past data may be used to forecast 
demand for bikes at different stations and guide 
the repositioning operation. The repositioning 
and forecasting periods do not overlap as shown 
in Fig. 6 and hence real-time demand variations 
are not addressed. Nevertheless, moving bicycles 
during the night is convenient from the opera-
tor’s perspective since there are no parking and 
congestion issues. Modelling within-day demand 
fluctuations requires a more dynamic approach 
and will be discussed in Sect. 4.2.

Most research on static repositioning is geared 
towards addressing the following key questions. 
First, how many cycles should be moved between 
different pairs of stations. (This problem is also 
referred to as the inventory balancing problem.) 
Second, what is the most efficient way to route 
vehicles which move these bicycles (which con-
stitutes the routing problem). These two problems 
are often jointly solved using optimization mod-
els with integer decision variables.

A commonly used target stock level in the 
inventory balancing problem is the number 
determined from the capacity allocation problem. 
Alternately, researchers have also proposed mod-
els in which the inventory level at the end of the 
rebalancing procedure falls within an ideal pre-
determined interval.93 The limits of such intervals 
can be obtained from Markovian queuing models 

with different objectives by forecasting the opera-
tions on the subsequent day.

For example, Schuijbroek et al.17 suppose that 
C is the capacity of a station and the state transi-
tions for the number of bicycles at the station 
occur according to a non-stationary Mt/Mt/1/C 
(in Kendall notation) process. That is, the inter-
arrival times for returns and pickups at time t are 
distributed exponentially with rates �(t) and µ(t) 
respectively (see Fig. 7). These transition rates are 
estimated using maximum likelihood methods. 
Additional assumptions are often needed when 
developing a demand forecasting tool since lost 
demand due to empty or full stations is censored 
and is not a part of the observed data.

Assuming that a station starts with s cycles 
after static repositioning, let p(s, s′, t) be the 
probability of finding s′ bikes at time t on the 
next day. These transition rates satisfy Chapman-
Kolmogorov equations. To calculate the expected 
fraction of successful pickups and dropoffs, the 
authors define

where T is the time limit for the next day’s opera-
tions. The bounds for the desired inventory level 
at the end of the static rebalancing procedure is 
defined as

where β− and β+ are desired service levels for the 
next day.

Many studies also allow deviations from the 
desired inventory levels but penalize them in 
objective functions.94,95 The penalty could just be 
an absolute value of the difference between the 
desired and achievable inventory level or could 
factor in the next day’s operations. For instance, 
Raviv et al.95 assume a penalty for out-of-stock 
pickup and dropoff events as φ and ψ respectively 

Kendall notation: A/S/c/K 
represents queuing processes 
using arrival process (A), 
service time (S), number 
of servers (c), and capacity 
limit (K). Thus, M/M/1/C 
indicates that the arrivals are 
Poisson and service times are 
exponential in a single-server 
queue with capacity C.

(16)g(s, 0,T ) =

∫ T
0 µ(t)(1− p(s, 0, t))dt

∫ T
0 µ(t)dt

(17)g(s,C ,T ) =

∫ T
0 �(t)(1− p(s,C , t))dt

∫ T
0 �(t)dt

(18)smin = min
{

s : g(s, 0,T ) ≥ β−
}

(19)smax = max
{

s : g(s,C ,T ) ≥ β+
}

Figure 5: Rebalancing using a trailer. (Source: 
Panhard92).

Figure 6: Static bicycle repositioning. (Source: 
Zhang et al.15).

Figure 7: Markov chain for station inventory. 
(Source: Schuijbroek et al.17).
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and define a function to describe the expected 
shortage using

An approximation of this function was used as 
a penalty term in the objective function of an 
MILP. The authors used data from Tel-O-Fun in 
Tel Aviv, Israel to estimate the model parameters.

Inventory levels after rebalancing have also 
been set using a chance constraint approach96. 
In this method, the number of pickups ( ξ+i ) and 
dropoffs ( ξ−i  ) at a station i ∈ N  are assumed 
random and one of the constraints in the 
model ensures that the probability of success-
ful pickups and dropoffs are greater than a pre-
specified parameter p. Specifically, let ri and Ci 
denote the current inventory level and capac-
ity of station i respectively. If uij indicates the 
number of bicycles moved from station i to sta-
tion j, then the number of available bikes at a 
station i is ri + ξ−i +

∑

j(uji − uij) . Likewise, 
the number of available spaces at station i is 
Ci − ri + ξ+i +

∑

j(uij − uji) . The chance con-
straint can thus be written as

After deciding the target inventory levels or their 
intervals, the routing problem needs to be solved 
to figure out how a single or multiple vehicles can 
redistribute cycles in an optimal manner. The sin-
gle vehicle routing problem can be formulated as 
a one-commodity pickup and delivery travelling 
salesman problem (1-PDTSP).97 To mathemati-
cally model this problem, consider a complete 
graph (without self-loops) G = (N ,A) where 
N = {0, 1, . . . , n} represents the set of bike sta-
tions and A is the set of arcs. The assumption 
that the graph is complete is not necessary but 
is made only to simplify the notation. Suppose 
node 0 represents the depot where the vehicle 
(with capacity Q) that is used to move bicycles 
begins its trip and suppose nodes 1, . . . , n denote 
the other stations in the network. Let cij be the 
travel costs between i and j and binary decision 
variable xij be 1 if the vehicle takes arc (i, j) and 
is 0 otherwise. Each station i is assumed to have a 
demand/supply qi = ri − si which is the deficit or 

(20)F(s) =

∫ T

0

(

p(s, 0, t)φ + p(s,C , t)ψ
)

dt

(21)

P



ri + ξ−i +
�

j

�

uji − uij
�

≥ ξ+i ,

Ci − ri + ξ+i +
�

j

�

uij − uji
�

≥ ξ−i ∀ i ∈ N



 ≥ p

excess when compared to the desired inventory si . 
If qi > 0 , station i is a pickup node and if qi < 0 , 
it is a dropoff node. A second decision variable 
yij represents the total number of cycles that are 
carried by the vehicle on arc (i, j). Supposing that 
the total deficit equals the total excess (this can be 
easily relaxed assuming that the depot has extra 
inventory or space for extra cycles), the 1-PDTSP 
can be formulated as follows.

