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The Mathematics of Phenotypic State Transition: 
Paths and Potential

1 Introduction
By definition, ‘phenotype’ refers to the observ-
able properties of an  organism1. Following this 
definition, the phenotype of a cell refers to the 
specific physical and functional properties of a 
cell. For example, in metazoans, cells of the epi-
thelial phenotype are polarized, non-migratory, 
and form tightly packed cell  layers2. On the other 
hand, mesenchymal cells are migratory and have 
more irregular morphology. During embryonic 
development, epithelial cells in the primitive 
ectoderm undergo de-epithelization and adopt 
mesenchymal phenotype, leading to the forma-
tion of  mesoderm3. This process is known as Epi-
thelial to Mesenchymal Transition (EMT). The 
opposite of this process is called Mesenchymal to 
Epithelial Transition (MET). During embryonic 
development, the formation of three-dimensional 
structures of specialized cells, requires several 
rounds of EMT and MET. EMT is also involved 
in wound healing, tissue regeneration and cancer 
 metastasis3.
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Abstract | Change in the phenotype of a cell is considered as a transi-
tion of a cell from one cellular state to another. Cellular state transition 
can be driven by an external cue or by the noise in molecular processes. 
Over the years, generalized physical principles, and associated math-
ematical models have been developed to understand phenotypic state 
transition. Starting with Waddington’s epigenetic landscape, phenotypic 
state transition is seen as a movement of cells on a potential landscape. 
Though the landscape model is close to the thermodynamic principles of 
state change, it is difficult to envisage it from experimental observations. 
Therefore, phenotypic state transition is often considered as a discrete 
state jump process. This approach is particularly useful to estimate the 
paths of state transition from experimental observations. In this review, 
we discuss both of these approaches and the associated mathematical 
formulations. Furthermore, we explore the opportunities to connect these 
two approaches and the limitations of our current understanding and 
mathematical methods.
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Many other biological phenomena, like the 
differentiation of stem cells4, the emergence of 
drug-resistant cancer  cells5, 6, and cancer stem-like 
cells7–9, also involve switching between different 
cellular phenotypes. Phenotypic switching does 
not involve any genomic alternation but is driven 
by the change in gene expression and possibly 
epigenetic  alternations10. Switching can be driven 
by an external  signal4 or can happen 
 spontaneously8, even in the absence of an exter-
nal cue.

The change in the phenotype of a cell is simi-
lar to change in the state of a physical system 
defined in terms of macroscopic properties, like 
pressure, volume. Similarly, cells of a phenotype 
are considered to be in that phenotypic state, and 
switching of the phenotype is called phenotypic 
state transition. Phenotypic diversification also 
happens through asymmetric cell division and 
symmetric differentiation of stem  cells11. However, 
such phenotypic diversification through cell divi-
sion is not discussed in this article.

Cancer stem-like cells: Cancer 
cells that can self-renew and 
gives rise to heterogenous 
lineages of cancer cells

Stem cell: Cell that can divide 
indefinitely, thereby renewing 
itself and can also give rise to 
specialized cells by differentia-
tion.

Differentiation: It is a process 
by which a less specialized cell 
undergoes changes to become 
a specialized cell type.

Symmetric differentiation: 
In symmetric differentiation, 
a stem cell divides to give 
rise two daughter cells that 
differentiate to the same cell 
lineage.

Asymmetric cell division: Cell 
division by mitosis gives rise 
to two daughter cells. Usually 
these two daughter cells are 
of same type. In contrast, 
an asymmetric cell division 
gives rise to daughter cells of 
two different types. Asym-
metric division of a stem cell 
gives rise to daughter cells 
with different fates- one cell 
differentiate to a particular 
cell lineage and the other 
maintains the stemness.
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Cellular phenotypic states are often defined 
in terms of expression of specific molecules or 
 markers5, 7–9, 12. For example, molecular markers, 
such as E-cadherin, N-cadherin, and Vimentin, 
are used to define different states during EMT/
MET13, 14. Similarly, stem cells and cells at dif-
ferent stages of differentiation are also identified 
by molecular  markers15. One can identify dif-
ferent types of cells, in a population, in terms of 
molecular markers using techniques like micros-
copy and flow cytometry. One can also segregate 
and isolate these cells based on the differential 
expression of molecular markers. High-through-
put experiments, such as microarray-based gene 
expression  analysis16 and single-cell gene expres-
sion  analysis17, now allow biologists to cat-
egorize cell states in terms of genome-wide gene 
expression.

Though extensively used to define phenotypic 
states, gene expression is a surrogate measure of 
phenotype. Most cellular functions and physi-
cal properties are regulated by processes involv-
ing a large number of molecules. Therefore, it 
will be appropriate to define the phenotypic 
states directly using quantifiable functional and/
or physical features. For example, changes in cell 
morphology have been used to understand the 
phenotypic state transition in  EMT18, 19. Quanti-
tative image analysis using machine learning tools 
allows the analysis of a large number of micros-
copy images and categorizes cells in different phe-
notypic  states18, 20–23. The cellular phenotype can 
also be defined in terms of cell motility, which 
can be measured by quantitative image  analysis24. 
Rimchala et al.25 used time-lapse microscopy, 
followed by image analysis, to study pheno-
typic state transition in endothelial cells treated 
with angiogenic and angiostatic cytokines. They 
defined phenotypic states in terms of cell mor-
phology and movement-related features.

