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Exploring Hydrogen Bond in Biological Molecules

1 Introduction
Life is a complex and fascinating phenomenon, 
in part due to the exotic combination of factors 
required for its appearance. It is usually taken as 
a complex combination of chemical reactions in 
delicate equilibrium that demand very strict con-
ditions. In this model, even small alterations of 
the environment necessarily cause life disappear-
ance. However, life has shown to have exceptional 
resilience. Living organisms have demonstrated 
to be able to model the environment at planetary 
scale. Certainly, it is well known that originally, 
our planet had a reductive atmosphere and that 
the appearance in the Neoarchean era of pho-
tosynthetic organisms that released oxygen as 
a by-product of their metabolism changed that 
primitive atmosphere1 and most important, 
life was able to survive such dramatic change, 
adapted to it, and finally expanded.

Part of the plasticity of life comes from its use 
of inter-molecular interactions:2, 3 sticky forces 
that come into play whenever two (or more) 
atoms, molecules, or a combination of them 
approaches one each other. The electronic clouds 
of the interacting entities dance a complex chore-
ography known as “electron dynamic correlation” 
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Abstract | Life makes extensive use of non-covalent interactions, as they 
are a convenient way to build complex structures that can be assembled 
or disassembled quickly, with a minimum energy consumption. Among 
the inter-molecular interactions, hydrogen bond plays a central role, and 
it is the main responsible of the structure of proteins, DNA, and several 
other superstructures in the cell. Characterization of hydrogen bond 
in biologic environment is not an easy task, and several complex and 
imaginative techniques have been developed to circumvent the techni-
cal challenges of such studies. We present here an overview of the field 
of mass-resolved laser spectroscopy applied to nucleobases, peptides, 
and monosaccharides to demonstrate that despite the different environ-
ment the molecules encounter in the jet, such experiments yield impor-
tant structural information that helps understanding the role played by 
hydrogen bond in biology.
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that results in the appearance of attractive forces.4 
Although the module of these forces, usually 
divided into van der Waals and hydrogen bond,5 
is small, they present interesting characteristics, 
such as cooperativity, that reinforce their impor-
tance.6 Certainly, inter-molecular interactions 
shape the environment around us and perhaps 
the similarity between their module and kT is one 
of the reasons that helped the appearance of life. 
For example, the difference in interaction energy 
between ammonia and water molecules is the 
reason why ammonia is a gas at room tempera-
ture, while water is a liquid. Furthermore, cooling 
water below 0 °C is enough to transform it into a 
solid able to sink a ship. Indeed, the strong pro-
pensity of water towards formation of hydrogen 
bonds makes it a fascinating element and it is 
probably one of the key factors behind the exist-
ence of life on earth.

Another example is the barrier that iso-
lates (and protects) cells and bacteria from the 
environment, the well-known lipid membrane. 
This barrier is mainly composed of amphiphi-
lic molecules called phospholipids, which are 
glycerol derivatives with a polar head group and 
two aliphatic chains; in contact with water, the 
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phospholipids auto-organize to hide the lipo-
philic side and to expose the (hydrophilic) head 
group to the surrounding water.7 Thus, the lipid 
bilayer is not composed of covalently bonded 
molecules but by an assembly of molecules, held 
together by non-covalent interactions. This gives 
the lipid membrane a fluid consistency and the 
cells need to use cholesterol to create domains of 
increased rigidity in the membrane, where mem-
brane proteins can anchor and maintain a stable 
conformation. These domains are known as lipid 
rafts and move around the lipid membrane, like 
“rafting” the interphase.8

The design of proteins is also based on favora-
ble/unfavorable water–amino acid (AA) and AA–
AA interactions. Certainly, among the collection 
of amino acids (20 in the case of human cells), 
some present OH, NH or a combination of both 
groups, SH, or even charged groups, which enable 
a favorable interaction with water. Conversely, 
amino acids with aliphatic side chains or con-
taining aromatic groups will present unfavorable 
interactions with water. A smart combination of 
the amino acids induces the protein to fold in 
such a way that the exposure of the hydropho-
bic amino acids is minimized, while formation 
of intramolecular hydrogen bonds (H bonds) is 
optimized.9

Formation of H bonds is also an essential 
aspect in DNA: the two strands of DNA are held 
together mainly by the formation of hydrogen 
bonds between partner bases (cytosine with gua-
nine and thymine with adenine, C-G and A-T). 
The whole machinery of DNA storage in the form 
of chromatin and the translation of the genome 
into proteins is also based on very specific inter-
actions between nucleobases and proteins. The 
protein machinery that enables information stor-
age and retrieval has an incredible complexity 
and involves around ~ 5–7% of the human cod-
ing genome.9 The whole process is regulated by 
a subtle interplay of protein–DNA interactions 
in which formation of H bonds plays a dominant 
role. Actually, gene expression may be promoted/
silenced by methylation: a process that blocks 
formation of H bonds in key places. This mecha-
nism is so relevant that a new discipline, the Epi-
genetics, has appeared devoted to understand its 
principles.

