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The Hydrogen Bond: A Hundred Years 
and Counting

1 Introduction
Over the course of its century of study following 
its earliest conceptual formulation1,2, the hydro-
gen bond (HB) has surrendered many of the 
mysteries of its source of stability and its myriad 
occurrences. Indeed, one might be hard pressed 
to think of chemical or biological systems which 
are completely free of the effects of HBs. Pro-
teins, carbohydrates, and nucleic acids alike owe 
much of their structure to this phenomenon. The 
many catalytic functions of enzymes are heavily 
dependent upon HBs between amino acid resi-
dues and substrates. In fact, water would not even 
exist as a liquid at room and biological tempera-
tures were it not for H-bonding. And of course, 
one would not be able to understand many chem-
ical and biological processes that take place in 
aqueous environment without a thorough treat-
ment of the HBs that occur in each such system.

The HB owes a large segment of its stability 
to simple Coulombic forces. The normal polar-
ity of a A–H bond, wherein A is an electronega-
tive atom such as O or N, places a partial positive 
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about the nature, properties, and applications of the H-bond. This review 
summarizes some of the unexpected paths that inquiry into this phenom-
enon has taken researchers. The transfer of the bridging proton from one 
molecule to another can occur not only in the ground electronic state, 
but also in various excited states. Study of the latter process has devel-
oped insights into the relationships between the nature of the state, 
the strength of the H-bond, and the height of the transfer barrier. The 
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ton donor and acceptor has led to the concept of the CH···O HB, whose 
properties are of immense importance in biomolecular structure and 
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exploration of related noncovalent bonds that include halogen, chalco-
gen, pnicogen, and tetrel bonds.
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charge on the proton. The latter can thus attract 
the partial negative charge of an approaching 
nucleophile D. Another important factor resides 
in the perturbation of the electronic structure 
of the two species as they approach one another. 
These alterations are typically referred to as 
induction, amongst other labels. At least con-
ceptually, the perturbations can be categorized 
as internal and external. That is, charge shifts 
within a given molecule can result in polariza-
tion energy, while charge transfer refers to any 
electron density that crosses an imaginary bor-
der that separates the two entities. For example, 
it is common to speak of n → σ* transfer by 
which some density is shifted from the nonbond-
ing, i.e. lone pair, orbital of the nucleophile into 
the σ*(A–H) antibonding orbital of the proton 
donor. This accumulation of density in an anti-
bonding orbital has been taken as the source of 
the weakening of the A–H covalent bond, and 
the resulting red shift of its stretching frequency, 
itself a hallmark of H-bonding. The latter density 
shifts, both internal and external, are sometimes 
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referred to as “covalent” contributions, although 
this particular sobriquet can be rather vague. To 
all the preceding terms, a last attractive contribu-
tion arises in connection with London disper-
sion, a factor which is common to all molecular 
interactions, HBs being no exception. Of course, 
if all components of the interaction were attrac-
tive, an AH···B HB would collapse into a single 
molecule. Such a collapse is prevented by Pauli 
exchange forces, similar in nature to what are 
colloquially referred to as steric repulsion.

While the earliest concept of a AH···D HB 
was predicated on only the very electronegative 
O, N, and F atoms as A or D participants, the 
list of atoms that can serve in this capacity has 
greatly expanded over the years. All the halogens 
have been shown3–7 capable, as have numerous 
chalcogen8–17 and pnicogen atoms18–20. The list 
has been extended to metal atoms as well21–28, 
both as proton donors and acceptors. In terms of 
nucleophilic proton acceptors, the original idea of 
lone pairs has also been extended, now to include 
π-systems of units such as alkenes or aromat-
ics29–35. Even the σ-bonds of molecules such as  H2 
can serve36–40 this function. Yet another new con-
cept is connected41 with the ability of a through-
space α-interaction between two lone pairs on 
different atoms to strengthen the H-bond with a 
CH donor. In fact, the definition of the HB has 
expanded so much over the past few decades 
that an IUPAC group has established a new set of 
guidelines42 that are quite general.