Constraint (23) ensures that each station is vis-
ited exactly once and (24) eliminates subtours. 
Flow conservation of the cycles is guaranteed 
using (25) and inequality (26) forces the flow 
variables to be zero on links that are not traversed 
by the vehicle. This formulation was extended 
by Raviv et al.95 to the multiple vehicle scenario 
using a three-index formulation with less restric-
tive assumptions. Suppose that previous notation 
is modified such that xijv is a decision variable 
which is 1 if vehicle v ∈ V  traverses arc (i, j) and 
is 0 otherwise. Similar to (23), flow conservation 
of vehicles can be expressed as

Note that (29) makes sure that each vehicle can 
visit a station at most once. It is also possible that 
a station is visited by more than one vehicle. Just 
like the 1-PDTSP, Raviv et al.95 define another 
variable yijv which indicates the number of cycles 
carried by vehicle v while traversing arc (i, j). 
These are linked to the xijv variables in a manner 
similar to (26) as shown below

where Qv is the capacity of vehicle v. Two new 
decision variables z+iv and z−iv are introduced which 

(22)
min

∑

(i,j)∈A

cijxij

(23)
s.t.

∑

j∈N

xij =
∑

h∈N

xhi = 1 ∀ i ∈ N

(24)

∑

i∈S

∑

j /∈S

xij ≥ 1 ∀ S ⊂ N , S �= ∅

(25)

∑

j∈N

yij −
∑

h∈N

yhi = qi ∀ i ∈ N

(26)0 ≤ yij ≤ Qxij ∀ (i, j) ∈ A

(27)xij ∈ {0, 1} ∀ (i, j) ∈ A

(28)

∑

j∈N

xijv =
∑

h∈N

xhiv = 1 ∀ i ∈ N , v ∈ V

(29)

∑

j∈N

xijv ≤ 1 ∀ i ⊂ N\{0}, v ∈ V

(30)0 ≤ yijv ≤ Qvxijv ∀ (i, j) ∈ A, v ∈ V
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represent the number of bikes added and removed 
by vehicle v at station i respectively. Hence, we 
may write qi = ri − si =

∑

v∈V (z
−
iv − z+iv ) and 

flow conservation of bicycles (25) can be recast as

Assuming that we need not meet the desired 
inventory level exactly (i.e., we need not clear 
the excess or deficits), the following sets of con-
straints on the z variables follow naturally.

Subtour elimination constraints for each vehicle 
were described in the form proposed by Miller 
et al.98 as shown in (35) using an additional con-
tinuous decision variable wiv and a sufficient large 
number M.

The complete formulation is shown below.

where f (si) is a penalty function for reaching 
an inventory level si at station i. In addition, the 
authors also impose a constraint on the maxi-
mum duration of operations assuming a fixed 
loading and unloading time per bike. Note that 
the formulation assumes that bikes can be picked 
up at stations with excess and dropped off at 
places where there is a deficit, but stations can-
not be used as buffers. This assumption is also 
referred to as the monotonicity condition for fill 
levels99. The time-indexed and sequence-indexed 
formulations in95 further relaxed some of these 
model assumptions by dividing the time avail-
able into smaller intervals and allowed vehicles 

(31)

∑

j∈N

yijv −
∑

h∈N

yhiv = z−iv − z+iv ∀ i ∈ N , v ∈ V

(32)

∑

v∈V

z−iv ≤ ri ∀ i ∈ N

(33)

∑

v∈V

z+iv ≤ Ci − ri ∀ i ∈ N

(34)

∑

i∈N

(

z+iv − z−iv

)

= 0 ∀ v ∈ V

(35)
wjv − wiv +M(1− xijv) ≥ 1

∀ i ∈ N , j ∈ N\{0}, v ∈ V

(36)
min

∑

i∈N

f (si)+ α
∑

(i,j)∈A

cij
∑

v∈V

xijv

(37)

s.t. (28)− (35)

xijv ∈ {0, 1}, yijv ≥ 0 ∀ (i, j) ∈ A, v ∈ V

(38)z−iv , z
+
iv ∈ Z+ ∀ i ∈ N , v ∈ V

(39)wiv ≥ 0 ∀i ∈ N , v ∈ V

to revisit stations. Models in literature also allow 
exchanging bikes between vehicles.

The optimization program by Raviv et al.95 
has been a starting point for many MILP formu-
lations in static repositioning research. For 
instance, instead of penalty functions, Erdoğan 
et al.93 use pre-determined inventory levels and 
Schuijbroek et al.17 use the bounds obtained from 
equations (18) and (19) as extra constraints. Oth-
ers have included service times and unloading 
and loading costs as part of the objective.93,94 
Most MILP models, however, tend to be compu-
tationally intractable for large problem instances. 
To address these issues, solution methods such as 
branch-and-cut;93,100 heuristics such as cluster-
first-route-second which solves the multiple vehi-
cle problem using single vehicle problems;17,101 
and metaheuristics such as tabu search102 have 
been proposed. A summary of the papers that 
address static rebalancing is presented in Table 4. 
Almost all of them use integer programming 
methods and hence integrality constraints have 
not been explicitly mentioned in the table.

4.2  Dynamic Repositioning
While static repositioning helps reset a BSS to a 
state with ideal inventory levels, it can perform 
poorly when the spatio-temporal demand pat-
terns exhibit high variance. It also cannot han-
dle non-recurring forms of demand fluctuations 
such as those due to weather, special events, etc. 
In such situations, a BSS operator must reposi-
tion bicycles during the day and in real-time to 
match supply and demand. Hence, this opera-
tion is more challenging to carry out than its 
static counterpart. Unlike in Fig. 6, repositioning 
and forecasting periods of dynamic repositioning 
procedures overlap.