All the examples above highlight the impor-
tance of having a deep knowledge of the non-
covalent forces and specially of hydrogen bond. 
However, its intrinsic weak nature makes con-
struction of accurate models a difficult task.2 
Despite their importance in biological environ-
ments, the stability added by these interactions to, 

for example, a protein is a small fraction of the 
total stability of the protein, and very often, it is 
of the order of the calculation error.10 Thus, very 
accurate experimental data are required to adjust 
the theoretical models.11

One of the main sources of data is the spec-
troscopy in supersonic expansions,10, 12–14 as the 
extensive literature published in the last decades 
demonstrate.2 The expansion is usually created 
using a pulsed valve that releases a short (micro-
seconds) pulse of gas into a vacuum cham-
ber. The gas is seeded with the molecules to be 
explored and maintained at pressures between 1 
and 50 bar. Thus, when the valve opens, an adi-
abatic expansion is created, transforming the 
ro-vibrational energy of the molecules into trans-
lational energy. Cooling of the rotational energy 
is substantially more efficient, leaving the mole-
cules at ~ 3–5 K. Depending on the molecules, the 
vibrational temperature is reduced to ~ 50–100 K: 
the very energetic vibrational levels of the small 
molecules will require of hard, direct collisions 
with the buffer gas to transfer their vibrational 
energy to translational energy. On the other hand, 
very large systems are difficult to cool. Also, when 
laser desorption systems are used, the geometry 
of the nozzle is usually less efficient, producing 
hotter expansions. In any case, the temperatures 
reached enable molecules to aggregate, form-
ing clusters of sizes containing up to dozens of 
molecules. Once the aggregates leave the colli-
sions region, they travel isolated from the envi-
ronment forming a dense molecular beam. As it 
can be seen, the expansion has three advantages: 
it cools the molecules simplifying their spectros-
copy, enables formation of molecular aggregates, 
and enables achieving a relatively high density 
of species in a confined space that can be probed 
using a combination of spectroscopic techniques. 
An excellent review on the subject may be found 
in Ref. 15.

We will arbitrarily divide here the techniques 
available into two categories: with and without 
mass selectivity, due to the extreme advantage 
that the use of mass spectrometers for the dis-
crimination between species introduces in the 
process of obtaining physical observables of the 
aggregates.17 Certainly, in the case of electronic 
spectroscopy, formation of molecular aggre-
gates results in a modest perturbation of the 
electronic transition, and therefore, they pre-
sent overlapping absorption spectra. Transition 
from a traditional laser-induced fluorescence 
(LIF) experiment to a resonance-enhanced mul-
tiphoton ionization (REMPI) technique ena-
bles segregation of the spectra of each species in 
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a different mass channel (Fig. 1). Nevertheless, 
use of mass selection is not that relevant in the 
high-resolution techniques, such as high-resolu-
tion LIF18 or microwave (MW) spectroscopy.19 
Especially in the latter, the high specificity of the 
technique enables the efficient identification of 
the spectra of multiple species in the beam. A 
beautiful example of the power of MW spectros-
copy may be found in the study of water aggre-
gates,20 phenol21 and aniline homotrimers22 or 
difluoromethane–water.23

Characterization of the molecular aggre-
gates usually demands the use of several very 
elaborated spectroscopic techniques. Even very 
small aggregates very often present a collection 
of conformational isomer (abbreviated as con-
formers or isomers), consequence of the differ-
ent ways in which the molecules can interact, 
leading to formation of aggregates of similar 
stability (Fig. 2). The most popular technique 
to identify the number of conformers of a given 
system is the so-called UV/UV double resonance 
or “hole burning” (Fig. 3). This technique iso-
lates the contribution from each species to the 
excitation spectrum of a given aggregate. Once 
isolated, the IR/UV technique enables extraction 
of the IR spectrum of each conformer, yielding 
important structural information.25 Certainly, 
the position of the IR bands is very sensitive to 
the environment of the chemical moiety. Thus, 
formation of a hydrogen bond usually results in a 
shift in the position of the corresponding stretch-
ing vibration. This shift is usually proportional 
to the strength of the hydrogen bond formed. 
Additional techniques, such as determination of 
the ionization energy thresholds26 or dispersed 
fluorescence spectroscopy,27 enable extraction 

of physical observables that will conclude with 
an accurate identification of the structure of the 
isomers of a given aggregate, by comparison with 
the in silico simulations and predictions.

