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Green Sensing and Communication: A Step 
Towards Sustainable IoT Systems

1  Introduction
The Internet of Things (IoT) is vital for realiza-
tion of a multitude of applications across vari-
ous industries, such as smart homes56, smart 
city32, smart health-care1, environment sensing53, 
smart agriculture47, and border surveillance34, as 
illustrated in Fig. 1. IoT devices (namely sensors, 
wearables, smart meters) used in these applica-
tions produce high-volume of data that is difficult 
to store, process, and communicate in real time. It 
is estimated that 20 to 40 billion IoT devices will 
be connected to the internet by the year 202020. 
An alarming challenge associated with the reali-
zation of these applications is the energy sustain-
ability of the IoT systems. It encompasses the 
energy spent in data sensing/acquisition, commu-
nication, storage, and computation. In addition, 
scalability, reliability, and latency also play a sig-
nificant role in the design of such systems.

To address these challenges, intelli-
gence is imparted in the IoT devices and sys-
tems to acquire and communicate data in an 
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ciency of the IoT systems are also discussed.
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energy-efficient manner10, 11, 23, 63. Centralized as 
well as decentralized implementation of the IoT 
systems28, design of low-latency reliable com-
munication systems39, and energy-harvesting IoT 
systems24 have gained significant research inter-
est. Cloud computing, fog computing, and edge 
computing are looked upon to address the scal-
ability and latency issues. In this context, a new 
approach, known as multi-access edge comput-
ing (MEC)2, 5, has gained popularity due to its 
shorter response time, reduced energy consump-
tion, network bandwidth saving, and data privacy. 
Recently, the problem of green communication is 
addressed from wireless channel variations per-
spective in works43, 44. In these papers, energy-
efficient link-layer re-transmission strategies 
suitable for the IoT devices are developed using 
temporal characteristics of the wireless channel.

The primary focus of this article is to provide 
insights on energy-efficient IoT data acquisition 
and communication schemes.
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The paper is organized as follows: Sect. 2 gives 
an overview of green sensing and communica-
tion techniques along with their applications and 
challenges. Section  3 presents the application of 
our proposed techniques to the case studies of lab 
environment monitoring, smart metering, and 
smart grid monitoring using real data-sets. A few 
open issues and future directions are discussed in 
Sect. 4, followed by conclusion in Sect. 5.

2 � Green Techniques: Literature, 
Challenges, and Applications

This section outlines a variety of techniques 
developed to save energy not only at data gen-
eration points (i.e., IoT devices), but also during 
communication of the generated data.

2.1 � Green‑Sensing Techniques
Wireless sensor networks (WSNs) are envisaged 
as a key technology enabling various monitoring 
applications of the IoT such as environment 
monitoring, remote health-care surveillance, bor-
der surveillance, etc. The devices/sensors used in 
these applications generate volumes of data 
which are often redundant and mutually corre-
lated. A large volume of energy is consumed in 
these continuous sensing operations. Further, this 
streaming data requires reporting to a central 
entity for actionable decisions. This communica-
tion too consumes energy. The efficient energy 
utilization aspect is of utmost importance for 
these IoT applications. To cope with the ever-
increasing energy demand, a shift from 

Green sensing: Intelligently 
reducing volume of data gen-
erated at source to increase 
energy effciency of the WSN.

conventional periodic sensing to intelligent/smart 
sensing is seen in recent works. The quantum of 
data generated at source (i.e., sensors) is reduced 
intelligently by exploiting characteristics of the 
to-be-monitored processes. Further, the energy 
demand is targeted to be met primarily by the 
ambient resources, such as solar, wind, radio fre-
quency energy resources. This approach is coined 
as green sensing. Although energy is saved in 
these green-sensing techniques, it should not be 
at the cost of compromising sensing quality 
(quality of service (QoS) measure). Different 
green-sensing techniques are discussed in the 
below sub-sections.

2.1.1  �Duty Cycling
To extend the lifetimes of the energy-constrained 
sensors and WSNs, one of the early and widely 
used techniques is duty cycling9. The key idea is to 
turn on and off the mote’s radio to save its energy. 
This alters the duty cycle (on time/(off+ on time)) 
of the node’s sensing activity. It could be imple-
mented randomly or based on a schedule. How-
ever, random duty cycling requires dense WSNs 
to guarantee enough active nodes at any point of 
time to provide the required quality of sensing. 
Random asynchronous wake-up (RAW) proto-
col developed in the work46 is one such example. 
Recently, a machine learning-based duty cycling 
scheme for air pollution sensing is proposed in 
the work14. It exploits temporal correlation inher-
ent in the pollutant to decrease the on-period 
(or duty cycle) of the node and predicts missing 

Figure 1:  IoT applications.
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pollutant data during off-period using support 
vector regression technique.

In general, the duty cycling approach, espe-
cially the scheduled one, is a trade-off between 
energy efficiency and latency (i.e., delay in data 
delivery to the target node/central entity)38.

2.1.2  �Wake‑up Radio
Wake-up radio (WuR) is a promising approach 
to reduce both energy consumption of the node 
and delay38 in data delivery to the target node. 
The latter one is crucial for delay-sensitive IoT 
applications. The objective is to use a low-power 
radio that is active all the time to listen to a wake-
up signal and activate the main radio on demand. 
This prevents unnecessary periodic wake-up of 
the main radio to listen to the channel (i.e., idle 
listening). The WuR is categorized as active/pas-
sive based on the energy source used for receiving 
the wake-up signal. In the active WuR, the energy 
is drawn from the node’s battery, while in the pas-
sive WuR, it is drawn from the radio frequency 
(RF) signal (wake-up signal) itself. Wireless Iden-
tification and Sensing Platform (WISP) mote, 
proposed in6, is an example of passive WuR. Like-
wise, the authors in36 proposed a low-cost RF 
energy harvester-based WuR that performs both 
the wake-up and energy harvesting functions.