Since there are already available scores of 
works on HBs, including a number of extensive 
monographs43–50 that concentrate on the central 
issues of this phenomenon, this review focuses 
on some of the currently developing frontiers of 
the concept. As proton transfers within HBs have 
received a good deal of attention, and much has 
been written about them, the first topic consid-
ered here is the extension of this idea to proton 
transfers within excited states of HBs. Although 
of some importance in a number of areas, such 
as laser development, far less is known about 
this process in any of its excited states than its 
ground-state analog. A second frontier discussed 
here is the ability of the C atom to participate as 
a HB proton donor. Despite the low electronega-
tivity of C, that generally precludes the normal 
–A–H+ polarization, there is growing evidence of 
CH···O HBs, and their importance in numerous 
phenomena. Lastly, discussion turns to a rapidly 
evolving field of close cousins of HBs, which in 
an apparent paradox, do not involve a H atom at 
all.

2  Excited‑State Proton Transfer
Perhaps the first observation of a proton trans-
fer in an excited state dates to 1956 and refers to 
the intramolecular HB within a methyl salicylate 
molecule51. The first documented case of excited 
state concerted double proton transfer occurred 
in the 7-azaindole dimer52. Dual fluorescence in 
3-hydroxyflavone was explained on the basis of 
this process in 197953, and this process was placed 
in the context of a photoinduced proton transfer 
laser as the process required only 8 ps54. In addi-
tion to lasers, the excited-state proton transfer 
process has implications for data storage device 
and optical switching55–57, Raman filters and scin-
tillation counters58, triplet quenchers59,60 and pol-
ymer photostabilizers61,62.

The poster boy for examining intramolecu-
lar proton transfer, partly due to its simplicity, 
is the malonaldehyde molecule which contains 
an internal OH···O HB within a conjugated ring 
structure, as pictured in Fig. 1. The bridging pro-
ton can transfer across to the other O atom which 
results in a symmetrically equivalent system. The 
transition state (TS) for this transfer is a sym-
metric configuration with the proton equidistant 
between the two O atoms. An early study of this 
transfer63 comprised both the ground state So 
and the first excited π → π* triplet state, T1. The 
excitation into this state required on the order of 
95 kcal/mol, and had several effects. It reduced 
the acidity of the OH group, as well as the basic-
ity of the other O, and weakened the internal HB. 
Another result of the excitation is the addition of 
antibonding character to the C=O bond, which 
causes it to elongate. The bottom line is a higher 
pT barrier in T1 than in So, 13.6 versus 3.6 kcal/
mol. This concept was expanded64 to include 
other excited states as well. The 3ππ*, 3nπ*, 1ππ*, 
and 1nπ* states all displayed a rise in pT barrier 
versus the ground state, and indeed, a number 
showed barrierless pT. The height of the barrier 
was inversely correlated with the strength of the 
internal HB.

Figure 1: Structure of malonaldehyde (M) and 
the transition state (TS) for the transfer of the pro-
ton between O atoms.
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Research has progressed on malonaldehyde 
and its related systems over the ensuing years 
and continues unabated65–67. The excited-state 
proton transfer process is apparently important 
even in terms of the ground state. A very recent 
examination of the proton transfer68 implicated 
the two lowest excited singlet states in the prop-
erties of the ground-state transfer via conical 
intersections. Measurements and later calcula-
tions place the height of the ground-state proton 
transfer barrier at 5 kcal/mol, while the transfer 
in the 1ππ* state is barrierless, and a high barrier 
occurs in the 1nπ* state68–70, similar to the results 
obtained years earlier64.

A number of modifications to the basic 
malonaldehyde conjugated ring structure were 
examined next in the context of glyoxalmono-
hydrazine. Replacement of the OCCCO ring by 
OCCNN raised the possibility71 of different ener-
gies for the enol and keto structures, i.e. proton 
on O or N, as indicated in Fig. 2. The ground-
state pT potential contains two minima, O and N, 
with the latter lower by some 9 kcal/mol. The pT 
from N to O must pass over an energy barrier of 

only 2 kcal/mol. The situation is generally similar 
in the 1ππ* and 3ππ*. The situation is reversed in 
the singlet and triplet nπ* states, where O is pre-
ferred to N by 1 kcal/mol in 1ππ* and by 14 in the 
triplet. Unlike the malonaldehyde analog, most 
of the excited states of glyoxalmonohydrazine 
favor a nonplanar geometry. The specific distor-
tion mode is different for each state, as is the force 
toward nonplanarity. Permitting full distortion 
has a profound influence upon the energetics of 
pT, switching the relative stability of N and 0 in 
both excited singlets, as compared to the trans-
fer in the planar case. The situation was modified 
by replacing the H on the N by a  =CH2 group72. 
This perturbation leads to an interesting situation 
wherein the keto tautomer does not represent a 
minimum in the ground electronic state, but the 
reverse is true for either the first excited singlet or 
triplet, where it is only the keto minimum that is 
present. This system thus represents a pT that is 
forced by the excitation.