With these experimental and computational 
tools, an impressive number of systems have been 
tackled in the last decades (see, for example, ref-
erences29–57). We will give in the following several 
examples, highlighting the influence of the hydro-
gen bond in the structure of biological molecules.

1.1  DNA and DNA Bases
One of the most intriguing questions in biology is 
why nature chose CGAT (cytosine, guanine, ade-
nine, and thymine) as the alphabet of life. Some 
authors speculate on the idea that in the primal 
earth where life first appeared, the molecules were 
exposed to strong VUV radiation, and therefore, 
only those species resistant to solar radiation were 
able to survive and form the first molecules with 
auto-replication ability.58–60 Certainly, all DNA 
bases present very short excited state lifetimes, 
which allow the molecules to dissipate efficiently 
the electronic excitation and transform it into 
vibrational (thermal) energy. However, DNA 
also contains sugar units and phosphate groups, 
which can also be ionized by VUV radiation. 
Several recent studies deal with the photodam-
age induced in the deoxyribose and other sugars, 
and demonstrate that UV radiation easily induces 
their dissociation.60 In addition, other works 
demonstrate that new deactivation channels open 
when two nucleobases establish stacking inter-
actions61, 62 or that interaction with water also 
modifies the excited state dynamics, increasing 
the lifetimes.63 Therefore, it is not clear that VUV 
radiation alone may have played such a determi-
nant role.

Another possibility is that CGAT were the best 
candidates to build a molecule to store informa-
tion, because their ability to interact with many 
molecules at the same time. The special combi-
nation of functional groups in DNA bases gives 
them the ability to interact preferentially with 
their complementary base, but at the same time, 
to form stacking interactions to build the biopol-
ymer. Still, they present additional functional 
groups to form hydrogen bonds with other mol-
ecules. Thus, DNA bases contain a combination 
of CO/and NH groups that confer them a marked 
preference to pair with their complementary base 
(C-G/A-T). However, in addition, they also allow 
the nucleobases to be easily recognized through 
non-covalent interactions, enabling the DNA/

Figure 1: Mass spectrum obtained from a super-
sonic expansion of propofol and water in He. 
Each species appears in a different mass chan-
nel, enabling exploration of their spectroscopy 
without interferences Adapted from Ref.16.
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RNA strand to be “read” and the information that 
it contains interpreted. Furthermore, such com-
bination permits their simultaneous interaction 
with several proteins. This is essential, as DNA 
is usually stored wrapped around disk-shaped 
protein ensembles called histones.64 Unfolding 
DNA is a complex process that involves interac-
tion with several highly specialized proteins that 
bind to the DNA strand with a high affinity and 
pull from it, liberating and leaving it ready to 
couple with the transcriptional machinery. Meth-
ylation of NH sites in the nucleobases blocks the 
grips that such proteins use, silencing the gene. 
These so-called “epigenetic marks” give the cell a 

dynamic mechanism to choose when and what 
genes to express.65

All the above highlights the importance of 
having a good knowledge of the aggregation pref-
erences of nucleobases and has motivated pub-
lication of a large number of experimental and 
computational works.31, 59, 61, 63, 66–74

Gas-phase spectroscopic studies on DNA 
bases pairing are not easy. First, their vapor pres-
sure is low, and therefore, they are not transferred 
efficiently into the gas phase by simple warming. 
Therefore, more sophisticated desorption systems 
have to be used. Among them, the most popular 
is laser desorption. Second, DNA bases present 
several tautomers. In the biological environment, 

Figure 2: Schematic representation of the conformational landscape for the interaction between phenol 
and caffeine. The conformers are organized depending on the relative orientation of the two molecules 
and the lines represent connections between the structures. Hydrogen atoms were omitted except that of 
the hydroxyl group of phenol for the shake of clarity Adapted from Ref.24.
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water preferentially stabilizes the ones that usually 
appear in the text books, which are not necessar-
ily those detected in jets.31, 61, 71, 73, 75–80 Especially, 
when laser desorption sources are used, the large 
amounts of energy deposited in the sample by 
the desorption laser opens isomerization paths, 
leading to tautomeric species that are further sta-
bilized by the collisions during the expansion. As 
an example, Fig. 4 shows the tautomers of gua-
nine, with the most stable forms in the center of 
the figure: the 9-keto and 7-keto tautomers. The 
small structural difference between them, the 
position of the hydrogen atom shaded in orange, 
is enough to produce a measurable difference in 

the IR spectrum. From these keto forms, the enol 
tautomers, the next most stable structures, are 
obtained by moving a single proton. This modi-
fication is also clearly reflected in the spectrum. 
From a spectroscopic point of view, the two pos-
sible orientations of the hydroxyl hydrogen atom, 
highlighted with a double arrow in Fig. 4, also 
produce two different and relevant species, as 
they present a different landscape of inter-molec-
ular interactions.