Irrespective of our definition of a phenotypic 
state, a key problem in experimental biology is to 
estimate the paths of phenotypic state transition 
from experimental data. Different mathematical 
techniques have been developed for this purpose. 
There is also a growing interest in developing 
a generic mathematical formulation to capture 
the physical basis of phenotypic state transi-
tion. Concepts and tools of dynamical systems 
theory and statistical physics have been utilized 
to address this problem. In this review article, 
we focus on these two directions of research on 
the phenotypic state transition. First, we discuss 
the potential landscape framework for cellular 
state transition and its mathematical formula-
tions. Subsequently, we delve into discrete state 

transition models and different approaches in the 
estimation of state transition paths.

2  Rolling a Ball Downhill
The emergence of a multicellular organism with 
an elaborate body plan from a single fertilized cell 
has always intrigued scientists. In 1957, Conrad 
Hal Waddington proposed a metaphor of land-
scape to explain the directionality of embryonic 
development and the stability of different stages 
of  development26. In this model, a cell is just like 
a pebble that’s rolling over a rugged landscape 
with hills, slopes, and valleys. A pluripotent cell 
starts rolling from a high position in this land-
scape and rolls down through a series of branch-
ing points where the decision of differentiation 
takes place. Therefore, the landscape channelizes 
the cell through specific paths of differentiation, 
leading to the formation of different differenti-
ated somatic cells. Without going into details of 
the molecular processes that generate this land-
scape, one can argue that external interventions, 
like change in temperature or treatment with a 
drug, may change the landscape, thereby affecting 
the dynamics of differentiation through it.

Waddington’s landscape has two key ideas—
(1) time evolution of a cell from higher poten-
tial to lower and (2) alternate paths leading to 
different lower potential positions. Efforts from 
different directions have been made to provide 
a physical and mathematical basis to these two 
aspects of the landscape metaphor. One approach 
is to create dynamical models for molecular cir-
cuits that regulate phenotypic state transitions.

2.1  Bifurcation and State Transition
A dynamical model of a regulatory circuit is a sys-
tem of ordinary differential equations (ODEs). It 
captures the change in concentrations of mole-
cules in the circuit with time. The time evolution 
of such a dynamical system can be represented by 
the trajectories in the phase space. For a system 
with one or more stable steady states, the trajecto-
ries in the phase space will converge to these sta-
ble steady  states27. In cell biology, each axis of the 
phase space represents the concentration of one 
of the molecules involved in the process. A cell 
will start from a particular position in the phase 
space and then follow a specific trajectory to 
reach a particular stable steady state. Each of 
these stable steady states represents a particular 
phenotypic state.

Often such a dynamical system shows bifur-
cation. In bifurcation, the qualitative behavior of 
the system changes with change in the value of a 

Steady state: At a steady 
state the state variables of 
the system does not change 
with time. For a biochemical 
circuit, at a steady state the 
concentrations of the mol-
ecules involved in the circuit 
do not change with time. If 
the dynamics of the system is 
represented by ẋ = f (x) , 
then at steady state x*, 
f(x*)=0. A steady state can be 
either stable or unstable. If the 
system is perturbed slightly 
from a stable steady state, with 
time it will return to the stable 
steady state. A steady state is 
also called a fixed point.
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critical  parameter27. For example, with a change 
in a critical parameter, the number of possi-
ble stable steady states may change. In a typical 
phenotypic state transition model, change in the 
bifurcation parameter changes the system from 
monostable to bi- or multi-stable. An external 
stimulus usually regulates the bifurcation param-
eter. When the value of the bifurcation parameter 
changes, the cell moves from one steady state to 
another stable one. Such a transition from one 
stable steady state to another one is manifested as 
the phenotypic state transition of the cell.

The concept of bifurcation has been success-
fully utilized to provide the mechanistic expla-
nation of state transition during  EMT28–31, and 
 differentiation32–35. For further details on the 
mathematics of dynamical modeling and bifur-
cation analysis in the phenotypic state transition, 
we refer the readers to the following  articles36–38.

2.2  The Potential Landscape of a Cell
Mechanistic dynamical models and bifurca-
tion theory explain the existence of multiple 
stable phenotypic states. To get closer to Wad-
dington’s metaphor of a landscape, we need to 

generate a potential landscape from a dynamical 
model. Imagine, we have an ODE-based model 
for a particular phenotypic state transition, and 
we have derived a potential landscape from this 
model. In reality, the potential U will be a multi-
dimensional function of concentrations of several 
molecules. However, for the ease of discussion 
and pictorial representation, let us consider that 
U depends upon the concentration of one mol-
ecule that we call a phenotypic determinant. The 
concentration of this molecule decides the phe-
notypic state of a cell. Therefore, the potential 
landscape is now just a curve in a two-dimen-
sional space (Fig. 1).

Consider the example in Fig. 1a. In this case, 
U has only one minimum that represents a sta-
ble steady state, a stable phenotypic state. Cells 
starting with different levels of the phenotypic 
determinant will roll down spontaneously to 
this minimum and achieve that specific pheno-
type. Suppose, these cells are now treated with an 
external cue that changes the parameter values of 
ODEs. This may lead to a change in the shape of 
U and the minimum shifts to a higher value on 
the horizontal axes. This will force all the cells to 
move to this new stable steady state and they will 
acquire a new phenotype.