The WuR has potential applicability in indus-
trial wireless networks especially for time-critical 
applications such as fault identification, gas pipe-
line leakage detection, etc.

2.1.3  �Sensor Scheduling
Another well-researched and popular direction to 
achieve green sensing is sensor selection/schedul-
ing. A subset of sensors/wireless nodes is activated 
to perform sensing based on some intelligence, 
while the remaining sensors/nodes sleep to save 
energy. The essence behind this parsimonious 
sensor selection is the spatio-temporal correla-
tion inherent in sensor measurements. Sparsity 
induced in the measurements due to this allows 
monitoring of the corresponding underlying pro-
cess using under-sampled sensor measurements.

In this context, early works40, 70 randomly 
chose a fixed number of nodes for activation. 
However, these works do not guarantee sens-
ing quality and energy efficiency. Thereafter, 
research interest shifted to propose schemes that 
guarantee energy efficiency and/or sensing qual-
ity. For the former one, the work12 proposed a 
greedy approach of selecting sensors with maxi-
mum energy efficiency index (i.e., the differ-
ence between residual energy and transmission 

Wake-up radio: On demand 
activation of the radio using 
an active wake-up signal.

energy of the node). This approach failed to 
provide good sensing quality. Subsequently, sev-
eral works focused on providing certain sensing 
quality. One such pioneering work33 proposed 
to select linear measurements of k out of total m 
sensors by formulating and subsequently solv-
ing a convex optimization problem based on the 
D-optimality criterion of experimental design. 
Further, for the non-linear measurement model, 
a selection scheme is formulated in work13 by 
employing Cramér–Rao lower bound (CRB) as 
a sensing performance measure. This measure 
characterizes mean squared error (MSE) in the 
estimation of the field signal sensed using a few 
sensors65. Subsequently, the authors in work72 
developed a field reconstruction algorithm based 
on spatial linear unbiased estimator (S-BLUE). 
Using the estimates, a cross-entropy method-
based sensor selection method is proposed for 
heterogeneous sensor networks. Such collabora-
tion between the WSNs is extremely beneficial in 
the context of realizing the IoT applications. The 
work27 advocated a signal’s correlation to design 
deterministic node selection strategies and devel-
oped a covariogram-based estimation of signal’s 
covariance structure. Although, the schemes in 
the works13, 27, 33, 72 save energy, they cannot guar-
antee the energy efficiency as they may repeat-
edly select nodes with low remaining energy 
which can create network coverage holes. Thus, 
to overcome this limitation, schemes developed 
in works10, 11 that ensure both the sensing quality 
and energy efficiency of the WSN while selecting 
a fixed number of sensors. The measurements of 
these selected sensors are then utilized to estimate 
entire WSN field using the well-known com-
pressed sensing (CS)18 and Bayesian learning67 
schemes as outlined in works10, 11, 27, 72.

The works discussed so far deal with central-
ized sensor selection strategies often possess high 
energy and communication overheads. Poor con-
nectivity between the central entity (fusion center 
(FC)) and nodes leads to questions on the relia-
bility of the centralized architecture. Additionally, 
these schemes may not be suitable for delay-
constrained scenarios. To surmount these short-
comings, decentralized sensor selection strategies 
have been developed in recent studies. Nodes 
locally exchange information to decide their own 
or respective fellow nodes’ activation/sleep state. 
In this regard, a Bayesian approach is used to 
develop iterative centralized and decentralized 
sensor selection strategies for heterogeneous sens-
ing applications in the work28. Subsequently, the 
works30, 31 used consensus and double-consensus 
averaging to solve the sensor selection problem in 
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a decentralized/distributed manner. These works 
suggested the dual sub-gradient method to solve 
the distributed sensing problem. Further, the 
authors in68 formulated a distributed collabora-
tive sensor selection approach by combining both 
the sensor correlation and sensor-target distance 
to achieve required sensing accuracy, energy bal-
ance among sensors, and extend the network 
lifetime.

Besides sensing quality and energy efficiency, 
coverage is another important, often ignored, 
QoS measure of the WSNs. In a recent work42, 
a distributed solution for coverage control is 
proposed by the application of game theory in 
the active sensor selection problem. The work 
too aimed to extend both coverage and network 
lifetime.

Sensor selection based green techniques has 
utility in a variety of IoT applications such as 
water quality monitoring, intrusion detection, 
border surveillance, health monitoring, agricul-
ture/soil monitoring, avalanche detection, pollu-
tion monitoring, target tracking, etc.

Major drawbacks associated with the above-
mentioned centralized and distributed sensor 
selection schemes are: 

1.	 A spatio-temporally varying signal is sensed 
by fixing one of the two performance meas-
ures, namely, sensing quality and number of 
active nodes.

2.	 Unequal remaining energy associated with 
different nodes is ignored, which may result 
in network coverage outage.

3.	 Iterative local information exchange in dis-
tributed settings consume a lot of energy 
and increases the delay. However, none of 
the proposed distributed approaches consid-
ered energy consumption.