The same happens with the imine-keto tau-
tomers, formed by transferring a proton from the 
 NH2 moiety into the N4. Although these species 
are relatively high in energy, they are also detected 

Figure 3: Comparison between the two-color REMPI spectrum of the propofol···phenol aggregate and the 
hole burning traces obtained probing different transitions of the REMPI spectrum. The tentative assign-
ments included with the hole burning traces demonstrate the sensitivity of the technique that enables dis-
crimination between conformers differing in the relative position of the two molecules Adapted from Ref. 
28.
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in supersonic expansions. Finally, each of the two 
imine-enol tautomers has four conformational 
isomers, depending on the relative orientation of 
the NH and OH groups. The presence of so many 
species of a given nucleobase strongly complicates 

the spectroscopic studies, but it has the advantage 
of providing structural information on a larger 
portion of the potential energy surface. This is 
particularly interesting for the search of life in 
exoplanets. The 9-keto is the most stable form of 

Figure 4: Tautomers of guanine. The two structures in the center of the picture correspond to the two 
most stable tautomers. The colors highlight the protons that must be moved between chemical groups 
to form a different tautomer. The double arrow highlights that some of the tautomers have two different 
isomers, which differ in the orientation of a single hydrogen atom. Some tautomers, such as 9-imine-enol, 
present four conformational isomers.
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guanine under biological conditions, as we know 
them in this planet. However, life may appear (or 
even has appeared) in other worlds under very 
different conditions. For example, in colder envi-
ronments, oceans of liquid ammonia may exist. 
Such extremely alkaline conditions will favor dif-
ferent tautomers of the same nucleobases, in case 
that life still uses such molecules as biological 
building blocks.

Aggregation under jet conditions is also dif-
ferent from real biological environments, but still, 
important information may be extracted using 
laser spectroscopy and computational chemis-
try. Thus, guanine–cytosine do not spontane-
ously form the Watson–Crick (WC) pair (Fig. 5), 
characterized by the formation of three strong 
hydrogen bonds. Conversely, they adopt a differ-
ent conformation in which only two symmetric 
hydrogen bonds are formed.78, 81 Probably, such 

conformation gains stability by the resonance 
between keto and enol tautomers, which very 
likely results in a strong delocalization of the 
shared protons. Only if the hydrogen atom on N1 
of cytosine is replaced by a methyl group resem-
bling the attachment of a sugar unit, the two 
bases choose a WC configuration.81 Other tree 
possible G–C aggregates formed by the two most 
stable tautomers of the two bases are also pre-
sented in Fig. 5. All these aggregates are not very 
different in energy, and therefore, any alteration 
of the environment may tip the balance towards 
adopting a different conformation. For exam-
ple, addition of water has been demonstrated to 
strongly perturb the conformational landscape.82

Formation of DNA not only requires a strong 
propensity of nucleobases to form hydrogen 
bonds, but also their ability to establish π · · ·π 
interactions. Actually, some studies point to a 

Figure 5: The Watson–Crick pairing (green rectangle) of guanine–cytosine is neither the only possible 
interaction structure nor the most stable in gas phase (red rectangle). Other three possible pairings are 
also shown.
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competition between stacking and hydrogen 
bond in the aggregates of nucleosides, start-
ing from the dimer.83 Furthermore, inclusion of 
water molecules in the simulations favors forma-
tion of stacked structures, as a way to “hide” the 
hydrophobic sides of the nucleobases (the aro-
matic ring),47 while the NH, OH, and CO groups 
remain available for the formation of hydrogen 
bonds with water.71, 84 Our own studies on the 
subject point to formation of stacking struc-
tures, even in the absence of water, once certain 
size is reached.85 Figure 6 shows the conformers 
of cytosine dimer, trimer, and tetramer detected 
in supersonic expansions. Two conformers were 
found for the dimer, based on different com-
binations of two very strong hydrogen bonds. 
According to calculations carried out at M06-
2X/6-311++G(d,p), the binding energy of the 
system is close to 80 kJ/mol, which is compara-
ble with the binding energy of a covalent bond, 
although one must take into account that two 
hydrogen bonds are contributing to such binding 
energy. In this situation, the two shared protons 
are delocalized between the two molecules, which 
do not have a well-defined tautomerism. When 
a third molecule is added, it attaches to the pre-
existing ones in either of the two ways observed 
for the dimer, forming a planar structure. How-
ever, according to the calculations, there is a com-
petition on the tetramer between stacked and 
linear conformers. Unfortunately, it is not pos-
sible to discern from the congested spectrum of 
such a large aggregate which of the two structures, 
either planar or stacked, is formed. The compu-
tational experiment demonstrates that methyla-
tion of N1 is enough to favor stacking over linear 
cluster growth.85 Such tendency is reinforced 
in the nucleosides, due to the extra stabilization 
energy of the sugar stacking.86 This propensity of 
the nucleobases towards forming stacked dimers 
may have also favored the appearance of a double 
strand of proto-DNA. The tendency of the nucle-
osides to form stacked dimers may have facili-
tated their fusion in a double strand, by addition 
of phosphate groups. However, more experiments 
are required to probe this hypothesis.

