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Role of Mitochondria in Generation of Phenotypic 
Heterogeneity in Yeast

1  Phenotypic Heterogeneity
Predictive genotype–phenotype mapping is one 
of the fundamental challenges in  Biology1–4. The 
genetic material (genotype) of a cell contains 
information that manifest as the cellular pheno-
types which range from gene expression patterns, 
topology of cellular networks, cell volume, cell 
surface properties to cell’s growth rate and its 

Phenotype: An observable 
trait of a cell or of an organ-
ism that can be measured and 
quantified.

Genotype: The information 
encoded in the genes and the 
genome of an organism.
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Abstract | A cell’s phenotype is determined by its genome sequence 
and epigenetic state which translate into the biochemical reactions 
occurring inside the cells. As these biochemical processes are driven 
by small biological molecules, stochastic fluctuations may arise in the 
number of these biological molecules inside the cell and in the interac-
tions between these molecules. These fluctuations can cause temporal 
variations in the cellular processes leading to variations in phenotype 
between two cells present in a population under identical environmen-
tal condition. Phenotypic variations in a population can enable a small 
fraction of cells to survive sudden changes in the environmental condi-
tion, as some of the cells are always prepared for such a change. Phe-
notypic variations can thus have very important implications for survival 
of a cell population and have been shown to affect our ability to treat 
human diseases—from eradication of a bacterial infection to treatment 
of cancer. In this review, I discuss the role of mitochondria, an important 
organelle in all eukaryotic cells, in generation of phenotypic heteroge-
neity. Mitochondria contains its own genome in multiple copies per cell 
and many proteins and RNA molecules required for proper functioning 
of mitochondria are present on the mitochondrial genome. Variations in 
number of copies of the mitochondrial genomes can thus lead to varia-
tions in mitochondrial functional state. As mitochondria have important 
roles in several cellular process, this can lead to variations in several 
cellular phenotypes including drug resistance. In this context, I also dis-
cuss the role of mitochondria in human diseases where mitochondrial 
heterogeneity could have important implications for disease progression 
and therapy. Thus, understanding the role of mitochondria in generation 
of phenotypic variation assumes significant importance in the context of 
human diseases as well as emergence of drug resistance.
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response to environmental stimuli and drugs. 
However, we understand the principles of geno-
type–phenotype mapping only partially and there 
are several complexities that affect this 
 mapping4−10. A comprehensive understanding of 
the mapping principles will enable us to mathe-
matically predict values of phenotypes from a 
genotype. For example, we will be able to predict 

© Indian Institute of Science 2020. 

1 Department 
of Biotechnology, 
IIT Kharagpur, 
Kharagpur 721302, West 
Bengal, India. 
*riddhiman.dhar@iitkgp.
ac.in

http://crossmark.crossref.org/dialog/?doi=10.1007/s41745-020-00176-3&domain=pdf


498

R. Dhar

1 3 J. Indian Inst. Sci.| VOL 100:3 | 497–514 July 2020 | journal.iisc.ernet.in

the disease risks of an individual from the 
genome sequence  alone11−14 and be able to deter-
mine antimicrobial resistance profile from the 
genetic composition of a bacterial  population15, 

16. Such a predictive framework would enor-
mously benefit healthcare, medicine, agriculture, 
and biotechnology  industry11−21.

A population of cells, be it microbial, fungal 
or mammalian, often exhibit a range of values for 
one phenotype in identical environmental condi-
tion—a phenomenon referred to as phenotypic 
heterogeneity (Fig. 1a, b). Phenotypic heteroge-
neity could arise in a population because of pres-
ence of genetic variations (Fig. 1c). Natural 

Epigenetic modifications: 
Chemical modifications on 
the DNA that do not involve 
any change in DNA sequence.
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Figure 1: Phenotypic heterogeneity and its causes. a All cells in a phenotypically homogeneous popula-
tion will show a single value for a phenotype. b Cells in a population exhibiting phenotypic heterogeneity 
will show different values for a phenotype thereby generating a distribution of phenotype values. c–e Phe-
notypic heterogeneity in a population can arise due to (c) presence of genetic variations in the population 
(d) epigenetic variations (e) stochastic variations in cellular processes. Each circle represents a cell and 
the colour of the circle represent the phenotype of the cell. Cells showing the same phenotype are repre-
sented by the same colour.
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A population of cells, be it microbial, fungal 
or mammalian, often exhibit a range of values for 
one phenotype in identical environmental condi-
tion—a phenomenon referred to as phenotypic 
heterogeneity (Fig. 1a, b). Phenotypic heteroge-
neity could arise in a population because of pres-
ence of genetic variations (Fig. 1c). Natural 

Epigenetic modifications: 
Chemical modifications on 
the DNA that do not involve 
any change in DNA sequence.

microbial populations often harbor high genetic 
 diversity22−24. Similarly, cancer cells have also 
been shown to be genetically extremely heteroge-
neous even within one  tumor25−27. Alternatively, 
phenotypic heterogeneity can also arise due to 
variations in epigenetic modifications of the 
 genome28−30 (Fig. 1d). These modifications range 
from DNA methylations in prokaryotic cells to 
histone modifications and three-dimensional 
configuration of the genome in the eukaryotic 
 cells28−34. Recent studies are beginning to show 
significant variations in the epigenetic modifica-
tion patterns among individual cells in a popula-
tion of eukaryotic and cancer  cells35−37 and these 
variations can drive phenotypic heterogeneity in 
a population.