Two approaches are popular in literature on 
dynamic repositioning. The first divides the oper-
ating period into a finite number of time steps 
and assumes perfect knowledge of time-varying 
demand. This allows us to extend the static repo-
sitioning formulations to determine the number 
of cycles to be moved between stations and the 
vehicle routes at each time step. For example, 
Ghosh et al.103 formulated a dynamic reposition-
ing model in which the goal was to reduce the 
lost customer demand. To understand their for-
mulation, assume that N, A, and T are the set of 
nodes, arcs, and time steps respectively and let xtijv 
be a binary variable which is 1 if a vehicle v starts 
to move between stations i and j at time step t. 
Define another binary variable χ t

iv which captures 
initial conditions by taking a value 1 if vehicle v 

Metaheuristics: are generic 
higher-level heuristic proce-
dures that can be applied to 
a wide range of optimiza-
tion problems. They have 
been successfully applied in 
transportation logistics to 
find approximate solutions. 
Examples include genetic 
algorithms, simulated anneal-
ing, and tabu search.

Branch-and-cut: is solution 
method which combines 
branch-and-bound with a 
cutting plane method for im-
proving the linear program-
ming relaxation solutions at 
the nodes of the search tree.
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is at station i at time t = 0 and is 0 for all other 
times. That is, vehicles are not required to be pre-
sent at the depot at the start of the rebalancing 
procedure. Additionally, it is assumed that vehi-
cles can travel between a pair of stations within 
one-time step. This assumption is reasonable if 
the duration of each time step is large. If not, the 
underlying graph can be modified by creating 
dummy nodes and arcs. Just like the static case, 
flow conservation constraints (28) and (29) can 
equivalently be written as

Constraint (40) equates the number of vehi-
cles coming into station i to the number going 
out of i. Inequality (41) restricts the number of 
vehicles that can be present at a station to avoid 
overcrowding.

Extending other notation in a similar man-
ner, let rti  be the inventory level of bikes at station 
i at time t and let z+t

iv  and z−t
iv  be the number of 

bicycles added and removed by a vehicle v at sta-
tion i at time t respectively. Denote using utt

′

ij  , the 
number of bicycles trips made by customers from 
station i at time step t to station j at time t + t ′ . 
(Customers take different times to travel between 
stations, but vehicles are assumed to take one 
time step.) Flow conservation of bicycles can thus 
be expressed as

If ytv is the number of bicycles present in vehicle 
v at time step t, the flow balance of bicycles from 
and into each vehicle is ensured by imposing con-
straint (43).

Let the demand at time t for travelling between 
station i and station j in t ′ time steps be dtt

′

ij  . The 
actual number of customer trips starting from a 
station at each time step should not exceed the 
number of bicycles present in the station at that 
time. When the demand at a station is greater 
than its supply, bounds on rentals to destinations 

(40)

∑

j∈N

xtijv −
∑

h∈N

xt−1
hiv = χ t

iv ∀ i ∈ N , v ∈ V , t ∈ T

(41)

∑

j∈N

∑

v∈V

xtijv ≤ 1 ∀ i ∈ N , t ∈ T

(42)

rti +
∑

t ′<t

∑

h∈N

ut−t ′,t ′

hi −
∑

t ′>t

∑

j∈N

utt
′

ij

+
∑

v

(

z+t
iv − z−t

iv

)

= rt+1
i ∀ i ∈ N , t ∈ T

(43)

yt+1
v = ytv +

∑

i∈N

(

z−t
iv − z+t

iv

)

∀ t ∈ T , v ∈ V

are assumed to be proportional to the demand to 
those stations.

Mathematically, this is modelled using (44).

The actual flow of bicycles between the stations 
must also be less than or equal to the demand. 
Further, for each station i, the inventory level 
must not exceed the station capacity Ci . These 
conditions are implied in constraints (45) and 
(46).

As before, let Qv denote the capacity of vehicle v. 
A vehicle can be loaded or unloaded at a station 
only when present at that station. These observa-
tions are ensured using (47) and (48).

Let btt
′

ij  be the revenue generated from one bicy-
cle trip that departs from station i at t and reaches 
station j at time t + t ′ and cij be the vehicle cost of 
traversing (i, j). With these constraints, objective 
(49) is maximized to improve the overall profit 
which includes the revenue generated from all 
bicycle trips and the total routing cost of reposi-
tioning vehicles.

(44)

utt
′

ij ≤ rti
dtt

′

ij
∑

k∈N

dtt
′

ik

∀ i ∈ N , j ∈ N , t ∈ T , t ′ ∈ T

(45)

0 ≤ utt
′

ij ≤ dtt
′

ij ∀ i ∈ N , j ∈ N , t ∈ T , t ′ ∈ T

(46)0 ≤ rti ≤ Ci ∀i ∈ N , t ∈ T

(47)

z+t
iv + z−t

iv ≤ Qv

∑

j∈N

xtijv ∀ i ∈ N , t ∈ T , v ∈ V

(48)

0 ≤ z+t
iv , z−t

iv , ytv ≤ Qv ∀ i ∈ N , t ∈ T , v ∈ V

(49)

max
∑

(i,j)∈A

∑

t∈T

∑

t ′>t

btt
′

ij u
tt ′

ij −
∑

(i,j)∈A

cij
∑

v∈V

∑

t∈T

xtijv

Figure 8: Rolling horizon method for dynamic 
bicycle repositioning. (Source: Zhang et al.15).



635

Modelling Methods for Planning and Operation

1 3J. Indian Inst. Sci.| VOL 99:4 | 621–645 December 2019 | journal.iisc.ernet.in

Ta
b

le
 5

: 
Su

m
m

ar
y 

of
 d

yn
am

ic
 re

ba
la

nc
in

g 
m

od
el

s.

S 
si

ng
le

, M
 m

ul
tip

le
, N

A
 n

ot
 a

pp
lic

ab
le

 (i
.e

., 
ve

hi
cl

e 
m

ov
em

en
ts

 a
re

 n
ot

 e
xp

lic
itl

y 
m

od
el

le
d)

R
ef

er
en

ce
s

# 
ve

h
.