Confirmation of the importance of the abil-
ity of DNA bases to form hydrogen bonds also 
requires additional experiments on related 
metabolites already present in living beings, 
which exhibit similar combination of NH/CO 
groups. One of the most evident molecules is 
xanthine and its derivatives.24 They are somehow 
a mixture between the backbone of adenine and 
the CO/N/CO/N motif in thymine, giving them 
certain affinity for some nucleobases receptors. 

This is probably the reason of the well-known 
stimulant properties of caffeine, one of the mol-
ecules of the family. Why nature chose CGAT 
over, for example, the molecules of the xanthine 
family are still a mystery, but characterization of 
their respective aggregation properties may help 
shedding some light on the subject. For example, 
exploration of their interactions with proteins or 
peptides and comparing the results from those 
of nucleobase–peptide interaction87 may help 
understanding if a biopolymer built using xan-
thine derivatives would be as versatile as DNA, 
from an interaction point of view.

1.2  Amino Acids and Peptides
Proteins are the nano-machines of the cell. They 
are complex molecules, carefully designed, and 
optimized to carry out all kinds of tasks: from 
purely structural to complex catalytic processes. 
The number of proteins that compose the human 
proteome is still undetermined, but some authors 
report existence of > 100.000 different proteins,88 
all of them built using a combination of only 
20 amino acids. The design of the amino acids 
is somehow similar to the concept behind the 
Lego blocks: they have a carboxylic acid group 
at one end and an amino group at the other 
(Fig. 7), enabling fast and energetically efficient 
assembly in the so-called peptide bond. In addi-
tion, they present a side chain that may contain 
pure aliphatic groups, NH, CO, aromatic or SH 
groups, and even charged groups, such as quater-
nary amines or carboxylic acids. The sequence of 
amino acids in a protein is optimized to induce its 
folding into a well-defined spatial conformation. 
Misfolding of a protein does not only involve 
loss of function, but it may also have pathologi-
cal consequences, as the mad-cow disease demon-
strated several years ago.89

Control over the final shape of a protein is 
carefully exerted by two mechanisms: forma-
tion of hydrogen bonds between the peptide 
bonds and by the correct combination of amino 
acids in the sequence of the protein.90 The for-
mer is responsible for the formation of α-helices, 
β-sheets, and several types of turns (Fig. 8),91 
which are the most common structural motifs in 
proteins, although not the only ones. The α-helix 
is a structure in the shape of a right-handed helix, 
held together by C=O···H–N hydrogen bonds 
between non-consecutive amino acids. Each helix 
contains six AAs. This is the most predictable 
and prevalent structure in the proteins. However, 
not all the amino acids present the same propen-
sity towards formation of α-helices and some 
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Figure 6: Structure of the detected aggregates of cytosine dimer (a, b), trimer (c, d) and tetramer (e–g) in supersonic 
expansions. The experimental data could not determine if the tetramer adopts a planar or stacked structure.
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amino acid sequences are more prone to form 
β-sheets, structures composed by two sequences 
of AAs that run parallel and are held together by 
C=O···H–N interactions between the peptide 
bond of the AAs. The two sequences are usually 
separated by a variable number of AAs forming 
one (or several) of the many possible turns.92