Figure 1b shows a similar phenomenon but a 
slightly more complicated one. In this example, 
U has one minimum, and all the cells are in that 
state. The external signal changes U such that U 
now has two new minima and the older one has 
disappeared. These new minima are stable steady 
states and represent two different phenotypic 
states. This is an example of bifurcation where 
the system is initially monostable but the external 
signal changes it to bistable. As the potential land-
scape has changed, cells will be forced to move to 
either of these two new minima. Though all cells 
were earlier present at the global minimum, they 
will have variation in their molecular states due 
to stochasticity in processes like gene expression. 
Such stochastic variation will decide which of the 
two new minima a cell will move to.

Phenotypic state transition through these 
types of signal-induced change in the poten-
tial landscape can explain the state transition 
observed in molecular signal-induced  EMT30, cell 
 differentiation35. However, sometimes, cells can 
spontaneously jump from one phenotypic state to 
another, even in the absence of any external  cue8. 
A potential landscape model can explain such 
spontaneous state transitions. Suppose U has two 
minima (Fig. 1c), and both are occupied by cells. 
Remember that molecular processes in every cell 
are noisy and that noise can change the molecular 

Figure 1: The landscape model for phenotypic 
state transition. In these examples, the pheno-
typic state is defined in terms of the concentration 
of a molecule called the phenotypic determinant. 
U is the potential. Local and global minima are 
different stable phenotypic states. Colored circles 
represent cells. In a, b an input signal causes a 
change in the potential landscape. In c, cells 
move from one minimum to another due to sto-
chastic fluctuations in molecular processes. In d, 
the external signal changes the potential land-
scape, facilitating the transition from one minimum 
to another by stochastic fluctuation.
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state of a cell stochastically. If the energy barrier 
(the height of the peak between two minima) is 
low enough, then the noise-induced changes in 
the molecular state are good enough to push a cell 
from one minimum to another. This will mani-
fest as a spontaneous phenotypic state change. If 
we observe for long, these stochastic transitions 
will lead to a steady-state distribution of cells in 
two phenotypic states. If we isolate cells in a par-
ticular state and culture those, the populations 
should again relax to the steady-state distribution 
observed  earlier8.

An external signal can work in tandem with 
the stochastic fluctuation. Suppose, initially, 
the energy barrier between two stable states was 
high, and the stochastic fluctuation can not force 
cells to cross this barrier. An external signal may 
reduce this barrier and facilitate the transition of 
cells from one state to another (Fig. 1d).

2.3  Estimating the Potential Landscape
The idea of a potential landscape is a powerful 
tool to understand the phenotypic state transi-
tion. However, how do we derive the potential U 
from our ODE-based model? In classical mechan-
ics, the idea of potential is used to understand 
the motion of a particle. If free, a particle moves 
from a higher potential to lower potential. Let the 
motion of the particle is given by dxdt = f (x) and 
U(x) be its potential at position x. At a mechani-
cal equilibrium, dU(x)

dt
= 0 and around this equi-

librium, dU(x)
dt

< 0 . These conditions are met if 
we define the potential U(x)  as27:

Figure 2a shows the dynamics of a system for 
dx
dt

= (1− x)(x − 4)(x − 2) . This system has two 
stable steady state (x = 1 and 4) and one unstable 
steady state (x = 2). The blue lines in Fig. 2a show 
the trajectories of the system, starting with differ-
ent initial positions. As shown in this figure, with 
time, the system moves towards any of the two 
stable equilibriums. Figure 2b shows the potential 
of the system as per Eq. (1). As expected, the sta-
ble equilibriums, x = 1 and 4 are the minima.

Differential equation-based mechanistic mod-
els for cellular state transition involve multiple 
dependent variables and use system of ODEs. For 
a system of ODEs, the relation in Eq. (1) can be 
written as:

Here, ẋ is the derivative vector, and U(x) is a 
continuously differentiable single valued scalar 
function of x. If such a potential function, U(x), 
exists, the system is called a gradient  system27.

However, most dynamical models in biology, 
including those for phenotypic state transition, 
are non-gradient systems, and we cannot derive 
the exact potential function from an ODE-based 
 model39. In a gradient system, the energy is con-
served. However, most biological systems are 
away from thermodynamic equilibrium, and 
energy is not conserved. Therefore, alternative 
approaches have been developed to calculate a 
pseudo-potential landscape to explain the transi-
tion from one phenotypic state to another.

(1)f (x) = −
dU(x)

dx
.

(2)ẋ = −∇U(x).

Figure 2: Dynamics and potential landscape for a one-dimensional system. The dynamics of the sys-
tem follows dx

dt
= (1− x)(x − 4)(x − 2) . a The trajectories of the system (blue lines) starting from different ini-

tial conditions. Green horizontal lines are stable steady states, and the pink horizontal line is an unstable 
steady state. b The potential U(x) as a function of x.
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The commonest approach for this is to use the 
concept of Boltzmann distribution of statistical 
physics. Consider that a system can be in discrete 
states that belong to different energy levels. If the 
average energy of the system remains constant, 
then using the principle of maximum entropy, it 
can be shown that the probability of the system 
being in the jth state is given by an exponential 
 relation40:

Here, Uj is the energy of jth state and 
Z =

∑

allj e
−Uj is a normalization constant. Equa-

tion (3) can be re-arranged to represent U in 
terms of p:

Equation (4) re-iterates the idea that low-
energy states will be more densely populated than 
the higher energy states.