O
b

je
ct

iv
e 

fu
n

ct
io

n
M

o
d

el
/s

o
lu

ti
o

n
 t

ec
h

n
iq

u
e

C
o

n
st

ra
in

ts

C
on

tr
ad

o 
et

 a
l.12

3
M

To
ta

l u
nm

et
 d

em
an

d
D

an
tz

ig
-W

ol
fe

 d
ec

om
po

si
tio

n,
 c

ol
um

n 
ge

ne
ra

tio
n,

 
Be

nd
er

s 
de

co
m

po
si

tio
n

Ve
hi

cl
e 

ca
pa

ci
ty

, fl
ow

 c
on

se
rv

at
io

n,
 v

eh
ic

le
 u

sa
ge

 
co

ns
tr

ai
nt

s

Zh
an

g 
et

 a
l.15

M
U

se
r 

di
ss

at
is

fa
ct

io
n 

du
e 

to
 a

bs
en

ce
 o

f 
bi

ke
s 

or
 

do
ck

s,
 t

ot
al

 c
os

t
N

on
-h

om
og

en
eo

us
 P

oi
ss

on
 p

ic
ku

ps
 a

nd
 d

ro
po

ff
s,

 
no

n-
lin

ea
r 

m
ul

ti-
co

m
m

od
ity

 t
im

e-
sp

ac
e 

ne
tw

or
k 

flo
w

, r
ol

lin
g 

ho
riz

on
 h

eu
ris

tic

Ve
hi

cl
e 

an
d 

bi
cy

cl
e 

flo
w

 b
al

an
ce

, v
eh

ic
le

 a
nd

 s
ta

-
tio

n 
ca

pa
ci

ty
 c

on
st

ra
in

ts

Sh
ui

 a
nd

 S
ze

to
12

2
S

To
ta

l u
nm

et
 d

em
an

d,
 f

ue
l c

on
su

m
pt

io
n,

 C
O
2
 e

m
is

-
si

on
 c

os
t

Ro
lli

ng
 h

or
iz

on
 a

pp
ro

ac
h,

 e
nh

an
ce

d 
ar

tifi
ci

al
 b

ee
 

co
lo

ny
 m

et
ah

eu
ris

tic
, r

ou
te

 t
ru

nc
at

io
n 

he
ur

is
tic

, 
ge

ne
tic

 a
lg

or
ith

m

Ro
ut

e 
st

ar
ts

 a
nd

 e
nd

s 
at

 t
he

 d
ep

ot
, l

oa
di

ng
 a

nd
 

un
lo

ad
in

g 
co

ns
tr

ai
nt

s

Pf
ro

m
m

er
 e

t 
al

.14
M

N
um

be
r 

of
 e

xt
ra

 t
rip

s 
po

ss
ib

le
 d

ue
 t

o 
re

di
st

rib
ut

io
n,

 
op

er
at

in
g 

co
st

s
Re

ce
di

ng
 h

or
iz

on
, m

ix
ed

 in
te

ge
r 

qu
ad

ra
tic

 v
eh

ic
le

 
ro

ut
in

g,
 d

yn
am

ic
 p

ric
e 

in
ce

nt
iv

es
 u

si
ng

 m
od

el
 

pr
ed

ic
tiv

e 
co

nt
ro

l

Fe
as

ib
le

 r
ou

te
s 

in
 t

im
e-

ex
pa

nd
ed

 g
ra

ph
, b

ic
yc

le
 

flo
w

 b
al

an
ce

, s
ta

te
 e

qu
at

io
n 

de
sc

rib
in

g 
in

ce
nt

iv
es

 
an

d 
cu

st
om

er
 b

eh
av

io
ur

Sh
u 

et
 a

l.12
5

N
A

M
ax

im
iz

e 
ex

pe
ct

ed
 n

um
be

r 
of

 s
uc

ce
ss

fu
l t

rip
s

St
oc

ha
st

ic
 n

et
w

or
k 

flo
w

 p
ro

bl
em

, d
et

er
m

in
is

tic
 

lin
ea

r 
pr

og
ra

m
m

in
g 

bo
un

ds
Fl

ow
 c

on
se

rv
at

io
n 

ac
ro

ss
 t

im
e 

pe
rio

ds
, r

id
es

 a
re

 
co

m
pl

et
ed

 in
 a

 s
in

gl
e 

tim
e 

pe
rio

d,
 p

ro
po

rt
io

na
lit

y

C
ag

gi
an

i a
nd

 O
tt

o-
m

an
el

li12
6

S
Re

di
st

rib
ut

io
n 

co
st

s,
 lo

st
 u

se
r 

co
st

, u
se

r 
sa

tis
fa

ct
io

n 
ba

se
d 

on
 a

va
ila

bi
lit

y 
of

 b
ik

es
 a

nd
 d

oc
ks

N
on

-li
ne

ar
 in

te
ge

r 
pr

og
ra

m
, d

em
an

d 
fo

re
ca

st
in

g 
us

in
g 

ar
tifi

ci
al

 n
eu

ra
l n

et
w

or
k 

an
d 

fu
zz

y 
lo

gi
c

D
oc

k 
ca

pa
ci

ty
 a

nd
 v

eh
ic

le
 c

ap
ac

ity
 c

on
st

ra
in

ts
, 

co
ns

tr
ai

nt
s 

lim
iti

ng
 t

he
 n

um
be

r 
of

 b
ik

es
 t

ha
t 

ca
n 

be
 m

ov
ed

 f
ro

m
 o

ne
 s

ta
tio

n 
to

 a
no

th
er

O
’M

ah
on

y 
an

d 
Sh

m
oy

s11
N

A
M

ax
im

iz
e 

a 
w

ei
gh

te
d 

di
st

an
ce

 m
at

ch
in

g 
ob

je
ct

iv
e 

ac
ro

ss
 s

ta
tio

ns
In

te
ge

r 
pr

og
ra

m
, k

-c
en

te
r 

pr
ob

le
m

, b
ra

nc
h-

an
d-

bo
un

d 
al

go
rit

hm
D

is
ta

nc
e 

lim
its

 f
or

 f
ea

si
bl

e 
m

at
ch

in
g 

be
tw

ee
n 

de
fic

it 
an

d 
ex

ce
ss

 s
ta

tio
ns

C
ag

gi
an

i e
t 

al
.12

7
S

D
ur

at
io

n 
fo

r 
w

hi
ch

 b
ik

e 
in

ve
nt

or
y 

le
ve

l f
al

ls
 b

el
ow

 
a 

gi
ve

n 
th

re
sh

ol
d,

 lo
st

 d
em

an
d,

 t
ra

ve
l c

os
t 

of
 