One of the most frequent turns is the so-called 
γ-turn:94 ordered, but not periodic, structures 
that may be classified by the torsional angles of 
the participant carbon atoms. All kinds of turns 
are usually stabilized by formation of hydrogen 
bonds between the oxygen and NH atoms in the 
protein’s back bone. Putting all these elements 
together, the structure of a protein may be envi-
sioned as α-helices and β-sheets connected by 
turns. It is a priori difficult to predict the folding 
of a protein, because it depends on a subtle bal-
ance between all the forces at play: formation of 
intramolecular hydrogen bonds, conformational 
preferences of each amino acid, and interaction 

of the AAs with the environment (water or lipids 
in the case of membrane proteins).90 In principle, 
the preference of a given AA sequence to form 
and helix or a sheet may depend on the propen-
sity of a section of the protein to fold in a certain 
way, to allow interactions to take place between 
closer or more distant AAs. Thus, the shape of 
the whole protein may be determined by the 
sequence of small, key sections. In this sense, sev-
eral groups have conducted spectroscopic studies 
in jets to determine the conformational prefer-
ences of different combinations of AAs, yielding 
invaluable information to depurate the in silico 
models.32, 33, 48, 49, 95–104

The most striking observation is that all the 
interactions constituent of the above-mentioned 
structural elements were observed in jets, despite 
the size limitations of these types of experiments, 
and the requirement of introducing a chromo-
phore (an aromatic ring) in the structure to carry 
out the spectroscopy.46 Studies on peptides of 

Figure 7: Structure of the 20 natural amino acids, plus de seleniated version of cysteine. The lateral 
chains are grouped according to their nature. Starting from the blue square and moving to the right: posi-
tively charged, negatively charged, special cases, aromatic, aliphatic, and polar side chains.



145

Exploring Hydrogen Bond in Biological Molecules

1 3J. Indian Inst. Sci. | VOL 100:1 | 135–154 January 2020 | journal.iisc.ernet.in

increasing size determined that Ac(Ala)2–O–Bn 
preferentially adopts conformations that resemble 
those in β-strands: the extended sequences that 
in the end result in formation of the β-sheets.105 
Replacing an alanine residue by a phenylalanine 
to form Ac-Phe-Ala-NH2 produces a strong mod-
ification in the structure of the peptide, which 
now shows a marked preference towards γ-turn 
like conformations.106, 107 If the AA sequence is 
reversed, the resulting dipeptide prefers adopt-
ing a β-turn like conformation.108 If alanine is 
replaced by glycine, the resulting Ac–Gly–Phe–
NH2 peptide prefers formation of  27-ribbon like 
structures.109 This is not a common structure, but 
its stability has been demonstrated for peptides 
containing Leu AAs.110 Further elongation of the 
peptide introducing more alanine residues results 
in formation of helix-like structures (Ac–Ala–
Phe–Ala–NH2) and β-hairpin conformations.111 
Finally, β-sheet-like interactions were observed 
for some peptide dimers.105, 112

One must take into account that all these 
structures were formed in vacuum, i.e., in 
absence of any solvent, and therefore, they dem-
onstrate that the basic structural motifs are 
already “coded” in the structure of the peptide 
backbone. There is still a long path ahead until 
complete understanding of the protein fold-
ing mechanism is achieved, in part due to the 

modulations introduced in the peptide structure 
by each side chain. Exploratory studies revealed 
that, for example, introduction of aromatic AAs 
may force the folding of the backbone in such a 
way that a direct π · · ·π interaction may take 
place.113 This effect may be reinforced in solution, 
due to the hydrophobic character of the aromatic 
rings. Gas-phase studies may also yield important 
information on the influence of a limited num-
ber of water molecules in the final structure of a 
peptide. However, these are technically challeng-
ing studies, and therefore, a very limited number 
of works have been published till the date.114–118

1.3  Sugars and Glycans
In addition to nucleobases and proteins, the cell 
contains an undetermined number of molecular 
species. Most of them are grouped into the so-
called metabolome and their study is essential to 
connect genotype with phenotype. Among such 
a large collection of molecules, sugars and lipids 
are probably the most abundant families, and 
therefore, they deserve a special treatment. The 
study of lipids in jets presents technical difficul-
ties that are almost impossible to solve with cur-
rent techniques: they adopt flexible and dynamic 
structures formed by aliphatic chains that pro-
duce broad absorptions in the IR. Very limited 
structural information can be extracted from 
those spectral signatures.