The entire system was remade73 into a 
symmetric system, wherein both O atoms of 
malonaldehyde are replaced by NH groups, 
as displayed in Fig. 3. As in the unsubstituted 
malonaldehyde, a correlation is noted in that 
the stronger the HB, the lower the barrier to 
proton transfer. Nonplanar distortions are 
different for each excited state, but because 
the distortions have similar energetic conse-
quences for the equilibrium- and transition-
state structures, the pT barrier of the 1nπ* 
state is little affected by permitting such defor-
mations. As for malonaldehyde molecule, the 
transfer barriers in either case obey the order 
1ππ* < SO < 3ππ* < ′nπ* < 3nπ*. The barriers are 
uniformly higher for the internitrogen trans-
fers than for the OH··O interaction in malonal-
dehyde, which is attributed to the longer HBs. 
For any given HB, the interoxygen transfer has 
a slightly higher barrier than does NH–N by 
2–3 kcal/mol.

The effects of the five-membered ring size 
of malonaldehyde changes to both four and 

Figure 2: O and N tautomers related to asymmet-
ric pT in glyoxalmonohydrazine.

Figure 3: Symmetric proton transfer in 1,5-Diaza-1,3-pentadiene.
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six, coupled with addition of a negative charge, 
while holding the HB atoms to O, was exam-
ined74 in a series of systems pictured in Fig. 4. 
The pT barriers correlate strongly with various 
geometric and energetic markers of the strength 
of the HB. The HB is weakened by n → π* exci-
tation, particularly for the neutral molecule, 
resulting in a higher barrier. In the case of the 
two anions, excitation to 3ππ* strengthens the 
HB, while the result is more ambiguous for the 
1ππ* state. This trend is reversed in malonalde-
hyde where the singlet is strengthened by the 
excitation and the triplet weakened. Some of 
these patterns were traced directly to the nature 
of the pertinent orbitals and the density shifts 
arising from the excitation.

The malonaldyde theme was added to a phe-
nyl ring in such a way as to perturb the intrinsic 
symmetry of the pT process, which was aug-
mented by inclusion of a methyl group in o–
hydroxyacetophenone75, as illustrated in Fig. 5. 
The correlated pT potentials for the ground and 
first excited singlet states each contain a single 
minimum, but they differ in placement of the 
proton. Hence the S0 → S1 excitation yields a 
spontaneous pT, from the hydroxyl O to the car-
bonyl O. Attachment to a phenyl ring was also 
examined76 in the closely related o-hydroxyben-
zaldehyde (oHBA), wherein the methyl group 

of hydroxyacetophenone is removed. In most 
respects, the addition of the aromatic system 
exerts little influence upon the properties of 
malonaldehyde. With the exception of the 1ππ* 
state, electronic excitation weakens the HB and 
simultaneously raises the pT barrier in either 
system. Unlike the symmetric transfer potential 
in malonaldehyde, the enol and keto tautomers 
of oHBA are chemically distinct. ππ* excitation 
reverses the preference for the enol tautomer in 
the ground state. This reversal is connected with 
the changing degree of aromaticity in the phenyl 
ring of oHBA. The asymmetric transfer poten-
tial in oHBA leads to forward and reverse bar-
riers of different magnitude. When this factor 
is accounted for by an averaging procedure, the 
transfer barriers in oHBA are similar to those of 
the corresponding states of malonaldehyde.

Another variation of the theme shrunk the 
HB segment down to a four-membered OCCO 
ring, which is then attached to a seven-membered 
hydrocarbon ring as in tropolone, illustrated in 
Fig. 6. The pT process in the S1 state77 is charac-
terized by a low barrier, such that only one dou-
blet of the OH stretching frequency lies below 
the peak of the pT barrier. A careful analysis of 
the tunneling splitting revealed that bending 
vibrations play only a minor role in the pT pro-
cess so that a two-dimensional stretching model, 

Figure 4: Four (4′) and six (6′) membered anionic ring analogues of malonaldehyde (5).



