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Continuum in H‑bond and Other Weak Interactions 
(X–Z···Y): Shift in X–Z Stretch from Blue Through 
Zero to Red

1 Introduction
Our fascination with weak interactions was trig-
gered by X-ray structures of complexes having 
two CH···π interactions with one CC triple bond 
(Fig. 1). It is felt that independent of the nature 
of interaction, the structure where each  CHCl3  
interacts with a different π bond (2) should be  
lower in energy than (1) where both the  CHCl3  
interacts with one π bond1. Computations  
indeed showed that 2 is more stable than 1 in the 
gas phase by a very small magnitude. However,  
something more interesting was observed: the  
CH bond of  CHCl3 in 1 and 2 became shorter  
than that in isolated  CHCl3. Here, we give a very  
brief review of the work that led from this obser-
vation. At that time contraction of X–H bond  
on H-bond formation was counterintuitive; any  
X–H···Y interaction is known to weaken the X–H 
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Abstract | We review the variation of X–Z stretching frequency in the for‑
mation of Z‑bonds (X–Z···Y, Z = H, or other main group element). Majority 
of hydrogen bonds (H‑bonds) occur between a strongly polar X–H bond 
and an electron pair donor (H‑bond acceptor) Y and show a red shift 
in the X–H stretch. In very weak H‑bonds, there are several instances 
where the X–H bond is blue shifted. We show that X–H shifts span a con‑
tinuum going from red through zero to blue; there is nothing improper or 
anti about H‑bonds that are blue shifted. Other Z‑bonds bring more fac‑
tors in deciding the blue and red shift. When negative hyperconjugation 
in the uncomplexed monomer outweighs the charge transfer from incom‑
ing electron‑rich species Y during the formation of X–Z···Y (Z = halogen, 
chalcogen, etc.), it leads to blue shifting X–Z bond. In the absence of 
negative hyperconjugation in the monomer, X–Z bond length elonga‑
tion (red shift) is almost always observed on complexation with Y. In an 
X–Z···Y interaction, the detailed nature of the fragment X has the major 
influence on the way Z and Y control bond length elongation/contraction. 
The general trend in the magnitude of blue shift amongst various weak 
interactions was observed to be in the following order: halogen > chalco‑
gen > hydrogen > pnicogen bonding.
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bond and it must be longer in the complex than 
in the isolated molecule. A red shift in the X–H 
stretching frequency was anticipated in 1 and 
2. Being very cautious, we sought some experi-
mental support before publishing these results. 
At that time (around 1996), Dr Viswanathan 
at IGCAR, who was planning to build a super-
cooled nozzle jet expansion set-up, promised 
to study  C2H2···CHCl3 complexes using surface 
IR in a cold matrix. Though it took over 3 years, 
the results confirmed the blue shift of the C–H 
stretching frequency of  CHCl3 in the complex, 
and we published this collaborative work2. How-
ever, by that time, a few publications appeared 
about the abnormal and anti-hydrogen bonds 
with blue shift in weak H-bonded complexes3, 4. 
We noticed that H-bond interactions involving 
C–H were known even earlier5–7. A more detailed 
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analysis was done on this CH···π interaction by  
us soon after; further effort in this line of research 
was not made by us for some time8.

However, during the next 5 years, large 
number of experimental and theoretical stud-
ies appeared in the literature, which gave a vari-
ety of examples of blue-shifted H-bonds. These 
H-bonds were described variously as abnor-
mal-, improper-, and anti-, each providing a 
new explanation for the observation9–25. Most 
aspects of chemistry form a continuum, and we 
felt that blue and red shift cannot be an excep-
tion, prompting us to look at this question again 
so that an explanation of these observations 
which can be transferred from one chemical sys-
tem to another can be evolved (we do not sub-
scribe to the other school of thought, going back 
to the four fundamental forces of nature, that all 
forces in chemistry belongs to just one of them 
and there is no further modes of understanding 
needed. Also, see the article by Politzer in this 
special issue). A possible hypothesis is that forces 
that elongate and contract the X–H bond exist 
and that in strong X–H···Y bonds (vast majority 
of them fall in this category), the forces that elon-
gate the X–H bonds dominate. In the very weak 
ones, these forces are more evenly balanced. This 
leads to the obvious corollary that there should be 
examples where there is no shift in the X–H bond 
stretch (zero shift), but with definite existence of 
H-bond. This appeared even more counterintui-
tive at that time: X–H forms an H-bond with Y as 
in X–H···Y, with no change in the X–H stretching 
frequency or bond length.