2.1.4  �Adaptive Sampling
A more practical approach to green sensing is 
adaptive sampling wherein the sampling rate 
(i.e., the number of active nodes/total number of 
nodes) is adapted as per the dynamics of the 
monitored process. Intuitively, a low (high) sam-
pling rate suffices for sensing a slowly (rapidly) 
varying process. In this regard, a principal com-
ponent analysis and CS-based sensing, compres-
sion, and recovery (SCoRe) framework is 
proposed for WSNs in the work49. Adaptation 
occurs by exponentially increasing (linearly 
decreasing) the sampling rate when process varia-
tions increases (decreases). Another approach25 

Adaptive sampling: Adapt 
the number of nodes to be 
activated as per the dynamics 
of the observed process.

built a hash table capturing the sampling rate 
corresponding to different variations of the pro-
cess and used it as a lookup during the sensing 
process. Recently, an adaptive sensing framework 
was proposed in work23 that adapts sensing as per 
the process dynamics. A multi-objective optimi-
zation problem is proposed therein that jointly 
optimizes the sensing quality and energy effi-
ciency of the WSN. The authors in the work26 
proposed three adaptive data acquisition 
approaches for industrial process monitoring 
applications. In that work, energy management is 
primarily considered along with sampling rate 
adaptation of the sensors. Likewise, a correlation-
based adaptive measurement technique is devel-
oped in work54 that collects data from a subset of 
dynamically chosen nodes and use them for infer-
ence of measurements across remaining sleeping 
nodes.

Most of the IoT applications require multi-
sensing, i.e., sensing multiple signals/parameters 
simultaneously, which is a relatively new and less 
explored approach to sensing. In this context, 
multi-sensing platforms have been designed in 
works4, 8. The authors in the work50 developed a 
threshold-based energy-efficient multi-sensing 
protocol for landslide monitoring applications. 
Subsequently, adaptive and hierarchical context-
aware multi-sensing schemes are proposed in 
the work48. Recently, an adaptive and optimized 
multi-sensing approach is developed for smart 
environment application in the work24. It col-
lectively considers the sensing quality, energy 
efficiency, and multiple signals’ dynamics in the 
sensor selection process.

2.1.5  �Comparison of  the Above‑Mentioned 
Green‑Sensing Technique

The duty cycling technique is energy-efficient 
compared to the conventional exhaustive sensing 
technique which do not have off-period. How-
ever, it consumes energy in idle listening and 
comes at the price of high latency. These short-
comings are overcome by wake-up radio (WuR). 
The WuR has potential applicability in industrial 
wireless networks. The duty cycling and WuR 
techniques do not depend on the type of data/
signals being sensed. Exploiting characteristics 
of the signals being monitored (such as tempo-
ral and spatial correlation, its variations) can also 
play a significant role in saving energy spent in 
sensing. For instance, the redundancy due to the 
correlation(s) in the signal can be intelligently 
minimized by data-driven techniques such as sen-
sor scheduling and adaptive sampling. Adaptive 
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sampling is more energy-efficient compared to 
non-adaptive sensor selection (such as fixed-rate 
sampling). These data-driven techniques can be 
used for applications such as environment moni-
toring, avalanche monitoring, health monitoring, 
wildlife habitat surveillance, etc. Among these 
applications, some are time-critical and some 
are not. If the adaptive sampling frameworks23, 24 
comprise a mobile data collector/robot that col-
lects sensed data from the active nodes and sends 
it to the FC, then these are suitable for non real-
time applications. For time-critical applications, 
these frameworks require the active nodes to send 
the sensed data directly to the FC.

2.2 � Green Communication Techniques
In addition to green sensing, green communica-
tion is another key enabler for energy efficiency 
and sustainability in IoT. Particularly, in the sen-
sor networks where sampling rate is pre-defined 
and sensing energy is not of much concern, green 
communication is of interest to optimize the 
resource utilization (especially bandwidth) for 
transmission and archival of IoT big data. Here, 
two green communication scenarios pertain-
ing to the emerging smart grid IoT networks, 
namely, advanced metering and wide area moni-
toring and control, are presented. In this context, 
the smart meters and phasor measurement units 
(PMUs) behave as sensors and generate volumes 
of fine grained data from electricity distribution 
networks. Though acquisition and analysis of 
this massive data imparts intelligence to the con-
ventional analytical framework to adapt to the 
dynamics of real world systems, its efficient com-
munication and storage is a challenge.

The proposed green initiative in these appli-
cations is to intelligently prune the amount of 
generated data at the edge node itself, such that 
first-level data reduction is achieved well before 
millions of IoT devices try to access the wire-
less network for transmission. It may be noted 
here that, prior to pruning, it is essential to study 
the characteristics of the data so as to preserve 
the useful information in the process of data 
compression and reconstruction. Two kinds of 
approaches are typically seen in the research lit-
erature for data pruning in IoT networks. These 
are compression based and prediction based, 
for delay-tolerant and delay-sensitive scenarios, 
respectively.

2.2.1  �Data Pruning by Compression
For delay-tolerant applications such as advanced 
metering, data can be pruned by applying com-
pression algorithms on the appliance-level as well 
as household-level data. This data can have a high 
or a low data resolution. In state-of-the-art, it is 
observed that the data compression algorithms 
operating at the aggregation points generally 
work on low-resolution data which is on the 
order of 1 sample per several minutes. These 
studies are based on signal processing algorithms 
such as singular value decomposition55, load fea-
tures based compression61, dictionary learning 
and sparse encoding66, and entropy coding3 that 
exploit the temporal and spatial attributes of the 
data streams collected from different sensors. 
However, a limitation of data pruning at the col-
lection points is that they do not address the issue 
of data reduction at the sensor nodes, and thus 
are less useful for reduction in amount of data 
transmitted in near-real time applications.