65

The Hydrogen Bond

1 3J. Indian Inst. Sci. | VOL 100:1 | 61–76 January 2020 | journal.iisc.ernet.in

involving only O···O and O–H stretches ought to 
be adequate.

Attachment to a phenyl ring was also con-
sidered in the context of salicylaldimine, which 
contains the symmetric OCCCN ring, and in 

particular how the pT potential is affected by F 
substitution78, as indicated in Fig. 7. Many of the 
effects are inductive; the electronegative F makes 
the proximate N or O atom a stronger acid or 
weaker base and thereby modulates the preferred 
position of the proton. The magnitude of the per-
turbation diminishes as the site of substitution is 
further removed from the HB. This principle also 
controls the manner in which F affects the geom-
etry and strength of the intramolecular HB in 
both the enol and keto tautomers. Whereas these 
notions apply fairly consistently to the ground 
state and excited ππ* singlet and triplet, a num-
ber of anomalous patterns emerged in the 1nπ* 
state. In general, the effects of fluorosubstitution 
are smaller in magnitude than the changes that 
occur in the pT properties as a result of electronic 
excitation.

While the results described above concerned 
intramolecular pT through an internal HB, it is 
also of interest to consider intermolecular pro-
cesses. An example is the transfer of a proton 
from phenol to ammonia79 which would morph 

Figure 5: Primary and tautomeric forms of o-hydroxyacetophenone.

Figure 6: Four-membered OCCO ring attached 
to 7-membered ring in tropolone system.

Figure 7: Placement of a F-substituent into salicylaldimine in either  X1 or  X2 positions.
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the system from a neutral PhOH···NH3 pair to 
a  PhO−···+HNH3 ion pair. While such a trans-
fer is highly disfavored in the ground state, the 
situation changes dramatically in the first excited 
singlet state where the pT potential develops a 
second minimum, with the two configurations 
roughly equal in energy.

More details about these results, and the spe-
cific methods applied can be found in the original 
papers as well as a summarizing Feature Article80. 
Work has certainly not ceased in this field, which 
continues apace81–83 from both computational 
and experimental perspectives.

3  CH···O H‑Bonds
Another frontier in the definition and proper-
ties of H-bonding lies on the weak end of the 
spectrum. The CH group is so pervasive in 
chemistry and biochemistry, that its ability to 
participate in a HB is of utmost importance. 
While a simple alkane does not provide a suf-
ficiently polar CH group to act in this fashion, 
it is well documented that a HB is formed if 
the C changes its hybridization84,85 from sp3 to 
sp, as in HC≡CH or N≡CH. Another means 
to amplify the CH polarity is the placement of 
electron-withdrawing substituents on the C, as 
would naturally occur in a protein where each 
 CαH is flanked by a pair of peptide groups. As 
work proceeded on CH···O HBs, it was soon 
apparent that some of them have an unusual 
quirk. Instead of shifting the A–H stretch-
ing frequency to the red as had been taken as 
a necessary condition of a AH··D HB, a cer-
tain subset of CH··O interactions shifted the 
C–H stretch to the blue86–92. While there were 
some initial complaints that such a shift in the 
wrong direction ought to disqualify this inter-
action as being a true HB, it fulfilled all other 
typical criteria. This anomaly was soon deter-
mined to result from the fact that the direction 
of shift arises from a delicate balance between 
forces, some tending to shift to the red, and oth-
ers to the blue93–101. While the former tend to 
win out in most HBs, the subtle balance simply 
shifts in the opposite direction for some CH···O 
HBs102–106.

Within the realm of proteins, the most com-
mon CH group capable to participate in such a 
bond is the  CαH group which is surrounded by 
a pair of electron-withdrawing peptide groups. 
Calculations have demonstrated the strength of 
these bonds107 as just less than that of a standard 
NH··O interaction. With respect to sidechains 
containing an aromatic group, e.g. Tyr or His, the 

CH of the aromatic ring was also a viable proton 
donor.108

It had been part of conventional wisdom that 
it is the NH··O HBs between strands that hold the 
β-sheet together. But study of the atomic positions 
of a β-sheet in Fig. 8 shows that CH groups are 
also in position to donate a proton to the peptide 
O of the neighboring strand. Quantum calcula-
tions109 showed that these putative interstrand 
CH··O HBs are competitive in strength with 
NH··O, and serve as an integral component in the 
stability of the β-sheet, a finding that has since 
been confirmed by others110–115.