With these ideas, we looked at many explana-
tions that were offered for the counterintuitive 

blue-shifting H-bonds. The short-range Pauli 
repulsion19–21, redistribution of electron den-
sity13, 14, 22, 23, effect of the electric field10, 15, 24 and 
rehybridization25 gained significant attention 
as explanations. These were inadequate to give 
a common explanation for the observation of 
either blue or red shift and to suggest the contin-
uum nature of chemistry that may be manifested 
here as well. We decided to examine these obser-
vations in greater detail, only to find out that each 
of these individual explanation has a counter 
example26. The observed structures are a result of 
all of these factors.

In general, there is direct correlation between 
bond length change and vibrational shift; X–H 
bond elongation leading to red shift, whereas 
X–H bond contraction causes blue shift, given 
there is no vibrational mode mixing. These can be 
detected experimentally using FTIR spectroscopy.

2  Red, Blue and Zero Shift in H‑bonds
We studied the details of H-bonded complexes 
computationally using a series of potential energy 
scans using a combination of X–H and Y, Fig. 2.26 
For example, the distance between H and the 
center of benzene in the  H3CH-Benzene complex, 
where the C–H bond is brought along the  C6 axis 
of benzene, is decreased gradually from 6.0 Å. At 
each point rest of the structural parameters are 
optimized, maintaining the same symmetry. The 
optimal C–H distance at each point is plotted as a 
function of H···Y distance. Similarly total energy 
is also plotted as a function of H···Y distance 
(Fig. 2a). The C–H bond length decreases contin-
uously, almost till the minimum energy structure 

Figure 1: Ternary complex of disubstituted acetylene with  CHCl3 having C–H···π interaction, (R = PPh2Np; 
Np = Napthyl). The two  CHCl3 moieties interact with same (1) and different (2) π bonds of C ≡ C bond 1.
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is reached and then elongates. The observation 
of the two minima (in energy and the C–H dis-
tance) close to each other is pure coincidence in 
this example as seen further below. Though the 
effect of long-range correlation in changing the 
C–H bond length is obvious, this type of behav-
ior is no guarantee that there will be blue shift 
whenever there is initial bond-shortening as seen 
in the next example, Fig. 2b. Here, a similar dia-
gram is drawn for the interaction of  H3CH with 
 NH3 which is known to be a good H-bond accep-
tor. The C–H bond length decreases here as well 
as  NH3 approaches closer, albeit not as steeply. 
The minimum in the C–H bond length is calcu-
lated approximately around 3.5 Å, much earlier 
than the minimum in energy. At the minimum 
energy point the C–H bond length is marginally 
longer than in the parent  CH4. This results in red 

shift. We then changed the nature of the C–H 
bond and kept the H-bond acceptor the same. 
A similar potential energy scan of  Cl3CH···C6H6 
showed that the length of C–H bond decreases 
steeply as the distance between the two molecules 
is decreased, Fig. 2c. The minimum in the C–H 
distance occurs a little earlier than the minimum 
in energy. However, at the equilibrium distance, 
the C–H bond is elongated only slightly so that 
the distance is still shorter than that in isolated 
 Cl3CH, exhibiting a blue shift. These results 
clearly indicate that there will be a continuum 
of behavior, going from blue to red through zero 
shift.

Taking a series of H-bonds obtained from 
appropriate combinations of X–H···Y26, we 
showed that each of the explanation provided 
earlier is partial and a counter example can be 
found that require additional factors. This also 
enabled us to categorize H-bond donors which 
will always show red shift, which will show red or 
blue shift depending on the H-bond acceptor, and 
which will show only blue shift. Similar groups 
are made of the H-bond acceptors as well. This 
also led to examples with zero shift on H-bond 
formation. A schematic way of representing these 
qualitative ideas is given in Fig. 3. This is a sche-
matic composite figure to explain the range of 
examples available in Z-bonds (Z = Hydrogen, 
Halogen, Chalcogen, and Pnicogen). Let us con-
sider the schematic curve for H-bond. The X-axis 
corresponds to H-bond energy and Y-axis the 
difference in stretching frequency of X–H bond 
before and after the formation of H-bond. At the 
origin, there is no interaction between X–H and 
Y (i.e. infinite separation). Initially, large number 
of examples from experimental and computa-
tional results H-bonds was plotted. Most of the 

Figure 2: Variation of C–H bond length with 
total energy of the complex during the poten‑
tial energy scan at MP2/6‑31G* level of the‑
ory: a  H3C–H···benzene, b  H3C–H···NH3, c 
 Cl3C–H···benzene 27.