Since modern day smart meters can cap-
ture average power consumption data at a rate 
as high as 1 sample per second, compression 
of high granularity data at the meter level is 
of current research interest. In such cases, due 
to high sampling frequency of the smart meter 
data, the variations observed in load patterns 
are not significant. Thus, the redundancy in the 
data provides an opportunity to compress it 
before transmission. The algorithms proposed 
in literature for the pruning of high-resolution 
smart meter data are based on exploitation of 
correlation in consecutive data samples. For 
instance, a lossy compression method19 con-
trols the amount of generated smart meter data 
by using piece-wise approximation of original 
sample pattern. Besides, loss-less compression 
algorithms using Huffman coding, Markov 
chain variants51, and differential coding64 are 
also proposed for compression of household-
level as well as appliance-level data. It is seen 
that the performance of these algorithms is 
sensitive to sampling frequency, decimal preci-
sion of the meter reading as well as noise in the 
communication channel. More robust frame-
works for effective characterization and reduc-
tion of high-frequency smart meter data using 
adaptive compressive sampling are proposed 
in52, 63, respectively, for single-variate and multi-
variate data samples, based on adaptive sparsity 
selection over optimum batch size before data 
transmission. It may be noted that since smart 
meters are connected to continuous power sup-
ply, extra energy overhead in implementing the 
data pruning algorithms is of not much interest. 
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From green communications perspective, in 
this case, only the optimization of bandwidth 
requirement and storage space for transmission 
and archival of big data from smart meter to the 
data collection points is discussed.

2.2.2  �Data Pruning by Prediction
Unlike data pruning by compression, data prun-
ing by prediction is more suited to delay-sen-
sitive data in order to avert the requirement of 
buffering time for data compression. A perti-
nent IoT application in this context is of wide 
area monitoring and control in smart grids. 
In the research literature offline dimensional-
ity reduction of PMU data are proposed using 
linear principal component analysis69, wavelet 
packet decomposition21, 37, and loss-less encod-
ing60. These algorithms are proposed to oper-
ate at the receiver for archiving the data using 
minimal storage while preserving the data 
characteristics.

A few studies based on least square curve fit-
ting22, and compressive sampling17 are also pro-
posed for real-time reduction of PMU data. The 
standard reporting rate from PMU to the control 
center is currently fixed at 25 samples/s. How-
ever, this fixed-rate data transmission may not be 
very useful in terms of resource utilization since 
transient occurrences in the power grid are spo-
radic and much of the sampled PMU data are 
redundant. Also, non-stationarity of the data 
has been largely ignored during data reduction 
approaches proposed so far leading to inefficient 
compression. To address this, a novel learning-
based framework based on ǫ− support vector 
regression62 is proposed to dynamically prune the 
PMU data before transmission. Parameters of the 
learning algorithm are recomputed as necessary 
to take care of non-stationarity and maintain the 
accuracy and robustness of the predictions.

2.3 � Energy‑Harvesting Techniques
The finite battery capacity of the nodes serves as 
a major bottleneck of the WSNs. Available solu-
tions such as battery replacement, using large 
batteries and low-power hardware, etc., do not 
guarantee perpetual operation of these nodes. 
Green sensing and communication techniques 
alone cannot eliminate energy outage problem 
completely. In this regard, energy harvesting is 
envisioned as a potential solution and its applica-
bility is widely researched nowadays. The energy 
can be harnessed from ambient sources as well 
as from dedicated sources. To do so, the wireless 

nodes are equipped with a harvester module and 
a rechargeable battery or a super-capacitor to 
store the harvested energy.

Recently, solar energy harvesting capability 
of the nodes35, 57 is integrated with a multi-sens-
ing framework for a heterogeneous WSN24. The 
authors in29 suggested an idea of employing a 
few nodes for data aggregation and the remaining 
nodes for harvesting energy from the sensed elec-
tric signal. Further, an optimal sampling policy 
is designed in work71 that minimizes the sensing 
error under stochastic energy constraints which 
arise due to random energy arrivals.

Continuous network operation still can-
not be guaranteed by harvesting energy from 
ambient sources due to their uncertain nature. 
An approach for dedicated (on-demand) wire-
less energy transfer from a radio frequency (RF) 
source, known as RFET, is proposed in41 to pro-
vide sustainable network operations. In this 
regard, the work in36 investigated the possibility 
of building a WuR using an RF energy harvester 
available at the WSN node. Likewise, the works 
in58, 59 presented a framework for an unmanned 
aerial vehicle (UAV)-based wireless charging of 
sensor nodes using RFET.

2.4 � Challenges
Major challenges associated with reducing the 
energy consumption of the IoT applications are 
discussed in the below sections.

2.4.1  �Sensing Quality and  Energy Efficiency 
Trade‑off

There are two conflicting design goals of the 
WSN-based IoT systems, namely, lifetime and 
sensing quality. Improving one hurts the other. 
Thus, suitably handling trade-off between the 
sensing quality and energy efficiency (or net-
work lifetime) is a big challenge that depends 
on the type of application being pursued and its 
requirement.