It has been proposed that this relation 
between U and p, holds even for non-equilibrium 
systems at steady-state41, 42. Therefore, if we can 
calculate the probability distribution of different 
phenotypic states in the steady state, we should 
be able to calculate and plot U. Suppose we have 
a dynamical model for a molecular network. We 
perform stochastic simulation of this model for 
a very long duration and record the trajectories 
of the system through the phase space. Stochas-
tic simulation can be performed using various 
approaches such as Gillespie algorithm and sto-
chastic differential  equations43, 44. Subsequently, 
we divide the whole phase space into small vol-
umes, and from the simulated data, calculate 
the frequency of observing the system in each of 
these small volumes of the phase space.

This frequency is equivalent to the probability 
of the system being in a particular region in the 
phase space. Following Eq. (4), we can calculate U 
using these estimated probabilities.

One can also use Fokker–Planck equation to 
calculate the steady-state probability distribution 
of the system and calculate U using Eq. (4) 45, 46. 
For a multi-dimensional system, the estimated U 
would be a continuous hypersurface. It is chal-
lenging to visualize U graphically. One can visual-
ize it, with respect to two key molecules involved 
in the process, in a three-dimensional  plot47–49.

Potential U estimated by this approach is dif-
ferent from the potential in equilibrium ther-
modynamics and should be considered as a 
pseudo-potential. It is dimensionless and is 

(3)
pj =

e−Uj

∑

all j

e−Uj
=

e−Uj

Z
.

(4)Uj ∝ − ln(pj).

sensitive to the noise in the  system50. In an equi-
librium system, the gradient of the potential 
drives the time evolution of the system. However, 
for a non-equilibrium cellular system, the poten-
tial estimated above is only one component of the 
driving  force42, 50, 51.

In several studies on phenotypic state tran-
sition, this approach has been used to estimate 
the potential  landscape43, 46, 48, 50, 52–54. Others 
have used the concept of quasi-potential from 
the large deviation  theory55 and the fluctuation–
dissipation theorem to generate the potential 
 landscape41.

3  Bouncing Over Discrete States
In dynamical systems theory and the poten-
tial landscape model, the cellular state space is 
considered as a continuous space, with distinct 
fixed points that represent different phenotypic 
states. The state space is defined in terms of the 
expression of specific molecules. Therefore, this 
approach is suitable for problems where we have 
defined phenotypic states in terms of molecu-
lar markers, and we have the knowledge of the 
molecular regulators.

One can argue that a discrete phenotypic 
state, like the ability to migrate or elongated 
shape, is not achieved by a unique molecular 
state. Cellular phenotypes are robust to usual 
variations in gene expression, and different 
molecular states can give rise to the same phe-
notypic state. In fact, in experimental biology, 
a phenotypic state is not defined by a unique 
value of expression of a marker, but by a range, 
like low, high, or medium. However, in the 
potential landscape model discussed above, a 
phenotypic state is a unique point in the state 
space defined by molecular expression.

These issues can be circumvented if we 
try to understand phenotypic state transition 
phenomenologically as a discrete state transi-
tion problem. This allows us to use any defini-
tion of phenotypic states as long as we define 
them discretely. Once defined, we can measure 
the distribution of cells in different states over 
multiple time points. Subsequently, we can use 
appropriate mathematical tools to study the 
dynamics of state transition.

3.1  State transition as a Markov process
Discrete state transition is often considered as 
a Markov process. A Markov process is a sto-
chastic process where the system stochastically 
jumps from one discrete state to another with 
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a probability that depends only upon the cur-
rent state of the  system56. Figure 3a shows a 
three-state Markov process for a cellular sys-
tem. At a particular time, a cell can be in any of 
these three states. In the next interval, the cell 
will either jump to any of the two other states 
or stay in the same state. The probabilities of 
transition over these paths are given over the 
arrows (Fig. 3a). The transition from one state 
to another can be sequential, too (Fig. 3b). 
Furthermore, a Markov process can have an 
absorbing state, such that the cells that have 
reached that state will not move to any other 
state (Fig. 3c).

Generalizing these concepts, let us consider 
that a cell can be in any of the k states, 
S = {S1, S2, . . . , Sk} . Let Qt

i  be the probability of 
a cell being in the ith state at time t. We can rep-
resent this probability for all the states as 

Qt =
[

Qt
1 Qt

2 . . Qt
k

]

 . Suppose that in one 
time-step, a cell in state i moves to state j with a 
probability pij. The probabilities of all such 
transition can be represented by a k × k square 
matrix, P =

[

pij
]k

i,j=1
 , such that 0 ≤ pij ≤ 1 for 

j = 1 to k, and 
∑k

j=1 pij = 1. P is called a transi-
tion matrix or a stochastic matrix. Figure 3d 
graphically shows a transition matrix for a 
three-state system.

Note that in a Markov process, the system is 
conserved; i.e., the total number of cells remains 
unchanged. Therefore, pii is the probability of 
a cell staying at its current state i and does not 
represent cell division or self-renewal of cells in 
the ith state. However, we can accommodate cell 
death, considering the dead-state as an absorb-
ing state in the model.