Despite a longstanding notion that the strength 
of a HB between two given groups depends only 
upon their relative geometry, i.e. HB length and 
angles, calculations showed this to only be part 
of the story. Even when a pair of peptide groups 
is locked into a given configuration116, the inter-
action energy is highly sensitive to the overall 
structure of the polypeptide chain on which they 
reside. In particular, extended conformations of a 
polypeptide are capable of only weak NH··O HBs, 
and the interstrand NH···O H-bonds in β-sheets 
are weaker than those found in other conforma-
tions, such as helices, ribbons, and β-bends, even if 
the specific HB geometries are similar. In a related 
vein, the CH··O HB is even stronger than NH··O 
within the context of a simple dipeptide106 when in 
a  C5 geometry, a small model somewhat similar to 
the β-sheet. These trends are not restricted only to 
in vacuo settings, but retain their integrity within 
the context of a dielectric continuum model of a 
protein interior117.

The importance of the CH··O HB is not 
limited to structural issues, but also plays a role 
in various enzymatic mechanisms. These ideas 
were tested within the context of the serine 
proteinase family of enzymes118. Earlier, work-
ers had suggested what they called a “ring-flip” 
hypothesis involving a 180° rotation of a key 
His residue as a vital step in the catalysis. This 
mechanism relied on the presence of a CH··O 
HB to stabilize one of the intermediates in the 
formation of the tetrahedral intermediate. The 
calculations were generally supportive of this 
idea but raised some important discrepancies 
that required resolution before its acceptance. 
This sort of HB has implications in other enzy-
matic mechanisms as well119. There are also 
contributions of this weak HB as a determin-
ing factor120–122 in the conformation of certain 
organic systems. Needless to say, even normally 
weak HBs can be strengthened by the acquisi-
tion of charge on either the proton donor or 
acceptor group.123–125
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As experimentalists continue to examine 
systems for the presence of CH··O HBs, they 
require certain trademark or fingerprint char-
acteristics for which to search. In addition to 
geometric aspects which are already fairly well 
understood, it is common to apply spectro-
scopic methods to these biological systems. 
Quantum calculations have provided some such 
characteristics for which to search126–128. It was 
noted earlier that CH stretching frequencies can 
shift in either direction; nonetheless, a blue shift 
would be a valuable indicator as it would not 
occur in the absence of such a bond. A down-
field shift of the bridging proton’s NMR signal 
would reinforce this supposition. With respect 
to the proton acceptor, a large upfield shift of 
the O chemical shift, by as much as 16 ppm, can 
serve as another indicator.

4  Cousins of the H‑Bond
Another HB frontier that has been approached is 
its definition as an interaction involving a bridg-
ing proton. Suppose this H was to be replaced by 
a different atom, but the various properties were 
to remain largely intact. Early work had suggested 
such a phenomenon, wherein H could be replaced 
by any of several halogen (X) atoms129–131. The 
ability of the X to serve in this capacity rests on 
the highly anisotropic charge distribution which 
surrounds it. While its electronegativity imparts 
to it an overall negative partial charge, there is a 
reduced density along the extension of the R–X 
bond, which has been termed a “polar flatten-
ing”, which in turn causes a region of positive 

electrostatic potential in this region, commonly 
referred to as a σ-hole132–136. It is this localized 
positive region which can attract a nucleophile, in 
such the same way as does the H in a AH··D HB.