2.4.2  �Coverage and Energy Efficiency Trade‑off
It is important to provide coverage of the observ-
ing field in applications such as gas-leakage mon-
itoring, chemical hazards detection, intrusion 
detection, etc., especially when only a few devices/
nodes are activated to save energy. Thus, another 
challenge is to strike a balance between coverage 
and energy saving in the WSN-based applications.
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2.4.3  �Latency/Bandwidth (BW)/Energy Versus 
Sensing Reliability

Time-critical applications such as tele-surgery, 
smart grid monitoring, etc., demand low latency 
(i.e., fast data delivery) which is often achieved 
either by sparse monitoring or data pruning 
before transmission. This saves communication 
BW and energy at the cost of sensing reliability 
(i.e., quality of information provided by the IoT 
devices).

2.4.4  �Energy‑Efficient Data Computation
Processing high-volume IoT data at the device 
(node)-level in distributed architecture too 
consumes large amounts of energy. Thus, data 
processing is another challenge due to limited 
battery-operated nodes.

3 � Case Studies
This section discusses green schemes developed 
by us in previous works23, 24, 62, 63 for three IoT 
applications, namely, lab environment monitor-
ing, smart grid monitoring, and smart metering.

3.1 � Lab Environment Monitoring
To reduce data volume at the generation points 
(i.e., IoT devices/nodes) itself, a few sensors/
nodes are activated to monitor a WSN field, while 
the remaining ones are allowed to sleep. The spa-
tial and temporal correlations of observed signals 
are used to decide the activation/sleep pattern of 
sensors of the WSN.

An adaptive sensor selection framework pro-
posed in work23 is applied on temperature data 
produced by a WSN deployed in Intel Berkeley 
lab7 to verify its energy efficacy in performing 
monolithic sensing. Similarly, to simultaneously 
sense two parameters of the lab environment, 
namely, temperature and humidity, a multi-
sensing framework proposed in recent work24 is 
applied. This work considered the solar energy 
harvesting aspect as well. Additionally, detection 
limit constraint imposed by heterogeneous sen-
sors is also integrated into sensor selection and 
signal estimation processes. Sensor selection in 
the monolithic23 and multi-sensing24 cases for a 
general application can be better visualized from 
Figs. 2 and 3, respectively.

In the adaptive monolithic23 (multi24)-sensing 
scheme, the FC solves multi-objective optimiza-
tion problem(s) that find active sensor(s) set(s) 
by jointly optimizing the sensing quality and 
network energy efficiency in each measurement 
cycle. In the process, it is ensured that a required 
performance criterion (Bayesian CRB (BCRB) 
window [α,β] ) does not get violated. Further, the 
measured signal(s) variations are estimated and 
the size of the sensor(s) set(s) for next measure-
ment cycle is appropriately adapted. Next, the FC 
conveys active sensor(s) schedule to the nodes. 
The active sensors of the nodes then sense respec-
tive monitoring parameters and nodes convey 
these measured signals back to the FC via a robot. 
The FC then iterates the same process for the next 
measurement cycle. Note that in multi-sensing, 
the FC carries out sensor selection and adaptation 
process for each sensor/signal type in parallel. 
These works assume slowly varying process(es) 

Figure 2:  Generalized monolithic-sensing scenario.
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which enable computation of the measure 
BCRB using recent past signal estimates of these 
process(es). This knowledge is used to drive the 
sensor selection task in the current measurement 
cycle. For more details, please refer the works23, 24.

Figures  4 and  5 compare performance of 
the adaptive optimized monolithic sensing 
framework proposed in work23 with optimized 
subset selection scheme proposed by Chen 
et al. in10, 11 and an adaptive sensing frame-
work SCoRe proposed by Quer et al. in49 using 
real data-set of temperature signal7 as men-
tioned above. It can be observed that adaptive 
and optimized sensing of a spatio-temporally 
varying process increases energy efficiency of 

the WSN without compromising the sensing 
quality. Gain in energy efficiency is tabulated 
in Table  1. The adaptive optimized sensing 
scheme is, respectively, ∼ 67% and ∼ 30% more 
energy-efficient than the Chen’s and Quer’s 
scheme. Note that, the simulation parameters 
are set as proposed in work23 (Sec. V-F) except 
the BCRB window [α,β] , threshold δth , and 
node’s initial energy η1(n) which are, respec-
tively, set as =

[

1.215× 10−5, 0.0306
]

 and 
=

[

8.7731× 10−6, 0.008
]

 (for comparison with 
Chen’s and Quer’s schemes), 0.051, and 1400 
units. The parameters-threshold δth and BCRB 
depend on the signal being observed. These are 
set in the current work as per the considered 

Figure 3:  Generalized multi-sensing scenario.
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Figure  4:  Network residual energy and NMSE comparison of the adaptive and optimized monolithic 
sensing scheme23 with Chen’s scheme10, 11.



391

Green Sensing and Communication: A Step Towards Sustainable...

J. Indian Inst. Sci. | VOL 100:2 | 383–398 April 2020 | journal.iisc.ernet.in 1 3

temperature data-set and in the work23 as per 
humidity data-set considered there. The choice 
of the BCRB window affects the sensing quality 
and the threshold value is meant for capturing 
signal variations effectively. Likewise, a node’s 
initial energy governs its remaining energy after 
execution of measurement cycle. Simulations 
are carried out in Matlab and optimization 
problems are solved using CVX15 tool.

Likewise, performance of the multi-sens-
ing framework proposed in work24 and Chen’s 
scheme10, 11 are compared for simultaneously 
sensing the above-mentioned two lab param-
eters (temperature and humidity). It is evident 
from Figs.  6,  7 and Table  2 that energy-effi-
cient smart environment sensing without sac-
rificing the accuracy is achievable using the 
adaptive multi-sensing scheme24, with energy 
efficiency of ∼ 15% with respect to the com-
paring scheme10, 11. In Fig. 6, increase in energy 
consumption is seen beyond ∼ 25 th measure-
ment cycle. Reason being due to increase in 
variations of the monitored signal during these 
cycles, the adaptation mechanism increases 
the number of active nodes (or sampling rate). 