Most interestingly, a cell population with 
identical genotype and epigenetic modifications 
can also exhibit a diverse range of phenotype 
values in identical environmental  condition38−42. 
Such variations arise due to stochastic fluctua-
tions in the cellular  processes43−45. The protein 
and RNA molecules that carry out all the func-
tions inside a cell are microscopic and thus, 
are subjected to fluctuations such as Brownian 
 motion46−49. This can often lead to variability in 
initiation and termination time of cellular pro-
cesses that can ultimately influence the cellular 
phenotypes. Alternatively, the biological mole-
cules often interact with each other for executing 
cellular functions that eventually decide cellular 
phenotypes and small variations in these inter-
actions from one cell to another can also lead 
to phenotypic heterogeneity. The heterogeneity 
arising out of variations in cellular processes are 
usually transient in nature and the cells switch 
from one phenotype to another phenotype con-
comitant with changes in the underlying cellular 
 processes50−52. Thus, this kind of heterogeneity is 
often referred to as phenotypic plasticity where a 
cell can show different phenotypes in one envi-
ronmental condition even though the genotype 
is the  same40, 51, 53–55. In contrast to phenotypic 
heterogeneity generated due to genetic and epi-
genetic variations, phenotypes generated by vari-
ations in cellular processes are poorly inherited 
from one generation of cells to its  progeny56−59 .

A prominent example of phenotypic hetero-
geneity arising out of variations in cellular pro-
cesses is the phenomenon of gene expression 
noise where the expression level of a gene can 
vary among cells of an isogenic population in an 
identical environmental  condition43, 60–62. Gene 
expression noise is generated by stochastic fluctu-
ations in the processes of transcription and trans-
lation and is driven by the promoter sequence of 

Noise: Variation in expres-
sion level of the same gene 
observed among individual 
cells in a population.

the  gene63, 64, the location of the gene in the 
 chromosome65 and the nucleosome occupancy in 
the genomic region where the gene is  present64, 65.

2  Impact of Phenotypic Heterogeneity 
in Biological Systems

Phenotypic heterogeneity leads to a scenario 
where a small sub-population of cells differ in 
their phenotype from that of the majority of the 
population even in the same  environment22−37. 
These phenotypes might be sub-optimal for sur-
vival and growth of the cells in that particular 
environment and can drag the population fit-
ness  down66, 67. However, such phenotypes could 
be advantageous when the cells are exposed to 
a new environment, such as occurrence of envi-
ronmental stress or presence of growth inhibiting 
molecules in the  environment50, 51, 54, 68  (Fig. 2). 
Indeed, it has been shown that the genetic diver-
sity in a microbial population can help some 
of the cells to survive in different antibiotics 
and can help in emergence of a drug-resistant 
 population69−72. Similarly, presence of high 
genetic diversity and thereby high phenotypic 
heterogeneity in cancer cells complicates cancer 
chemotherapy, lead to evolution of drug-resistant 
tumor cells and cause cancer  relapse73−77. Simi-
larly, phenotypic variations generated due to vari-
ations in epigenetic modifications has been linked 
to drug resistance in  cancer77−80.

Phenotypic heterogeneity arising out of varia-
tions in cellular processes are reversible and allow 
a cell population flexibility to tune their pheno-
types according to the environmental condition 
while keeping the genotype  constant68−70, 72, 81, 82. 
Such phenotypic heterogeneity has been shown 
to have important roles in cellular decision mak-
ing, in bacterial spore formation, in antibiotic 
persistence in bacteria and in immune evasion 
and drug resistance in cancer  cells55, 73, 76, 81–92. 
One well-studied example of phenotypic hetero-
geneity generated due to stochastic variations in 
cellular processes is the phenomenon of persister 
 cells93, 94. Persisters are a tiny sub-population of 
cells in a microbial population that can tolerate 
and survive even prolonged exposure to very high 
concentration of antibiotics. These cells can then 
regenerate the original cell population when the 
environmental stress or drug treatment is 
 withdrawn93–95. Similarly, intra-tumor pheno-
typic heterogeneity arising from variations in cel-
lular processes has also been observed in cancer 
and are thought to have important role for cancer 
metastasis and drug  resistance89, 90, 92.

Immune evasion: Strategies 
usually employed by tumor 
cells and infectious organisms 
to avoid detection and killing 
by immune cells.