ve
hi

cl
es

Fr
ee

 fl
oa

tin
g 

sy
st

em
, c

lu
st

er
in

g 
m

et
ho

ds
, n

on
-li

ne
ar

 
au

to
re

gr
es

si
ve

 n
eu

ra
l n

et
w

or
k,

 t
w

o 
TS

P 
m

od
el

 
(b

ik
es

 a
re

 fi
rs

t 
co

lle
ct

ed
 a

nd
 t

he
n 

di
st

rib
ut

ed
)

C
on

st
ra

in
ts

 e
ns

ur
in

g 
th

at
 e

ac
h 

cl
us

te
r 

is
 e

ith
er

 
a 

re
ce

iv
er

 o
r 

a 
do

no
r, 

bu
t 

no
t 

bo
th

; a
gg

re
ga

te
 

cl
us

te
r-

le
ve

l fl
ow

 b
al

an
ce

 c
on

st
ra

in
ts

W
an

g12
8

S
To

ta
l t

ra
ve

l c
os

t,
 t

ot
al

 u
nm

et
 d

em
an

d
D

et
er

m
in

is
tic

 t
im

e-
va

ry
in

g 
de

m
an

d,
 M

IL
P,

 g
re

ed
y 

al
go

rit
hm

, r
ol

lin
g 

ho
riz

on
 f

ra
m

ew
or

k,
 B

en
de

rs
 

de
co

m
po

si
tio

n

U
ns

at
is

fie
d 

de
m

an
d 

of
 b

ik
es

 a
nd

 d
oc

ks
, i

nv
en

-
to

ry
 le

ve
l, 

ve
hi

cl
e 

an
d 

bi
cy

cl
e 

flo
w

 c
on

se
rv

at
io

n,
 

ve
hi

cl
e 

ca
pa

ci
ty

K
lo

im
ül

ln
er

 e
t 

al
.12

9
M

To
ta

l u
nm

et
 d

em
an

d,
 d

iff
er

en
ce

 f
ro

m
 t

he
 d

es
ire

d 
in

ve
nt

or
y 

le
ve

l
G

re
ed

y 
co

ns
tr

uc
tio

n 
he

ur
is

tic
, v

ar
ia

bl
e 

ne
ig

hb
ou

r-
ho

od
 s

ea
rc

h,
 g

re
ed

y 
ra

nd
om

iz
ed

 a
da

pt
iv

e 
se

ar
ch

Ti
m

e-
va

ry
in

g 
de

m
an

d 
fu

nc
tio

ns
, v

eh
ic

le
 c

ap
ac

ity

Re
gu

e 
an

d 
Re

ck
er

13
0

M
M

in
im

iz
e 

nu
m

be
r 

of
 b

ik
es

 t
o 

be
 r

ep
os

iti
on

ed
, u

til
ity

 
of

 v
is

iti
ng

 s
ta

tio
n(

s)
 w

ith
 d

efi
ci

ts
D

em
an

d 
fo

re
ca

st
in

g 
us

in
g 

gr
ad

ie
nt

 b
oo

st
in

g 
m

ac
hi

ne
s,

 c
ha

nc
e 

co
ns

tr
ai

ne
d 

m
od

el
 f

or
 in

ve
n-

to
ry

 b
al

an
ci

ng
, v

eh
ic

le
 r

ou
tin

g 
m

od
el

Ve
hi

cl
e 

an
d 

bi
cy

cl
e 

flo
w

 b
al

an
ce

, l
ev

el
 o

f 
se

rv
ic

e 
bo

un
ds

, t
ra

ve
l t

im
e 

lim
its

, v
eh

ic
le

 c
ap

ac
ity

C
hi

ar
io

tt
i e

t 
al

.13
1

M
M

in
im

iz
e 

th
e 

du
ra

tio
n 

of
 o

ut
-o

f-
st

oc
k 

ev
en

ts
, 

re
ba

la
nc

in
g 

co
st

Bi
rt

h-
de

at
h 

pr
oc

es
se

s 
to

 m
od

el
 s

ta
tio

n 
oc

cu
pa

nc
y,

 
ne

ar
es

t-
ne

ig
hb

ou
r 

TS
P 

he
ur

is
tic

Bi
cy

cl
e 

an
d 

flo
w

 b
al

an
ce

, c
lu

st
er

ed
 s

ta
tio

ns
 f

or
 e

ac
h 

ve
hi

cl
e,

 s
ub

to
ur

 e
lim

in
at

io
n



636

R. B. Nath, T. Rambha

1 3 J. Indian Inst. Sci.| VOL 99:4 | 621–645 December 2019 | journal.iisc.ernet.in

The MILP model is NP-hard and hence does 
not scale well with the problem size. To tackle 
this issue, Ghosh et al.103 proposed a Lagrangian 
Dual Decomposition (LDD) approach in which 
the original problem is decomposed into a mas-
ter problem and two slaves (one for repositioning 
and the other for routing).

Since the repositioning variables z and the 
routing variables x in constraint (47) are coupled, 
it is relaxed by introducing dual variables αt

iv . The 
Lagrangian function L(α) can thus be written as

The first component of (50) only involves repo-
sitioning and the second component is related to 
vehicle routing. For a given α , these slaves are sep-
arately solved and the α vector is updated using 
a sub-gradient descent method for the master 
problem maxα≥0 L(α) . To speed up computation, 
an additional clustering approach was used to 
create abstract stations and the proposed method 
was tested on CaBi and Hubway data sets. Com-
parison with other benchmark solutions showed 
a reduction in lost demand.