This increases the energy consumption. The 
framework increases (decreases) the sam-
pling rate when the variations in the signal 
increases (decreases). For simulations, num-
ber of nodes considered are N = 30 , initial 
energy as 6 units, harvested energy as in work24, 
noise variance σ 2 ∼ 10−6 , number of param-
eters/signals to be observed as P = 2 , sensing 
energy of temperature and humidity sensors 
as 

{

E1
s ,E

2
s

}

= {0.2, 1.0315} units, their detec-
tion limits as 

{

ρ1, ρ2
}

= {14.4, 38.6} , Bayes-
ian CRB windows 

[

α1,β1
]

=
[

1.1× 10−6, 0.06
]

 , 
[

α2,β2
]

=
[

3.1× 10−6, 0.06
]

 , and thresholds as 
{

δ1th, δ
2
th

}

= {0.05, 0.06},
{

ǫ1th, ǫ
2
th

}

= {0.5, 0.5}. 
For Chen’s scheme, number of temperature and 
humidity sensors to be activated are, respec-
tively, fixed as 15 and 16.

Note that the sensing quality is determined by 
normalized mean squared error (NMSE) perfor-
mance measure which depends on actual signal 
(NMSE = 
1
N ‖actual signal vector - estimated signal vector‖2

1
N ‖actual signal vector‖2

)

 . How-

ever, the actual signal is unknown and needs to be 
estimated. Thus, the above adaptive monolithic 
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Figure  5:  Network residual energy and NMSE comparison of the adaptive and optimized monolithic 
sensing scheme23 with Quer’s scheme49.

Table 1:  Energy efficiency comparison for monolithic sensing case.

Monolithic sensing scheme
Node energy consumption per cycle 
(J) Energy efficiency gain

Chen-based10, 11 220.83 –

Adaptive and optimized23 71.875 67.45% (w.r.t. Chen)

Quer-based49 168.3594 –

Adaptive and optimized23 116.7969 30.6264% (w.r.t Quer)
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and multi-sensing frameworks uses BCRB as the 
measure to optimize sensing quality instead of 
the NMSE as done in several existing works10, 13. 
The NMSE is plotted to show the achieved sens-
ing quality by using the BCRB measure in the 
sensing frameworks. The NMSE values obtained 
are within the acceptable range as suggested in 
the work23 (reference 45). Further, as the name 
suggests, the NMSE averages error obtained in 
estimates of signal across all sensors. It gauges 
energy in error signal against that in signal. In 
Figs. 4, 5, and 7, the sensing quality is an average 
entity. Network residual energy is not averaged, 
because it is sum of remaining energy of all the 
nodes in the network.

Applications in IoT deployment may have 
specific needs related to the range where it is 
expected to deliver sensed data. In this regard, in 
the future work, it will be interesting to investi-
gate the maximum distance up to which the sig-
nal can be detected by the sensors to maintain a 
desired QoS.

3.2 � Automated Metering in Smart Cities
As discussed in Sect. 2.2, compression techniques 
are preferred for data pruning at edge devices 
in the IoT networks where latency is not a con-
straint. Here, resource savings via green commu-
nication of smart meter data are investigated by 
testing the performance of adaptive compressive 
sampling algorithm63 on real smart meter data 
sampled at the rate of 1 per 30 s.

It is observed that though high-resolution 
smart meter data has a rapidly fluctuating and 
spiky pattern indicating incoherence in time 
domain, it can be reasonably sparsified using 
discrete Fourier transform. Further, if sparsity 
selection is adapted to the variation of data in 
the compression window, optimal data reduc-
tion without much loss of information can be 
achieved. Also, the size of compression window 
is a function of temporal correlation in the con-
secutive data samples which is governed by the 
sampling frequency of the smart meter. The opti-
mum size of compression window is evaluated 
based on the trade-off between bandwidth saving 
and reconstruction accuracy, which in turn is a 
function of temporal correlation in the consecu-
tive data samples and the sampling frequency of 
the smart meter. In63, it is observed that with the 
increase in number of samples in the compres-
sion window, bandwidth saving reduces, while 
the reconstruction accuracy increases. However, 
beyond an optimum number of samples, the 
nRMSE nearly saturates. This point is considered 
as the optimum size of the compression win-
dow. For data sampled at the rate of 1 per 30 s, 
this interval was found to be 60 s. Once the data 
are buffered to form optimally sized compression 
window, sparsity for each window is decided by 
estimating the number of discrete Fourier coeffi-
cients containing 99.99% energy of samples in the 
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Figure 6:  Network energy consumption per cycle 
comparison of the adaptive and optimized multi-
sensing scheme24 with Chen’s scheme10, 11.
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Table 2:  Energy efficiency comparison for multi-sensing case.

Multi-sensing scheme
Network energy consumption per cycle 
(J) Energy efficiency gain

Chen-based10, 11 16.04606 -

Adaptive and optimized23 13.52912 15.6857% (w.r.t. Chen)
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compression window. The samples to be trans-
mitted are then selected using a sensing matrix. At 
the receiver, reconstruction of compressed sam-
ples is performed using subspace pursuit16 algo-
rithm. Thus, substantial reduction in data volume 
is achieved by adaptively compressing high-reso-
lution smart meter data over successive optimally 
sized windows and accordingly transmitting only 
minimum required number of samples.