Figure 3: Discrete Markov model for cellular state transition. a Three state model where a cell can move 
from any state to any other state directly. b Sequential state transition. c State transition with an absorbing 
state. Here C is the absorbing state. d Shows the transition matrix P for the 3-state model. Each element 
of this matrix is the probability of transition from one state to another. For example, pbc is the probability 
of transition from B to C. Sum of elements in a row in this matrix is equal to 1. e Visual representation of 
the mathematical method, of matrix multiplication, to estimate the probability of a cell in the state A (QA) at 
time (t + 1), from the probability distribution of cell in three states (QA, QB, QC) at the previous time point (t) 
and a part of the transition matrix. QB and QC at the time (t + 1) can be calculated using the same method.
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The probability that a cell will be in the jth 
state, at (t + 1) can be calculated as:

This is explained pictorially in Fig. 3e. Equa-
tion (5), can be written vectorially:

Here, Qt+1 =
[

Qt+1
1 Qt+1

2 . . Qt+1
k

]

.

In experiments, we count the number or 
fraction of cells in different phenotypic states 
at a particular time. For a large sample size, the 
fraction of cells in a state ( xtj  ) can be considered 
as equivalent to the probability of a cell to be 
in that state ( Qt

j  ). Let, the distribution of cells 
in different states at time t, as observed in the 
experiment, be Ft =

[

xt1 xt2 . . xtk
]

 , where xtj  is 
the fraction of cells in the jth state at time t.

Assuming the equivalence of Q and F, we can 
write Eq. (6) as:

For a time-homogeneous system, P remains 
constant over time, and the distribution of cells 
after n time steps is given by:

Here, F0 is the distribution of cells in different 
states at the beginning of the experiment.

In an experiment, after an extended period of 
time, the distribution of cells in different states 
may reach a steady state. At steady state, the pro-
portion of different cell types will not change 
with time. Therefore, from Eq. (8), we can calcu-
late the steady-state distribution Fss as:

When we know P, the steady-state distribu-
tion Fss can be easily calculated. As P is a proba-
bility matrix, one of the eigenvalues of P is 1. The 
eigenvector of P for the eigenvalue 1 is Fss 

56.

3.2  Estimating the State Transition 
Probabilities

The existence of a phenotypic steady state can be 
checked experimentally. However, we are more 
interested in estimating the transition matrix P 
from data as it shows the paths followed by cells 
as they jump from one state to another.

Estimating state transition paths from an 
experiment where we track individual cells 

(5)Qt+1
j =

k
∑

i=1

Qt
i .pij .

(6)Qt+1 = Qt × P.

(7)Ft+1 = Ft × P.

(8)Fn = F0 × Pn.

(9)FSS = FSS × P.

continuously is trivial. We can count number cells 
that have moved from one sate (say ith state) to 
another (say jth state) in a unit time. That would 
allow us to calculate easily pij =

nij
∑k

j=1 nij
 , where nij 

is the number of cells moved from state i to state j 
in an interval. Like any other problem of estimat-
ing probability from counting, we should have 
sufficiently large data.

However, it is usually difficult to collect such 
data for a large number of individual cells for 
several time points. Cell state analysis is often 
performed using flow cytometry and gene expres-
sion analysis. These are end-point assays. In such 
experiments, samples are collected at different 
time points and analyzed independently. These 
experiments do not generate time-series data for 
individual cells but provide an estimate of the 
proportion of cells at different states at different 
time points. This type of data is called aggregate 
data. The estimation of the transition matrix 
from aggregate data is not trivial.

Suppose, we have adequate aggregate time-
series data for t = 0, 1, 2,…, T. Following Eq. (5), 
we can write:

where xtj  and xt−1
i  are observed proportions of 

cells in the jth state at time t, and in the ith state 
at (t−1), respectively. The transition probability 
pij is unknown, and we have to estimate it from 
the data. ǫtj  is the error in our estimate, and we 
want to minimize the error.

Considering all the states and all the time 
points, we can write the Eq. (10) in a vectorial 
form:

Here, X, G, and e are matrices of size k × (T-
1). Both X and G are obtained from data. P is 
the transition matrix.

Using this formulation, one can use different 
regression methods to estimate P from time-
series aggregate  data57–60. In econometrics, vari-
ous authors have used this approach to estimate 
the transition matrix of Markov models. How-
ever, like any other regression-based method, 
this approach is also constrained by the size of 
the data. The number of time points and repli-
cate should be high enough to avoid overfitting. 
On the other hand, long time-series data may 
suffer from multi-collinearity  problem58.

As an alternative to regression, one can use 
a direct root-finding method to estimate the 

(10)xtj =

k
∑

i=1

pijx
t−1
i + εtj ,

(11)X = PG+ e.
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state transition matrix for discrete-time Markov 
models. Suppose there are k number of cell 
states, and we have performed k independent 
experiments where distributions of cells in dif-
ferent states at t = 0 and after L time steps are 
known. Let D0 and DL are k × k square matri-
ces holding these data. In these data matrices, 
each row represents data from one of the k 
experiments.