Figure 3: A qualitative picture of the continuum 
of X–Z bond, X–Z···Y, Z = hydrogen, halogen, 
chalcogen, pnicogen 40.
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H-bonds have red-shifted X–H bonds and were 
above the X-axis and below the black line ema-
nating from the origin. There were several points 
corresponding to blue-shifted H-bonds which 
were below the X-axis. An approximate curve was 
drawn to include all of them, shown as Hydrogen 
in Fig. 3. Thus, all the known H-bonds are seen 
within the area above this curve and below the 
black line emanating from the origin. This curve 
has many interesting ramifications. For example, 
the common notion that as the interaction energy 
increases, X–H frequency shifts from blue to red 
is not true for the very weak X–H bonds. There 
are examples on the left side of the minimum 
in this curve where the interaction energy may 
increase with an increase in the blue shift. Then, 
the blue shift bottoms out and moves on with fur-
ther increase in the interaction energy to less blue 
shift and then to the red shift regime. A zeroth 
order explanation of these observations is the fol-
lowing. In normal (strong) hydrogen bonds, the 
X–H bond is highly polar. The electrostatic inter-
action between  Hδ+ and the Y lone pair on the 
electronegative group is dominant. The interac-
tion becomes stronger if the charge on the H is 
increased. This is achieved by greater polarization 
of the X–H bond as Y approaches which makes 
the X–H bond longer. If we now imagine a situa-
tion where the X–H bond is not at all polar, say in 
C–H which forms very weak H-bonds, the elec-
tron distribution corresponding to the bond will 
be more even around the X–H bond. The lone 
pairs on Y would still have a long-range polariza-
tion effect which would push the electrons of the 
X–H bond away from Y. This would increase the 
electron density between carbon and hydrogen of 
the C–H bond and bond length is decreased. It is 
possible to visualize examples where the polarity 
of C–H bond is controlled by the other substitu-
ents so that this effect can be controlled, explain-
ing the lower part of the curve (Fig. 3). The more 
recent extensive definition of H-bond brings in a 
variety of examples all of which are expected to 
be points in this manifold27.

3  Red‑, Blue‑ and Zero Shift in Z‑bonds
While we were studying the unusual behavior of 
H-bonds, there were already several examples of 
weak interactions involving other main group ele-
ments. Though a similar behavior in terms of blue 
and red shift was anticipated among these, we did 
not study this at that time. About 5 years later, 
a new graduate student Jyothish Joy joined the 
group at IISER Thiruvananthapuram. We real-
ized that there are varieties of weak interactions 

involving main group elements other than hydro-
gen (X–Z···Y, Z = main group element) such as 
halogen27–30, chalcogen 31, pnicogen32, tetral 33–35, 
boron 36, lithium37, 38 and beryllium39 studied 
computationally and experimentally. While the 
possibility for the formation of Z-bonds can be 
judged by examining the σ-hole available in X–
Z30, we looked for the possibility of blue and red 
shifting on Z-bond formation40. It is found that 
the starting X–Z bond lengths in large measure 
decide the possibility of X–Z becoming a red-
shifted or blue-shifted X–Z···Y40. Hydrogen with 
only one orbital and one electron, presents the 
simplest case of the weak interaction. The varia-
tions in the X–H bonds are limited by the nature 
of X. There is no further variable possible with 
hydrogen. In contrast, Z-bonds involve atoms 
having additional electrons and orbitals. The 
additional electrons on Z atoms in X–Z play a 
major role in reorganization of electron density 
in ways that are not possible in X–H. In addition, 
there is limited vibrational mode mixing in the 
X–H stretch. The linear relationship between the 
change in bond length and change in vibrational 
frequency is an unambiguous indicator of red/
blue-shifted hydrogen bonds. In contrast, una-
voidable vibrational mode mixing in X–Z stretch-
ing in X–Z···Y has forced researchers to switch to 
bond length change as a measure of red/blue/zero 
shift43. In addition, for a given X, the variation of 
the X–H distance in the parent molecule is mini-
mal. In contrast, the X–Z bond length in the par-
ent molecule (Z other than H) varies depending 
on the complexity of the group X.