The performance of adaptive compressive 
sampling algorithm is measured in terms of 
bandwidth saving, normalized root mean square 
error (nRMSE), and Hellinger’s distance. If n and 
m, respectively, be the number of samples in the 
data window before and after compression, then 
(n−m)/n is used as a measure of bandwidth sav-
ing. nRMSE quantifies the accuracy of prediction, 
while Hellinger’s distance validates the acceptabil-
ity of nRMSE value for the required quality of 
service. For discrete probability distributions 
P = {p1, p2, . . . , pn} and Q = {q1, q2, . . . , qn} , 
Hellinger’s distance between them is defined as 

H(P,Q) = 1√
2

√

n
∑

i=1

(
√
p
i
−√

q
i
)2 . For this appli-

cation, Hellinger’s distance ≤ 0.05 is considered 
tolerable45. In Fig. 8, reconstruction performance 
of adaptive compressive sampling algorithm at 

the receiver using subspace pursuit algorithm is 
presented. The reconstructed data are observed to 
be closely following the actual data, and the esti-
mated nRMSE is 4.4 × 10−4 . Further the perfor-
mance of adaptive compressive sampling 
algorithm is tested on data-sets from smart 
meters at 4 different locations in our university 
campus having sufficient pattern diversity. In 
Table  3, the respective performance indices at 
each of these locations are presented. It is 
observed that Hellinger’s distance corresponding 
to nRMSE at each of the locations is well below 
the acceptable threshold. Thus, a mean reduction 
of around 37% is achieved in the bandwidth 
requirement for transmission of high-resolution 
smart meter data with minimum loss of 
information.

A comparison of adaptive compressive sam-
pling algorithm with the closest competitive tech-
nique based on resumable data compression64 is 
presented in63. From the simulations, it is found 
that with respect to resumable data compression, 
bandwidth saving in the proposed adaptive com-
pressive sampling technique is 12.8% and 7.4% 
higher, respectively, for data granularity of 1 s 
and 30 s at a comparable reconstruction accuracy. 
Additionally, it is also observed that the noise 
robustness of the proposed adaptive compressive 
sampling algorithm is significantly higher.

3.3 � Smart Grid Health Monitoring
In this section, performance of dynamic predic-
tion algorithm62 is tested on different variables 
measured by the PMU during a real tripping 
event in the power grid. Each variable considered 
in this study has a different temporal correlation 
coefficient governed by the underlying process 
dynamics.

To handle huge data volume generated during 
the health monitoring in smart grid IoT network, 
the dynamic prediction algorithm judiciously 
eliminates redundant data before transmission 
using ǫ-support vector regression model. Flow 
of the algorithm comprises training a prediction 
model through configuring hyperparameters 
and making successive one-step ahead prediction 
of variable samples using the prediction model. 
It may be noted that due to non-stationarity of 
PMU data, retraining of the regression model is 
required once the predicted sample deviates from 
actual value by a margin greater than predefined 
threshold ǫ . Hyperparameters of the learning 
algorithm are estimated using cross-validation 
optimization error. The algorithm is proposed 
to operate simultaneously at the PMU (i.e., the 
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Figure  8:  Reconstruction performance of adap-
tive compressive sampling algorithm.

Table 3:  Performance of adaptive compressive 
sampling algorithm at 4 different locations.

Dataset
Bandwidth 
saving (%) nRMSE

Hell-
inger’s 
distance

Location #1 38.59 4.42× 10
−4 0.0195

Location #2 34.91 3.38× 10
−4 0.0153

Location #3 43.19 3.37× 10
−4 0.0319

Location #4 33.38 3.07× 10
−4 0.0237
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edge node) and the control center. At the PMU, 
the learning-based model identifies and elimi-
nates the superfluous samples, while at the con-
trol center, its counterpart estimates the omitted 
samples within a given error threshold.

Accuracy of sample predictions and runt-
ime complexity of the algorithm are governed 
by the choice of error threshold ǫ , and length of 
the training set. It is observed that a larger train-
ing length does not necessarily guarantee pre-
cise predictions, thus value of optimum training 
length is also considered a hyperparameter and 
is parsimoniously selected based on the varia-
tions in the dataset. Likewise error threshold ǫ is 
application domain specific. Its value depends 
on the sensitivity of different variables measured 
by the PMU. Performance of the algorithm is 
measured in terms of bandwidth saving (BWS), 
retraining count(RC), disturbance identifica-
tion index (DI), and root mean square error 
(RMSE), which signify the reduction in amount 
of resource requirements, runtime complex-
ity, satisfaction of QoS, and accuracy of pre-
dictions, respectively. Bandwidth saving is the 
percentage of PMU data samples that are not 
transmitted. These are essentially the samples 
which are successfully predicted within the error 
bound ǫ at the PDC. If l is the length of pow-
erline frequency sequence measured by PMU 
over a sufficiently large time interval � , then, 
BWS = liml→∞(Successful predictions by PMU/l)

×100. DI is a measure of goodness of the model 
in identifying a fault scenario. Over a large inter-
val � , let ldist and l̂dist be, respectively, the actual 
and the estimated number of frequency sam-
ples designated to be in disturbed states. Then, 
DI = lim�→∞(l̂dist/ldist)

62. The indices RC 
and DI are upper bounded by value 1, and their 
higher values indicate high runtime complexity 
and better QoS satisfaction, respectively. A com-
parison of performance of dynamic prediction 
algorithm for different variables measured by the 
PMU is presented in Table  4. It is observed that 

around 80% saving in bandwidth requirement 
is attained for various parameters without any 
degradation in QoS satisfaction, though runtime 
complexity for the variables having lower tempo-
ral correlation is slightly higher.