The formulation discussed so far was extended 
to stochastic demand settings using a robust opti-
mization approach.121 In this framework, the BSS 
operator and the users/environment were viewed 
as players in a two-player game. At each iteration, 
the environment generates a demand scenario 
which maximizes the lost demand considering 
the repositioning strategy of the operator. The 
operator reacts by proposing a new repositioning 
strategy that minimizes the lost demand consid-
ering the worst demand scenario presented by the 
environment and the process is continued until 
both objectives converge.

The second popular approach for dynamic 
repositioning is to use rolling horizon models in 
which the overall problem is broken down into 
multiple dynamic rebalancing problems. The 
observed demand in each time interval is used to 
update forecasts for the next interval and rebal-
ancing decisions are recomputed.15,122 For exam-
ple, in the set up shown in Fig. 8, using forecasts 
of demand between 10:00 and 13:00, a reposition-
ing strategy is first constructed for the roll period 
which, for time period 1, begins at 10:00 and ends 
at 12:00. At 12:00, a new repositioning strategy is 

(50)

min
z

{

∑

i∈N

∑

v∈V

∑

t∈T

αt
iv

(

z+t
iv + z−t

iv

)

−
∑

(i,j)∈A

∑

t∈T

∑

t ′>t

btt
′

ij u
tt ′

ij

}

+min
x

{

∑

(i,j)∈A

∑

v∈V

∑

t∈T

(cij − Qvα
t
iv)x

t
ijv

}

obtained from updated demand forecasts for the 
interval 12:00 to 15:00 and the process continues 
till the end of the time horizon. This method has 
a greater practical applicability since it can react 
to current conditions by adjusting the initial con-
ditions for each roll period.

A few other models which addresses the 
dynamic rebalancing problem are summarized in 
Table 5.

4.3  Offline and Online Repositioning
Some authors have also classified repositioning 
activities as offline and online methods. Offline 
algorithms assume perfect knowledge of input 
data and do not react to changing system states. 
Hence, they can be both static and dynamic. 
When applied in a dynamic setting (see 123–125,103 
for example), one can view offline methods as 
open-loop control measures. They are suitable 
in situations with stable demand patterns. How-
ever, if the demand exhibits high variance or if 
there is supply-side uncertainty due to traffic, 
weather, broken bikes, etc., the recommended 
solutions may be infeasible since re-optimiza-
tion is not done in such methods. It can, how-
ever, be used to compute value-of-information 
benchmarks by determining how well the system 
could be operated in retrospect, using data on the 
events that occurred. In that way, dynamic offline 
algorithms are still useful compared to static 
repositioning methods.

Online methods on the other hand can react 
to the current inventory level and potentially 
other external factors such as the day of the week, 
temperature, and precipitation.132 Most online 
methods in the literature are posed using a roll-
ing horizon14,122 or a Markov decision process 
(MDP) and reinforcement learning (RL) frame-
work.133,134 MDPs prescribe the sequence of 
actions to be taken at different system states by 
considering the rewards/costs incurred for vari-
ous state-action pairs and the stochastic nature of 
transitions between states after an action is taken. 
In the context of bike repositioning, states typi-
cally comprise of inventory levels and locations 
of repositioning vehicles and their contents. State 
transitions may occur when customers pick up or 
drop off bicycles or when vehicles remove or add 
cycles to stations.

Transition probabilities depend on the arrival 
processes of customers and the time it takes for 
vehicles and cycles to move between stations. 
Owing to large state and action spaces, the opti-
mal policies to these problems are solved using 
RL, particularly off-policy RL methods. In these 
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methods, the optimal policy is learnt using a sim-
ulator which generates demand data after train-
ing it on a real-world dataset. This procedure is 
done offline (not to be confused with the earlier 
description of offline repositioning methods) and 
a near-optimal policy is generated in the form of 
a look-up table that prescribes the action to take 
in each state. Using this policy, one could imple-
ment the suggested actions, in the field, in an 
online manner.

An MDP model proposed by Legros135 
attempted to minimize the long-run rate of 
unmet demand. Suppose that T 1

it and T 2
it represent 

the expected arrival rate of customers who are 
not able to rent and return a bike at station i up 
to time t respectively. Also let c1i  and c2i  be the unit 
costs incurred by the operator due to the non-
availability of bikes and docks at station i respec-
tively. Then, the objective was written as

The time-varying nature of arrival processes was 
modelled by dividing the time horizon into inter-
vals within which the parameters of the random 
processes could be assumed constant. Next, a 
rebalancing problem for a single station was cast 
as an average cost MDP and was extended to the 
multi-station case using approximate relative 
value functions and policy improvement steps.

A spatio-temporal RL approach was used in133 
for online repositioning of bikes in a BSS with an 
objective to minimize lost demand. To reduce the 
problem complexity, a clustering algorithm was 
used to group stations and multiple trikes (repo-
sitioning tricycles which typically carry 3–4 bikes) 
were used within each cluster. A deep neural net-
work was used to learn the optimal value func-
tions and the model was tested on real-world Citi 
Bike data. Another MDP model was proposed 
in134 to solve the dynamic repositioning problem 
with a similar objective. A coordinated lookahead 
policy heuristic was used to address the curse of 
dimensionality. The resulting policy was tested on 
data sets from BSSs in Minneapolis and San Fran-
cisco, US and was shown to perform better than 
benchmark policies in reducing lost demand.

Online problems have also been formulated 
as multi-stage stochastic programs.136 This model 
extends103 by considering demand scenarios 
drawn from known distributions that are con-
structed from data. They proposed a sample aver-
age approximation which was solved using a LDD 
method and a greedy online anticipatory heuris-
tic on CaBi and Hubway problem instances.

(51)min

{

lim
t→∞

∑

i∈N

(

c1i T
1
it + c2i T

2
it

)

}

Curse of dimensionality: is a 
term coined by Richard Bell-
man to describe the complex-
ity of dynamic programs that 
result from high-dimensional 
state, action, and disturbance 
spaces.