The most common explanation for the 
observed X–Z bond length in the parent sys-
tem is negative hyperconjugation41,42. This 
refers to the transfer of electron density from 
the filled lone pair or the p orbital of the 
group X to the neighboring X–Z σ* antibond-
ing molecular orbital (ABMO) of the parent 
X–Z molecule41, 42. This donation of electron 
density leads to X–Z bond elongation in the 
monomer due to partial occupation of X–Z σ* 
ABMO for the halogens, (Fig. 4a). There is also 
the reverse possibility where the lone pair of 
electrons on Z is donated to the σ* antibond-
ing orbital of the X group, leading to a decrease 
in the X–Z bond length, Fig. 4b. The starting 
X–Z distance largely controls the change in 
the X–Z bond length on X–Z···Y formation. 
The exchange repulsion caused by the elec-
trons of the approaching Y can shift electron 
density from the Z atom to X, either by push-
ing electron density from the σ* back to the X 
group (reversing negative hyperconjugation 
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(Fig. 4a) or enhancing the negative hypercon-
jugation (Fig. 4b). In either case, there is pos-
sibility for blue shift in the X–Z stretch. If the 
effect of negative hyperconjugation is mini-
mal, the charge transfer from Y to the X–Z σ* 
produces a red shift. What happens in a given 
case depends on the net effect of these. In other 
words, it is the competition between negative 
hyperconjugation in monomer X–Z and charge 
transfer from incoming Y which decides the 
nature of the shift. Though this mechanism of 
electron density redistribution may be debated, 
we have shown that by carefully selecting the 
X and Y in X–Z···Y interaction, continuum 
in Z bonds from red-, zero- to blue shifts can 
be achieved, adding on to the Fig. 3. Analy-
sis of several examples of X–Z···Y involving 
Z = halogens, chalcogens, and pnicogens, sup-
ported the qualitative curves of Fig. 3. Similar 
schematic curves will evolve for other Z-bonds 
when more examples become available.

Overall, the continuum nature of weak 
interactions is mainly governed by the nature 
of X-group having a unique property of nega-
tive hyperconjugation. To have a reasonable 
interaction energy with optimum blue-shift 
X-group should be strong enough to create a 
σ-hole over the Z atom and the electronega-
tivity of X atom which is directly connected to 
Z atom should be less than Z atom. This has 
led us to another question: why are there no 

Z-bonds where Z is an 18 electron transition 
metal, and this is discussed elsewhere43.

4  Conclusions
In general, all red-shifting HB donors are charac-
terized by relatively highly polar, electron-rich, and 
short X–H bonds which can only show elonga-
tion with all reasonable Y’s. On the contrary, blue-
shifting HB donor has less polar X–H bonds which 
show contraction in the presence of Y. This leads 
to a continuum of behavior where with appropri-
ate X–H and Y combination, an X–H bond may be 
formed where the X–H may not elongate or con-
tract, something between the blue shift and the 
red shift resulting in X–H···Y interaction with zero 
shift and non-zero interaction energy.

The continuum nature of weak interactions 
from red to blue through zero shift found in hydro-
gen bonding is also prevalent in all the other forms 
of weak interactions such as halogen, chalcogen, 
pnicogen and tetral bonds. The extend of nega-
tive hyperconjugation and consequent variation 
in the bond length in the parent X–Z molecule 
largely decides the nature of the Z-bond. The bal-
ance between the flow of electron density in the 
σ* X–Z antibonding molecular orbital from the 
negative hyperconjugation back to the X group and 
the charge transfer from Y group to σ* X–Z anti-
bonding molecular orbital results in blue or red 
shift of X–Z bond in X–Z···Y complex. Thus, by 

Figure 4: Interaction diagram showing negative hyperconjugative stablization of F‑lone pairs on  CF3 frag‑
ment to the σ* C–Cl bond (a) and Cl lone pair on C–Cl bond to the σ* C–F bond of  CF3 fragment (b) in 
 CF3Cl molecule.
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controlling the nature of X and Y moieties of the 
weak interaction X–Z···Y, one can control these 
interactions which are responsible for maintaining 
the framework of supramolecular architectures. 
Though these interactions are small, the nature 
of blue and red shift must receive the attention of 
developers of forcefields for classical dynamics 
simulations.
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