This idea of a halogen bond (XB) is not 
restricted only to halogen atoms, but is com-
mon also to chalcogen, pnicogen, and even tet-
rel atoms, in their eponymously named bonds. 
There are certain fine point differences amongst 
these bonds. For example, while a univalent X 
atom displays a single σ-hole lying along the 
extension of the R–X bond, a divalent Y chal-
cogen atom will typically contain two such 
σ-holes, each lying along an extension of the 
two R–Y bonds. These holes will not be able to 
lie directly opposite the bond, since the high 
electron density of the two Y lone pairs will tend 
to push the holes away from them. This distinc-
tion is illustrated in the comparison of FCl with 
HFS in Fig. 9a, b, respectively. In each case, the 
blue oval represents the σ* antibonding orbital, 
FCl in a and FS in b, along which the reduced 
electron density would tend toward a σ-hole. 
The Cl atom of FCl contains three lone pairs, 
represented by red ovals, whose density would 
push the positive potential, i.e. the σ-hole, away 
from themselves. Due to their symmetric dis-
position, the blue region of the potential lies 
directly along the F–Cl axis and the σ* orbital 
direction. On the other hand, there are only 
two lone pairs on the S atom in Fig. 9b, which 
together push the σ-hole down away from them. 
A nucleophile would thus tend toward this blue 
region σ-hole, and a nonlinear FS···Nuc align-
ment. A similar nonlinear arrangement between 

Figure 8: Pair of polypeptide strands in the antiparallel β-sheet arrangement, indicating putative HBs by 
broken lines. Brown atoms represent generic R groups of amino acids.
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the F–P bond extension and the σ-hole would 
be expected for a pnicogen bond (ZB), in 
Fig. 9c, due to a single lone pair. The absence of 
any lone pairs on the Si atom in Fig. 9d would 
allow the blue positive potential σ-hole to align 
perfectly with the σ*(F–Si) antibonding orbital, 
resulting in a linear Tetrel bond (TB). It must 
be noted that since the high electron density 
of lone pairs mitigate the positively charged 
σ-hole, the progressive decrease of lone pair 
number in the sequence halogen > chalco-
gen > pnicogen > tetrel would tend to enhance 
the σ-hole intensity in the same order.

After an initial study that demonstrated that 
a P···N interaction is energetically preferred to 
a PH···N HB137, more detailed study138 showed 
this to be a characteristic of pnicogen bonds in 
general. Part of the interaction arises from the 
donation of charge from the N lone pair into 
the σ*(PH) antibonding orbital. This transfer is 
identical to that in a PH··B HB, except that it is 
the P-end of this orbital which points toward the 
N, rather than the H-end. The strength of such 
a ZB is heightened when the H is replaced by 
an electron-withdrawing agent such as F139. Fig-
ure 10 shows how the interaction energy ΔE rises 
as the substituent’s electron-withdrawing power 
increases from  CH3 and H up to F and  NO2 for 
the  XH2P···NH3 series140. Along with this rise in 
binding is a concomitant amount of charge trans-
ferred from the base to the Lewis acid, as meas-
ured either by NBO values of E(2) or the total 
charge on the entire subunit Δq.

In fact, this substitution is even capable of 
making first-row N capable of accepting charge 
in a N··N pnicogen bond141 despite the reluctance 
of first-row atoms to engage in such bonds. With 
respect to the electronegativity and polarizability 
of the pnicogen atom, larger atoms yield stronger 
ZBs140,142–144 in the order P < As < Sb. This trend 
has no parallel to HBs as it is always the proton 
that acts as bridge.

As one might anticipate, since halogen and 
pnicogen atoms can replace the proton in HBs, 
the same idea can be extended to chalcogen (S, 
Se, etc.) atoms as well. Work by our group145–149 
as well as numerous others150–156 elaborated on 
these ideas. Indeed, there is currently a IUPAC 
group tasked with adopting a working definition 
of a chalcogen bond, with others to follow later 
for the other sorts. The extension to tetrel atoms 
(the Si family) occurred soon thereafter, show-
ing many of the same controlling factors that are 
present for X, Y, and Z atoms157–160. The normally 
tetravalent tetrel atoms introduced a new factor 
which had been less prominent in the other sorts 
of bonds. In order for a base to approach the cen-
tral tetrel atom along a face of the tetrahedron, 
the three proximate substituents must “peel back” 
away from this base, changing the originally tetra-
hedral structure into something akin to a trigonal 
bipyramid. There is thus a good deal of deforma-
tion energy that must be surmounted161–163 if this 
tetrel bond is to form. This deformation energy 
makes the tetrel bond formation less exothermic 
than it would otherwise be, and can even control 
the particular site at which the base can attack.