4 � Avenues for Future Research
The case studies presented in the previous section 
clearly indicate that by the application of green 
techniques, substantial resource savings can be 
achieved in terms of energy efficiency, bandwidth, 
and storage space optimization in transmission 
and archival of massive IoT data. In this section, a 
few pertinent research issues and directions open 
for future investigation and realization of the 
green sensing and communication techniques are 
discussed.

– – With large scale deployment of IoT nodes, 
a primary challenge has been in powering 
these nodes, and to externalize their lifetime. 
Though conventional literature suggests 
battery-powered operations, battery replace-
ment can be arduous and expensive, especially 
when the nodes are deployed in inaccessible 
terrains. To this end, energy harvesting tech-
niques from ambient sources for sustainable 
operation of IoT nodes such as use of solar 
energy, radio-frequency, and unmanned aer-
ial vehicles assisted sensor node charging has 
emerged as a new research direction.

–– The design of strategies that jointly opti-
mize/handle various trade-offs discussed 
in Sect.  2.4 is the need of the hour. Multi-
objective optimization and multi-interval 
hybrid approaches are looked upon as pro-
spective solutions. In multi-interval hybrid 
approach, different optimization frameworks 
are employed at different energy/performance 
intervals which are often governed by nature 
of application.

–– Scalability is an important practical issue 
in most of the IoT applications due to the 

Table 4:  Performance of dynamic prediction algorithm for different variables measured by the PMU.

Variable Correlation BWS (%) RC DI RMSE

Frequency 0.9993 85.2 0.04 1 0.0087

Angle separation 0.9987 80.5 0.04 1 0.008

Voltage phase A 0.9658 81.9 0.08 0.99 0.0473

Voltage phase B 0.9504 82.2 0.1 0.98 0.0490

Voltage phase C 0.9421 82.4 0.09 0.99 0.0483

Rate of change of frequency 0.8230 85.08 0.15 1 0.0048
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involvement of multiple devices and net-
works. In this context, the design of distrib-
uted and hybrid schemes for sensing/monitor-
ing is another interesting research direction. 
Further, existing distributed sensor selection 
strategies are non-adaptive to the dynamic 
signals being monitored. Design of adaptive 
distributed monolithic and multi-sensing 
strategies and their contribution to energy 
saving is another dimension to work upon.

–– Integration of various system-level con-
straints, imposed by exhausted energy of 
nodes, detection limits of different sensors in 
heterogeneous sensing environment, is often 
overlooked in the green sensing techniques. To 
bridge the gap between theoretical and prac-
tical implementation of the IoT systems, it is 
vital to consider these constraints.

–– Another research direction pertaining to green 
communication of massive IoT data are effec-
tive characterization of wireless channel for its 
energy-efficient usage, and design of wireless 
channel adaptive communication strategies 
to meet the QoS requirements of the respec-
tive IoT applications. A few existing schemes 
exploit temporal variations of the channel 
for enhancing its utilization as well as energy 
efficiency, however their applicability to IoT 
networks where edge devices have limited 
computational resources needs to be well 
investigated. In this context, development of 
simple yet efficient wireless channel predic-
tion frameworks and protocols to facilitate 
reliable transmission of IoT data holds a sig-
nificant research potential.

–– Further, energy consumption at different lay-
ers (MAC, network, and physical layers) is 
handled separately in the existing literature. 
A cross-layer solution that jointly exploits 
techniques used at individual layers to save 
energy such as sensor management/selection, 
cluster formation, and power control, etc., is 
required to be developed to ameliorate energy 
efficiency of frameworks designed for the IoT 
applications.

–– To prevent networks and sensitive informa-
tion against various security attacks and eaves-
dropping, it is important to impart security 
and privacy in a network. However, relevant 
operations such as data encryption/decryp-
tion, attack detection, etc., consume signifi-
cant amount of computation energy, while 
transmission of secured data incurs commu-
nication overhead. Thus, reducing energy cost 
while ensuring certain quality of protection 

(QoP) is another challenging research direc-
tion.

5 � Conclusion
In this paper, a comprehensive overview of cur-
rent green techniques for the IoT systems along 
with their merits and demerits has been pre-
sented. Twofold benefits of the green techniques 
are extending the system’s lifetime and achiev-
ing environmental sustainability. Various chal-
lenges and critical trade-offs associated with 
simultaneously balancing the system’s perfor-
mance and energy efficiency have been identi-
fied. Performance of data-driven green sensing 
and communication schemes for realizing three 
pertinent IoT applications, namely, lab environ-
ment monitoring, smart grid health monitoring, 
and smart metering, have been analyzed. It can 
be concluded that exploiting machine learning, 
multi-objective optimization, Bayesian learning, 
compressed sensing, etc., in data-driven green 
schemes significantly aid in incorporating neces-
sary intelligence at sensing, communication, and 
computation levels. Around 15% more energy 
efficiency is achieved in adaptive and optimized 
multi-sensing based lab monitoring application, 
and 80% and 37% bandwidth saving is achieved 
in smart grid monitoring and smart metering 
applications, respectively, without degrading the 
required quality of service. Several open issues 
vital for improving energy efficiency and practi-
cal realization of the IoT applications have been 
identified for future research.
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