On the other hand, sugars are small mol-
ecules, essential for many processes.9 Apart from 
their well-known role in metabolism, they are 
key molecules for the immune system. The lipid 
membrane is decorated with glycans that serve as 
cellular ID:119, 120 the cells of the immune system 
patrol the tissues probing such polysaccharides, 
and if the sugar combination is not recognized, 
the cell is marked as foe and an immune response 
is elicited. It is not surprising that sugars were 
chosen for such specialized task, due to their 
structural characteristics. As polyhydroxyalde-
hydes, they contain a combination of hydroxyl 
groups that are coupled through formation of 
intramolecular hydrogen bonds. Figure 9 com-
pares the structure of the hexoses in their pyra-
nose form. The substituent in C1, the anomeric 
carbon, can be in either axial or equatorial posi-
tion, resulting in α or β anomers. Starting from 
β-glucose, which is the sugar that has all the OH 
substituents in equatorial position, the rest of 
the sugars are obtained moving one or several 
hydroxyl groups to axial conformation.121 As 
all the hydroxyl groups are involved in forma-
tion of cooperative hydrogen-bond networks, 

Figure 8: Model of a potassium channel (2WLI 
in the Protein Data Bank),93 highlighting the ter-
tiary structure. α-helix are depicted in blue and 
β-sheets in red–yellow–orange. Several turns con-
necting such structures are also visible.
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modification of the position of a single OH has 
a noticeable impact in the shape of the network, 
which somehow amplifies the structural changes. 
In a sense, the axial/equatorial disposition of the 
OH groups in the sugar molecules may be envi-
sioned as the 1 s and 0 s in the binary register of 
a computer. Adding several sugar units to form 
a polysaccharide, a significantly long register can 
be built. Only the correct combination of axial/
equatorial OHs, the equivalent to the correct 
value in the binary register, is recognized as valid 
by the receptors in the cells of the immune sys-
tem.120, 122–124

Exploration of the conformational preferences 
of sugars in jets was started by Simon’s group 

using laser spectroscopy.40, 41, 123, 125–133 Such stud-
ies were later complemented with others using 
MW spectroscopy to map the structure of all 
main sugar molecules.134–140 Several conclusions 
were derived from such studies. First, sugars have 
strong preference for the pyranose form in jets. 
Certainly, monosaccharides can adopt in solution 
an extended form or they can cyclize through 
intramolecular nucleophilic attack. For example, 
hexoses can be found in pyranose (6-membered 
ring, Fig. 10) or furanose (5-membered ring) 
forms. As cycle formation may take place with 
two possible orientations, monosaccharides can 
interconvert between α and β anomeric forms 
in solution, although they are not isoenergetic. 

Figure 9: Structure of the hexoses in pyranose form. Starting from β-glucose, which has all the hydroxyl 
groups in equatorial position, the rest of the sugars are obtained by moving one or several (all in the case 
of α-idose) OH substituents into axial position. Darker colors highlight OHs in axial position. In a sense, 
sugar molecules resemble a binary register of a computer and the axial/equatorial positions of the OHs 
represent the 1 s and 0 s.
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To block the mutarotation and to enable the use 
of electronic spectroscopy to characterize the 
sugar molecules, a substituent is introduced in 
the anomeric carbon, usually an aromatic ring. 
Such modification has a non-negligible impact in 
the conformational preferences, but the benefits 
derived from such modification compensate the 
small alteration introduced in the molecular con-
formational landscape.

Despite the presence of several OH groups 
in the monosaccharides, they interact with other 
molecules in a limited number of ways, with the 
hydroxymethyl group as the preferred interaction 
site.41, 141–145 This is a consequence of the forma-
tion of cooperative hydrogen bonds between the 
OH groups. Inclusion of, for example, a water 
molecule between two hydroxyl groups requires 
of a first step that involves H-bond breaking, and 
therefore, the process has a substantial poten-
tial energy barrier.146, 147 The second reason 
that favors interaction with the hydroxymethyl 
group is its flexibility, which enables optimiz-
ing its position to maximize the interaction 
energy. This is clearly seen in Fig. 11, where the 
interaction between β-phenyl-d-glucopyranose 

(β-PhGlc) and α-/β-glucopyranose (α-/β-Glc), 
N-methylacetamide, paracetamol, phenol, and 
α-/β-methyl-d-glucopyranose (α-/β-MeGlc) 
is analyzed.141 All the molecules are attracted 
towards the hydroxymethyl group of β-PhGlc 
and are trapped between it and the aromatic ring. 
Conversely, interaction with α-/β-Glc and α-/β-
MeGlc takes place through β-PhGlc O3 and O4. 
Interestingly, β-PhGlc resembles the primer used 
by the enzyme glycogenin to start glycogen syn-
thesis from glucose. On the light of these results, 
one is tempted to speculate that perhaps tyrosine 
was chosen by nature as the docking amino acid 
for the first glucose molecule, because the com-
bination of the sugar’s hydroxymethyl group and 
the tyrosine’s aromatic ring constitutes a kind of 
trap for the wandering molecules, keeping them 
away from the interaction site where the next glu-
cose molecule has to bind. In this way, blocking 
the polymerization site would be prevented. In 
favor of this hypothesis, replacing the aromatic 
ring of β-PhGlc by a methyl group results in the 
shift of the interaction site towards O3/O4.