Figure 9: Molecular electrostatic potential sur-
rounding indicated molecules, with blue indicat-
ing positive and negative represented by red 
regions. Light blue oval designates the σ*(F–A) 
antibonding orbital that lies directly opposite the 
F–A covalent bond. Lone pairs on each central A 
atom are indicated by red ovals.

Figure 10: Variation of second-order energy E(2) 
and amount of charge transferred from N lone 
pair of  NH3 to σ*(XP) antibonding orbital of  H2PX 
as a function of interaction energy ΔE.
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The idea of tetrel bonds brought up an inter-
esting issue. It had typically been considered that 
a nucleophile lying along the R–C extension of 
an R–CH3 group constituted a trifurcated HB, 
i.e. interaction with three H atoms. And, there 
are certainly many such geometrical disposi-
tions of this sort, in both chemical and biologi-
cal systems164. But how can one distinguish this 
idea of a trifurcated HB from the newer concept 
of a R–C···D tetrel bond? Indeed, there are spec-
troscopic markers that are different for the two 
sorts of interactions165,166, and it is hoped that the 
future will witness attempts to distinguish these 
two types of interactions.

As work has progressed in this area, it has 
become recognized that the positive regions are 
not limited only to σ-holes lying along the exten-
sion of a particular covalent bond. There are 
π-holes as well, wherein the positive potential sits 
above the plane of a molecule, as in  H2SiO for 
example, in the vicinity of the electronic π-cloud. 
This broadening of the idea has been probed 
extensively and shown that while the π-hole inter-
actions are usually weaker than their σ parallels, 
this trend is sometimes reversed158,167–169, espe-
cially when the π-hole lies above a triel atom such 
as B or Al170–173. Of course, such π-hole interac-
tions do not have a H-bonding parallel.

These relatives of the HB are hardly exotic 
academic novelties, but have a wide range of 
applications, such as serving as synthons in self-
assembling networks174, biological catalysis175, 
oxidative addition176, self-assembled monolay-
ers177,  SN2  reaction catalysis178, design of func-
tional mesomorphic materials179, and even 
directed construction of supramolecular quad-
ruple and double helices180. One of the more 
interesting uses concerns selective binding of ani-
ons181–188. It was realized that the replacement of 
the H atom of certain multidentate anion recep-
tors with a halogen atom allowed them to engage 
in halogen bonds with an anion, which in turn 
strengthened the interaction, and enhanced the 
selectivity for certain anions over others.

Calculations were applied to this idea, and 
were able to suggest certain options that ought 
to enhance these abilities. Optimal choices 
of particular halogen atoms were proposed, 
along with identification of chemical groups to 
which they ought to be bonded, spacer groups 
between the halogen bonding groups, and over-
all charge189–191. Subsequent work broadened this 
idea beyond simply halogen bonds, but consid-
ered their chalcogen, pnicogen, and tetrel coun-
terparts192–195. It was concluded that tetrel bonds 
offered a particularly tempting choice for their 

interactions with a halide, furnishing both very 
strong interactions, and a marked preference for 
 F− over other halides.

5  Perspective
It would seem then that even after a full cen-
tury of study, which has provided a wealth of 
information and insights into the H-bond, we 
are nowhere near the end of learning its secrets. 
Its fundamental nature is a template for a much 
broader set of interactions. Far from the initial 
thoughts that the A and B atoms in the AH···B 
interaction are limited to O, N, and F, the set of 
participating atoms has broadened so widely over 
the years, such that an atom that cannot serve 
in this capacity would be the exception, not the 
rule. In particular, the entry of the CH group, 
into the club of proton-donating members, has 
opened wide new vistas concerning the struc-
ture and function of large molecules including 
proteins and nucleic acids, vistas that are only 
recently beginning to be explored. The possibility 
of proton transfer within a given HB has enor-
mous implications as well, not only in the ground 
electronic state but also in various excited states 
which open new sets of practical applications. 
And the further broadening of the original con-
cept of a proton-bridging HB to systems where 
this central proton is replaced by any of a large 
number of electronegative atoms has introduced 
an entire new area that encompasses halogen, 
chalcogen, pnicogen, and tetrel bonds, again an 
area whose impact is only beginning to emerge.

Given all that has transpired in the last cen-
tury, it would be foolish to presume that we have 
reached the final border of what the H-bond has 
to teach us. One can only hope that the next cen-
tury of inquiry will be as fruitful as the first.
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