4.4  Incentivizing Users
Apart from using vehicles and bike-trailers to 
rebalance a BSS, operators can provide incentives 
to customers and influence them to pick up or 
drop off bikes at desired stations to avoid stations 
from becoming empty or full. Incentive design 
may be ideal if it is cheaper than deploying repo-
sitioning vehicles but is relatively difficult since 
user behaviour can be unpredictable. Researchers 
have presented different models to address this 
problem.

A deep RL framework was proposed in137 to 
rebalance dockless BSSs. The problem was mod-
elled as an MDP in which the actions at each 
time step are the prices for renting bikes in dif-
ferent regions of the network. A policy gradient 
approach was used to develop a novel hierarchi-
cal reinforcement pricing (HRP) algorithm, the 
objective of which was to maximize the total 
number of satisfied customers with a limited 
rebalancing budget. Experiments for HRP were 
conducted based on datasets from Mobike.

A two-choice model and a mean-field approx-
imation was proposed in138 for incentivizing 
users to rebalance a homogeneous BSS in which 
unmet pickup demands are assumed lost. Users 
are requested to provide two nearest destination 
stations and they are incentivized to return their 
bicycles to the station with lower inventory. It was 
found that this incentivizing scheme improved 
the redistribution rate significantly, even when a 
small fraction of users complied.

Another approach was developed by Pfrom-
mer et al.14 to rebalance a BSS using vehicle-based 
redistribution and user-based price incentives. 
Their model predictive control algorithm com-
puted dynamic rewards depending on the current 
and predicted future system states to optimize 
the operating costs while ensuring a desired ser-
vice quality. A Monte Carlo model was formu-
lated using historical data from the London Cycle 
Hiring and results showed that on weekends, the 
incentive scheme alone could improve the service 
level. On weekdays, however, price incentives were 
found to be insufficient for achieving the desired 
service level, especially during rush-hours.

A bilevel optimization formulation was pre-
sented in139 where link-level incentives/prices 
are decided at the upper level to minimize the 
number of imbalanced stations. The lower level 
assigns users to routes and destinations assum-
ing that they take the minimum cost paths. The 
proposed method attempted to create hubs in 
the system through which most of the demand is 
routed and ensured that only a small number of 
vehicles are deployed for further repositioning. A 
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heuristic approach named iterative price adjust-
ment scheme was used to solve the problem.

A different kind of incentive mechanism 
design problem was proposed in140 where reposi-
tioning activity was crowd sourced. Their model 
first determines all repositioning tasks and inter-
ested customers could bid for carrying out these 
tasks using bike trailers. Instead of bids,13 pro-
posed a dynamic incentive scheme in which the 
system offers its users incentives to change their 
pickup or dropoff location using a finite set of 
possible prices (subject to an overall budget con-
straint) and observes binary acceptance/rejection 
decisions. An online learning mechanism varies 
these prices across time and customers and using 
their acceptance/rejection decisions, a cost curve 
F(p) representing the probability of accepting an 
alternate station when offered a price incentive 
p is discovered. The proposed mechanism was 
deployed for one month on a real-world BSS, 
MVGmeinRad, in Europe. Rental requests were 
made on a smart phone app with information on 
intended pickup and dropoff stations. About 60 
percent of the offered incentives were accepted by 
users during the pilot implementation.

5  Technological Aspects
BSSs are going through a transformative phase 
in which technological advancements to improve 
existing systems are constantly being tested and 
deployed. For instance, a study by Woodcock 
et al.141 uses secondary data sources to estimate 
the disabled-life adjusted years (DALY) of BSS 
users in London by considering levels of air pol-
lution and traffic injuries. With modern day tech-
nology, it is possible to track bicycle activity of 
registered members and the health impacts can 
be more accurately captured and relayed to users 
via their apps in real-time. In this section, we 
examine potential future improvements to BSSs 
and discuss related research issues.

5.1  Electric Bikes
Electric bicycles that use rechargeable batteries 
and a motor to assist pedalling have the potential 
to replace traditional bikes of a BSS. These offer 
greater ease of cycling especially in cities with 
uneven terrains and can support long-distance 
trips. In January 2018, Limebike (currently known 
as Lime) unveiled a pedal-assisted electric bicy-
cle142 which was made operational in cities like 
Seattle, Miami, and San Francisco in the US. Cur-
rently, E-bikes of Lime and JumpBike are opera-
tional in many cities across the globe.

Use of E-bikes in a BSS brings with it a new set 
of problems. First, the demand for E-bikes may be 
very different from that of traditional BSSs since 
factors such as age, gender, trip purposes, and 
destinations influence the adoption of these sys-
tems. When compared with regular bikes, E-bikes 
may also attract a significant portion of travel-
lers using other motorized forms of transport. 
Demand forecasts for E-bikes can be obtained 
using stated preference surveys143 and other 
methods as explained in Sect. 3. For instance,144 
use a multinomial logit model on data collected 
from a survey in Beijing to analyse the impact of 
socio-demographic factors, environmental condi-
tions, and transit supply on E-bike usage.

Second, E-bike batteries need to be recharged 
which, depending on the vehicle design, can be 
done at the stations or using solar energy.145 
Hence, there are other dimensions to station loca-
tion such as connection with the grid and the 
amount of daylight received. Stochastic demand 
results in fluctuations in charging patterns and 
this needs to be considered when designing a 
low voltage grid network of bike stations with 
recharging capabilities.146 E-bikes can also be 
recharged by swapping batteries.147 The move-
ment of charged batteries and the swapping 
activities can also be modelled as a logistical 
optimization problem. For instance,148 generated 
different demand scenarios using Poisson distri-
butions and determined the number of E-bikes 
and batteries to be placed at different stations 
using Monte Carlo simulations. A pilot experi-
ment was also run at the University of Tennessee, 
Knoxville campus, where E-bikes powered by Li-
ion batteries were deployed.