Following the state transition Eq. (8) for a 
Markov process, we can write:

This relationship can be used to estimate P:

As evident from Eq. (13), estimation of P by 
this method requires computing the Lth root 
of a matrix. Such computation is possible only 
when D0 is invertible. The invertibility of this 
data matrix can be assured if we start the experi-
ments with pure populations for each cell state. 
That will make D0 an identity matrix and invert-
ible. Though a D0 with a mixed population can be 
invertible, achieving such a titrated sample in an 
experiment is not realistic.

When time-dependent data are avail-
able for several time points, P can be estimated 
from each time point data and then averaged. 
This method has been used in the R-package 
 CellTrans61. Though this estimation looks sim-
ple, it is not straightforward. Note that P needs 
to be a stochastic matrix with 0 ≤ pij ≤ 1 , and 
∑k

j=1 pij = 1. However, the Lth root calculated in 
Eq. (13) may not be a stochastic matrix. The Cell-
Trans algorithm uses quasi-optimization of the 
root matrix to regularize the matrix and generate 
appropriate P.

Farahat and  Asada62 proposed a Bayes-
ian method for the estimation of the transition 
matrix from aggregate data. Till now, we have 
considered that the fraction of cells present in a 
state is equivalent to the probability of a cell to 
be in that state. Farahat and Asada’s method does 
not require any such equivalency. They consider 
the count of cells in each state at two time points 
as the input for the estimation algorithm.

Say ni(t) and ni(t + 1) are the numbers of 
cells in the ith state at time t and t + 1, respec-
tively. For all k states, we can represent this data 
as two vectors, N(t) and N(t + 1). The number 
of cells in each state has changed in the interval 
(t, t + 1) as cells have moved or flown from one 
state to another. Consider fij(t) is the number of 
cells that have moved from ith state to jth state in 

(12)DL = D0 × PL.

(13)P = (DLD
−1
0 )1/L.

this interval. The flows between all pairs of states 
can be written as a square matrix, F(t), such that 
∑k

j=1 fij(t) = ni(t) and 
∑k

j=1 fji(t) = ni(t + 1) . 
F(t) is called a flow matrix. For a given N(t) and 
N(t + 1), there could be a large set of possible 
flow matrices that satisfy all the constraints. Let 
us call that set ф(t).

For a given transition matrix P and flow 
matrix F(t), the probability of observing N(t + 1) 
given N(t) is a multinomial distribution problem:

Considering all F(t) ∈ ф(t), Eq. (14) can be 
written as:

Equation (15) is a likelihood function that can 
be used to estimate P, either by the maximum-
likelihood method or by the Bayesian method. 
However, the main obstacle for any such esti-
mation is that ф(t) is usually very large, and the 
computation for the multinomial likelihood 
function is intractable. Farahat and  Asada62 pro-
posed a Gibbs sampling method for estimation 
of the likelihood where the multinomial distribu-
tion is approximated to a constrained multivari-
ate Gaussian distribution.

3.3  Other Methods for Path Estimation
One can also analyze the dynamics in a discrete 
state model using deterministic differential equa-
tion-based approach. Consider the sequential 
state transition model of three states shown in 
Fig. 3b. Let fA, fB, and fC are the fractions of cells 
in states A, B, and C, respectively. The change in 
the distribution of cells in these states can be rep-
resented by a set of ODEs:

(14)

Pr(N(t + 1)|P,N(t)) =

k
∏

i=1

ni(t)!

k
∏

j=1

p
fij(t)

ij

fij(t)!
.

(15)

Pr(N(t + 1)|P,N(t))

=
�

F(t)∈�(t)





k
�

i=1

ni(t)!

k
�

j=1

p
fij(t)

ij

fij(t)!



.

d

dt
fA = −kabfA + kbafB,

d

dt
fB = kabfA − kbafB − kbcfB + kcbfC ,

(16)
d

dt
fC = kbcfB − kcbfC .
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Here, kij, for i, j = a, b, c, is the rate constant for 
the transition from ith state to jth state.

We can write a similar system of ODEs for any 
given model of state transition, sequential or not, 
with k states. One can generalize and write such a 
system of ODEs in vectorially:

ḟ (t) is a vector of derivatives of f. A is a matrix 
holding the rate constants for the transitions 
between states.

Note that for a time homogenous system A is 
constant. The coefficient matrix A is unknown, 
and we need to estimate it from data to under-
stand the flow of cells in different state transition 
paths. The advantage of the ODE-based approach 
is that, with adequate experimental data, one can 
fit this model to data using the conventional tools 
of parameter estimation for ODE-based  models63, 

64. For the one-directional state transition, the 
system of ODEs gets simpler, with a lesser num-
ber of unknown rate parameters. Such a reduced 
system is also more amenable to analytical meth-
ods of analysis. This approach has been used to 
understand the dynamics of state transition in the 
differentiation of stem  cells4 and  EMT65.

Till now, we have considered that the state 
transition system is conserved. That means either 
there is no birth and death, or both of these pro-
cesses have the same rate. Though true in many 
cases, this assumption must be supported by 
empirical observations. In some experiments, one 
cannot neglect cell proliferation and cell death. 
As mentioned earlier cell death can be accommo-
dated in the model considering an absorbing state 
for dead cells. However, one cannot represent cell 
division similarly.