An interesting property of sugars is the differ-
ences in the inter-molecular interactions that the 

Figure 10: Sugars may adopt linear or cyclic structures. Depending on the cyclization mechanism, hex-
oses may be found as six-membered (pyranosides) or five-membered (furanosides) rings.
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position of the hydroxyl groups introduces. For 
example, as demonstrated in previous works,142 
interaction between β-PhGlc and MeGlc is sub-
stantially stronger with the β anomer than with 
the α anomer. The axial orientation of the ano-
meric substituent enables formation of a very 
symmetric structure, in which the two molecules 
fusion their respective H-bond networks in a 
single one that runs along both structures. Con-
versely, interaction with the α anomer is sub-
stantially less favorable. These conclusions were 
extended to other combinations of sugar deriva-
tives using DFT calculations. In all cases, it was 
demonstrated that interaction between β ano-
mers was more stable.142

The same effect was observed when the struc-
ture of β-PhGlc dimer was compared with that of 
β-PhGal despite that the difference between the 
two molecules is the position of a single OH.148 
While formation of extended H-bond networks 
is possible in (β-PhGal)2, such superstructures 
are not favored in (β-PhGlc)2. All these obser-
vations may be extrapolated to the structure of 
large glycans and their interaction with the corre-
sponding receptor: even in such large molecules, 
detection of alterations in the position of a sin-
gle hydroxyl group may be possible thanks to the 
amplification mechanism that the formation of 

H-bond networks has in the final structure of the 
polysaccharide.

2  Summary
We have revised in this mini-review the influence 
of the hydrogen bond in the structure and func-
tion of three families of biomolecules: DNA, pro-
teins, and saccharides. The examples presented 
highlight the importance of hydrogen bond in the 
final structure of those molecules and how nature 
makes extensive use of H bond to produce com-
plex 3D structures in proteins. The structure of 
saccharides is also largely conditioned by the for-
mation of intra- and inter-molecular hydrogen 
bonds. We speculate here with the idea of how 
small structural changes in the position of the 
hydroxyl groups are amplified by the intramo-
lecular network of hydrogen bonds, enabling easy 
recognition by other biomolecules. Perhaps, this 
is one of the reasons why nature chose carbohy-
drates to code the cellular ID.

We also present the importance of stack-
ing but specially hydrogen-bond interactions 
in DNA and how it may have influenced the 
election of CGAT as the molecules to build the 
so-called “alphabet of life”. Most of the informa-
tion presented in this short review comes from 

Figure 11: Interaction of b-phenyl-d-glucopyranose (β-PhGlc) and α-/β-methyl-d-glucopyranose (α-/β-
MeGlc) with α-/β-glucopyranose (α-/β-Glc), N-methylacetamide, paracetamol, phenol, and α-/β-MeGlc. 
The combination of the hydroxymethyl group with the aromatic ring in β-PhGlc create a kind of trap that 
captures wandering molecules, keeping them away from O3 and O4, which are the sites for addition of 
the next glucose unit during glycogen production. Only sugar units are able to avoid such trap, and inter-
estingly, they interact preferentially with O3/O4 of β-PhGlc Adapted from Ref. 141.
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experiments in supersonic expansions using a 
collection of spectroscopic techniques, whose 
results were interpreted in the light of calcula-
tions using computational chemistry. Despite the 
exotic environment that the molecules encounter 
in the expansion, the results presented demon-
strate that biologically relevant information can 
be extracted from such experiments. Especially, 
taking into account the increase in size of the 
systems tackled in the last 20 years. Still, there is 
a long road ahead until hydrogen bond is fully 
understood in biological environments. Evalu-
ation of the influence of the biological medium 
is one of the variables that present the greatest 
challenges. The studies published are not able 
to introduce more than a dozen of solvent mol-
ecules before the spectra became so congested 
that it is no longer possible to extract structural 
information.

Another interesting aspect for future research 
is the interaction of the biomolecules reported 
here with molecules that may act as solvents in 
other planets. The different environmental con-
ditions found in other words may lead to exist-
ence of seas of methane or ammonia, or to very 
acidic conditions. Understanding of how amino 
acids, nucleobases, and sugars behave and inter-
act under such (for us) extreme conditions may 
help to guide the search for life in exoplanets, and 
may demonstrate if life can survive very differ-
ent conditions such as extreme pH or tempera-
ture. Exploration of H bond in such systems is an 
exciting perspective.
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