5.2  Locking Mechanisms
Cycles in a BSS are prone to theft which neces-
sitates the use of foolproof locking mechanisms. 
Most BSS operators provide keyless locks on their 
bicycles. For example, Ofo used a number lock 
system in the early stages and later adopted a bar/
QR code. Mobike also uses a smart lock mecha-
nism which can be unlocked using a mobile 
app.149 Even though GPRS-based smart locks 
are in use, network connectivity issues are not 
uncommon. To address this problem, a narrow 
band Internet of Things (NBIoT)-based smart 
bike locks are being developed.150 Other options 
include bluetooth low energy (BLE) powered 
smart locks151 and electromechanical locking sys-
tem for E-bikes (which can also verify if the bicy-
cle was returned to a dock).145
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5.3  Impact of Pricing Schemes
One of the major challenges of BSS operators is to 
draw more customers to use their services. User 
satisfaction is not only dependent on the spatial 
location of stations and the availability of bikes 
or empty docks, but also on the pricing scheme. 
Low rental fares can increase ridership but also 
reduces revenue. Revenue also decreases when the 
cost of rentals is high since the demand for bike-
sharing will drop in such situations. In this con-
text, some studies have focused on understanding 
the optimal pricing policy and the sensitivity of 
users to BSS pricing.

In June 2016, CaBi introduced a single-trip 
fare (STF) scheme to allow customers to take 
a trip up to 30 min for $2. The timing of this 
scheme coincided with a SafeTrack metro rail 
maintenance program because of which an 
increase in bike rentals was anticipated and the 
number of docks was increased by about 23%. 
Before STF, CaBi also had a 24-h pass and a 3-day 
pass, priced at $8 and $17 respectively, for unlim-
ited trips less than 30 min. It also had monthly 
and annual subscription passes that cost $28 and 
$85. The presence of different options allowed152 
to study the impact of the price differences on 
the ridership across price classes. They found 
that rentals by casual users rose to about 79% per 
dock but there was not much change in the rid-
ership of those with monthly and annual passes. 
It was also found that there was a decrease in the 
revenue generated from users having a 24-h pass 
and a 3-day pass, indicating that some of them 
started to shift to the STF scheme.

The price sensitivities were further analysed 
in153 where STF was decreased from $2 to $1.50 
and annual membership changed from $85 to 
$73. This new pricing scheme improved both rev-
enue and ridership. Further analysis was made 
using an ordered logit regression model which 
suggested that low-income groups were relatively 
more sensitive to price changes and women were 
about 30% more price sensitive than men in the 
case of the STF pricing scheme.

Although changes to pricing structure in BSSs 
are usually infrequent, such opportunities can 
be put to good use to infer the effect of prices on 
revenue and ridership.

5.4  Periodic Bike Maintenance
Another crucial problem in the operation of a 
BSS is to identify broken or faulty bicycles that 
need repair.154 Bicycles typically face issues with 
tyre punctures, broken chains, and braking sys-
tems.155 In addition, GPS devices, locks, and dock 

slots at stations could also malfunction. These 
problems warrant periodic maintenance of bicy-
cles and the BSS infrastructure. Operators often 
allow users to report issues with their rented bicy-
cles using mobile apps. This information can be 
used to deploy maintenance vehicles and crew to 
repair faulty cycles at bike stations or to take bro-
ken bikes to dedicated repair stations. Decisions 
support tools for locating repair stations and 
routing of maintenance crew can be built using 
optimization models and these operations can be 
combined with repositioning.156 BSS operators 
must, from time to time, perform a cost benefit 
analysis to decide if bicycles must be discarded or 
repaired and reintroduced into the fleet.155 Some 
of the latest bicycles are equipped with tyreless 
tubes, disk brakes, and chainless drive shaft all of 
which can drastically reduce the frequency and 
extent of maintenance required for the upkeep of 
a BSS.

6  Conclusions
The growth of bike sharing systems has spurred 
considerable research, especially in the last dec-
ade, on problems related to its planning and 
operations. BSSs have the potential to transform 
into a competitive transportation mode in many 
cities around the world. It has a positive effect on 
the environment and the health of individuals 
and can also serve as a cost-effective intermediate 
public transportation mode to address last- and 
first-mile issues that plague most transit systems. 
In this paper, we reviewed the history of BSSs and 
literature on various mathematical models that 
can help planners and operators design, improve, 
and optimize new or existing BSSs. We also briefly 
examined the effects of pricing schemes, techno-
logical aspects such as E-bikes, and the mainte-
nance challenges posed by the broken bicycles.

Specifically, we examined literature on stra-
tegic and operational planning models. Strate-
gic planning involves forecasting the demand 
for BSSs, designing stations and bike paths, and 
determining dock capacity. Potential directions 
for future research on route design must consider 
the effects of elastic demand induced by supply-
side changes, automobile congestion on route 
choices of travellers, multi-modal trip making 
behaviour and transit connectivity, and socio-
economic characteristics of demand between dif-
ferent zones.

When designing station locations and capaci-
ties, most studies assume knowledge of demand 
which lacks spatio-temporal complexity. Diurnal 
patterns of travel are known to cause a reversal 
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of origins and destinations between the morning 
and evening peak periods. While these effects have 
been widely studied in the context of rebalancing, 
they do play a major role in station location and 
capacity allocation as well. Stylized versions of spa-
tio-temporal variation in demand, time to travel 
between stations, and relocation strategies must be 
used to make these decisions at a strategic level.

Our synthesis of literature on operational 
aspects of BSSs predominantly included static and 
dynamic repositioning. Static repositioning mod-
els assume that bikes are redistributed at night 
when bike usage is negligible. Dynamic reposi-
tioning operations on the other hand are carried 
out during the day when the system is in use. 
Models for rebalancing consider single or multi-
ple vehicles/bike-trailers which can make single or 
multiple visits to stations and can also feature user 
incentives. Many of these formulations were tested 
on real-world data sets and were found to improve 
the operational efficiency when compared to a 
do-nothing policy. However, supply-demand 
interactions are modelled only to a limited extent 
in existing literature. Although, econometric and 
machine learning models have been found to 
uncover influential factors and have good pre-
dictive power for short- and long-term demand, 
embedding them within optimization frameworks 
for managing supply is an uphill task. A right bal-
ance between predictive demand models and sup-
ply optimization is much needed for data-driven 
tools that can practically be used for BSSs.
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