Su et al.12 had investigated drug-induced cel-
lular state transition dynamics in melanoma cell 
lines. As expected, cells in different states had 
different sensitivity to the drug that affects their 
proliferation and survival. To include the differ-
ential effect of the drug on each cell type, they 
multiplied the transition matrix P in Eq. (7) 
with a diagonal matrix, whose diagonal elements 
represent the relative viability of each cell type 
in the presence of the drug. However, this mul-
tiplication generates a square matrix that is not 
a stochastic matrix. Therefore, the population 
distribution estimated using this matrix requires 
further normalization. Furthermore, the elements 
of the transition matrix and drug sensitivity 
matrix cannot be estimated by the root-finding 
method described earlier. Su et al.12 have used a 
Monte Carlo sampling method to estimate these 

(17)ḟ(t) = Af(t),

two matrices. However, the details of the algo-
rithm and the quality of the estimation were not 
described.

The ODE-based approach can accommodate 
cell death and cell division, provided we have 
experimental measures for both of these pro-
cesses. However, both stochastic and ODE-based 
methods have one crucial limitation—both con-
sider the state transition process as time homog-
enous. In some cases, like the spontaneous state 
transition of cells, one can consider that the 
parameters for state transitions remain constant 
with time. A similar assumption may be appro-
priate for one-directional state transition induced 
by an external signal. However, in some cases, the 
state transition is reversible and the external cue 
changes with time. In such a situation, we can not 
assume time homogeneity.

For example, in EGF-induced EMT in breast 
cancer cell line MDA-MB-468 is reversible, and 
the dynamics of state transition depends upon 
phosphorylation status of EGFR that changes 
with  time18. Furthermore, EGF also affects cell 
proliferation and cell death. Therefore, the con-
ventional approaches cannot be used to estimate 
the state transition paths for this experimental 
system. Devaraj and  Bose18 formulated a differ-
ence equation-based state transition model that 
considers cell death and proliferation explicitly. 
As the parameters of this model change with 
time, they used a piecewise approach for param-
eter estimation—a set of estimated parameters 
for each time interval. Any piecewise parameter 
estimation method suffers from the problem of 
overfitting. Therefore, two objective functions 
were used for the parameter estimation—one 
for fitting the data to the state transition model 
and the other one to reduce overfitting. A genetic 
algorithm was used for parameter estimation 
using these two objective functions.

All the mathematical methods discussed 
above estimate either the probability of transi-
tion or rate constant for the transition between 
two states from experimental observations. These 
numerical estimates allow one to identify the pre-
dominant paths of transition between different 
phenotypic states. However, we need to remem-
ber that the change in the distribution of cells 
in different states may also arise by preferential 
proliferation and death, without any state transi-
tion. Therefore, for each experiment, one needs to 
create a null model that considers only cell death 
and cell  proliferation18. This null model can be 
rejected if it fails to fit the experimental observa-
tion or gives rise to unreasonable predictions.
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4  Transition through Microstates 
and Macrostates

When cell states are defined in terms of molec-
ular markers, we can consider a continuous 
potential landscape. Sisan et al.66 estimated a con-
tinuous potential landscape from experimental 
data, where the expression of a reporter gene was 
considered as the reaction coordinate. They esti-
mated the potential following a relation, similar 
to Eq. (4), between steady-state distribution of 
the reporter expression and the potential.

For a  discrete state change model, we cannot 
generate a continuous potential landscape from 
data. Nevertheless, we can use Eq. (4) to estimate 
the pseudo-potential of each phenotypic state 
from the frequency of that state in the steady 
state. Devaraj and  Bose18 used this approach to 
calculate the pseudo-potential for different mor-
phological states in EGF-induced EMT of MDA-
MB-468 cells. They observed that during EMT, 
these cells jump through three morphological 
states—cobble, elongated and circular. Cells in all 
three states were observed even in untreated cells, 
and the frequency distribution of these cell types 
remained constant over time, indicating a pheno-
typic steady state. They used this steady-state dis-
tribution to calculate the pseudo-potential for 
each of these states, using Eq. (4). They graphi-
cally represented those states as horizontal lines 
stacked vertically according to the potentials. This 
diagram is similar to the Jablonski diagram 67 and 
can be used for easy visualization of the transi-
tion of cells from one energy state to another.

However, can we connect two worlds of cell 
states—the molecular state of a cell and its dis-
crete phenotypic state? Statistical physics again 
helps us in this. Let us consider that cells have 
certain discrete traits based on function or physi-
cal characters (e.g., distinct cell morphologies 
observed during EMT). In a way, these traits are 
macroscopic traits. Therefore, the cellular states 
defined by these macroscopic traits can be called 
macrostates.

These macroscopic traits emerge out of 
molecular processes involving a large number of 
molecules. Most of the time, we do not have com-
plete information on all the molecules involved in 
these processes. It is also not possible to know the 
status of all the molecules in a cell at a particular 
time. Even without knowing these molecules, we 
can imagine that a cell can have a large number 
of molecular states defined by concentrations/
activities of all the molecules in the cell. We can 
consider the molecular states of a cell as micro-
states. A particular macrostate can emerge out of 
a set of specific microstates of a cell. In a way, a 

microstate is an internal configuration of a cell. 
Even if we define a phenotypic state (or mac-
rostate) in terms of expression of few molecular 
markers, different internal configurations (or 
microstates) can lead to a particular expression 
level of those  markers68.

This concept of macrostates and microstates 
of a cell is equivalent to the same in statistical 
physics. For gas in a balloon, the pressure defines 
a macroscopic state, whereas the position and 
momentum of each of the gas molecules in the 
balloon defines the microstates. Each of these 
microstates is associated with a specific mac-
rostate. There can be a huge number of micro-
states, and just like cellular microstates, it may 
not be even possible to know all the microstates 
of the gas in the balloon. Even then, the tools of 
equilibrium statistical physics allow us to connect 
microstates and macrostates.

Stumpf et al.4 introduced a similar concept of 
macrostate and microstate in their study on the 
differentiation of mouse embryonic stem cells 
to neuroprogenitor cells. Using gene expression 
analysis, they established that cells had three dis-
tinct phenotypic states. They used an ODE-based 
model for one-directional, sequential state tran-
sition to explain the observed state transition 
dynamics. However, the model fits well with the 
data only when they considered multiple inter-
mediate states for each of these three states. The 
three phenotypic states defined by gene expres-
sion analysis were called macrostates, and these 
intermediate states which were not distinctly 
observed in experiments were called microstates.

Mathematically speaking, by breaking each 
macrostate into multiple microstates, they 
achieved time delay in the dynamics, and that 
helped in better data fitting. In many ODE-based 
biological models, one or more, unknown/unde-
fined molecule or step is introduced to achieve 
time delay. Very, recently Goetz et al.65 used the 
same approach and considered multiple hidden 
intermediate states (or microstates) to model the 
state transition dynamics in TGF-β-induced EMT 
of MCF10A cells. By estimating the rate of transi-
tion over the energy barriers between these states, 
they have shown that an increase in the number 
of intermediate states can accelerate the EMT 
process.

We can hope that the concept of cellular mac-
rostates and microstates would help us further to 
explore phenotypic state transition using tools of 
statistical physics. However, we need to keep in 
mind the nuances of statistical physics. In general, 
each macrostate of a system has a unique energy 
state/level. Each microstate corresponding to that 
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macrostate also has the same energy. Therefore, 
the potential landscape for the system would not 
be smooth. The landscape will be very ‘rough’ 
with a large number of local minima having the 
same potential corresponding to each macrostate. 
In place of simplifying, such a landscape may 
somewhat complicate the model.

Furthermore, in an equilibrium system, 
microstates follow detailed balance, all the micro-
states for a macrostate are equally likely, and the 
system itself is  ergodic40. These properties are 
valid for a cellular system where a steady state of 
phenotypic states is achieved by stochastic state 
transitions. We may hope to analyses such sys-
tems using concepts and tools of equilibrium 
statistical physics. However, most state transition 
problems, such as EMT and stem cell differentia-
tion, are directional processes that violate detailed 
balance and sometimes even ergodicity. There-
fore, the application of statistical physics in cellu-
lar state transition problems is not trivial.

5  Concluding Remarks
Being a developmental biologist, Waddington 
proposed the epigenetic landscape for the spon-
taneous and unidirectional journey of cells from 
pluripotency to fully differentiated states. How-
ever, now we know that a fully differentiated cell 
can retrace its path back to stemness, and we can 
reproducibly generate pluripotent stem cells from 
differentiated somatic  cells69, 70. Further, differ-
entiated cells can be coaxed to ‘transdifferentiate’ 
into another type of  cells71, 72. In reprogramming 
and transdifferentiation, cells are going uphill on 
the Waddington’s landscape. While developing a 
generalized potential landscape-based theory for 
cellular state transition, we need to consider this 
possible uphill journey of cells.

In equilibrium thermodynamics, a system 
moves from a higher potential to a lower one. 
Sometimes the potential landscape can have 
multiple local minima. The system may move 
through these local minima and will eventually 
reach the global minimum, the most stable state 
of the system. This is how we try to explain pro-
tein folding.

However, for cell state transition, each phe-
notypic state is stable and a minimum (local or 
global) in the landscape. The transition from one 
minimum to another depends upon the energy 
barrier between those two. Furthermore, the phe-
notypic potential landscape for a cell is plastic. An 
external cue can change this landscape, facilitat-
ing the movement of a cell from one minimum 
to the other. Both cellular reprogramming and 

transdifferentiation can be explained by changes 
in the energy barriers and shape of the potential 
landscape.

Mathematical studies in cellular state transi-
tion have focused primarily on the estimation 
of state transition paths and the static potential 
landscape, either from data or from a mechanis-
tic model. The focus should now shift towards the 
kinetics of a cell over a potential landscape and 
effects of an external cue on the topology of the 
landscape itself.

In this review, we have focused only on math-
ematical approaches that attempt to investigate 
phenotypic state transition at the phenomenon 
level, rather than going into details of molecu-
lar processes. Understanding detailed molecular 
processes, from experiments and mathematical 
models, is important, particularly when we want 
to intervene in a cellular process. Recent devel-
opments in high-throughput experiments at 
single-cell resolution are helping to investigate 
phenotypic state transition with ever-increasing 
details. However, to make a sense out of those 
higher dimensional data, we need to know the 
generalized principles of the phenomenon. This 
is where the phenomenon-level models discussed 
in this review help. These models inform us of the 
physical boundaries of the problem and help us 
to understand the possibilities.
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