Bacterial spore: A spore is a 
resistant dormant structure 
in bacteria formed in adverse 
environmental condition and 
can regenerate bacteria in 
favorable condition.
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Figure 2: Impact of phenotypic heterogeneity in a cell population. a Phenotypic heterogeneity can enable 
a cell population to survive in diverse environmental stresses and drug treatments, as some cells show-
ing phenotypic variations are prepared to survive these environmental changes. Once the environmental 
stress or the drug treatment disappears, these cells can regenerate the cell population. b A population 
with phenotypic heterogeneity can survive a permanent environmental change and can enable emer-
gence of a resistant population in the long term.
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3  Growth Heterogeneity and its 
Importance

Heterogeneity in growth rate is a common 
phenotypic heterogeneity observed in a cell 
 population68, 96–100. Not all cells in a population 
consisting of genetically identical individuals 
(isogenic) grow at the same rate and variations 
in cellular processes can give rise to growth rate 
heterogeneity in a population. One of the most 
prominent examples of growth heterogene-
ity is observed in the case of persister cells in 
microbial  populations94, 95. These cells are usu-
ally slow-growing and can tolerate high concen-
trations of  antibiotic94, 95, 101. The persister cells 
have been shown to be generated by expression of 
toxin-antitoxin systems, where the toxin protein 
slows down  growth101, 102. Such toxin-antitoxin 
systems are found in many human pathogens, 
suggesting a critical role of these pathways and 
thus, growth heterogeneity in persistent bacte-
rial  infections103−106. Similar growth heterogene-
ity has also been observed in cancer and has been 
shown to be important for tumor  growth99, 100. 
However, the exact molecular causes of growth 
heterogeneity in eukaryotic and cancer cell popu-
lations are largely unknown.

Why are slow growing cells usually more 
resistant to antibiotics and drugs? The answer 
lies in the fact that most antibiotics and drugs 
inhibit the cellular pathways that are required for 
growth of cells. Since these pathways are already 
less active in slow-growing cells, the antibiotic 
and drug molecules become less effective. As a 
consequence, these cells can survive drug treat-
ment regimens and in the long run, can lead to 
emergence of genetically stable drug resistant 
cell  populations106. Thus, growth heterogeneity 
assumes significant importance with respect to 
the crisis of antibiotic and drug  resistance107−111.

4  Quantifying Growth Heterogeneity
A cellular phenotype is often measured for a pop-
ulation of cells which gives us a single value for 
the phenotype. In reality, this value represents the 
average of the phenotype score of all the individ-
uals in the population (Fig. 1a, b). Quantification 
of phenotypic heterogeneity necessitates meas-
urement of phenotype score for all individuals in 
a population. For example, heterogeneity in gene 
expression is measured by quantifying expression 
of a gene in all cells of a population, usually 
through flow  cytometry61, 63. Similarly, for profil-
ing growth heterogeneity of a cell population, one 
needs to quantify growth rate of individual cells 
in a population. This has been done in E. coli 

Microcolony: An ensemble of 
small number of genetically 
related cells that can be ob-
served under microscope.

Phenotype score: The quan-
titative value of a phenotype 
determined experimentally.

employing microfluidic  devices94, however with 
low throughput where the growth rate of only a 
few cells could be measured. High-throughput 
single cell growth rate quantification has been 
achieved in yeast where the growth rates of indi-
vidual cells are measured through live-imaging 
 microscopy68, 112, 113. This method has also been 
adapted to work in a high-throughput manner so 
that growth rates of thousands of cells can be 
measured in one  experiment113. Briefly, single 
yeast cells are immobilized on microscopy plates 
and are grown over a period of time under appro-
priate growth conditions. Daughter cells are pro-
duced as cell division progresses and these cells 
tend to stay at the same location close to the 
mother cells and form microcolonies (Fig. 3a). 
Images of the microcolonies are acquired at regu-
lar intervals over a certain period of time. Com-
putational processing of the images generates a 
relationship between the microcolony area 
(which correlates well with cell number) and 
time, which is then used to calculate the growth 
rate of the microcolony which started from a sin-
gle cell (Fig. 3b). Once this data are collected for a 
large number of colonies, a growth rate distribu-
tion can be calculated (Fig. 3c). Work of several 
groups have shown that the growth distribution 
of the common laboratory strain of yeast shows 
deviation from a normal distribution and the 
population contains a small fraction of slow-
growing  cells68, 112, 113. This feature has been 
missed until now where only mean population 
growth rates have been measured. Thus, it is criti-
cal for us to develop techniques for quantifying 
single-cell phenotype as it can reveal biological 
systems in an unprecedented detail. This is help-
ful for a better understanding of the biological 
systems and can influence all areas of biological 
sciences and medicine. Single-cell-omics technol-
ogies (genomics, epigenomics, transcriptomics, 
metabolomics, proteomics) are steps in that 
 direction114−118.

5  Mitochondria as a Driver of Growth 
Heterogeneity

Although the phenotypic consequences of growth 
heterogeneity are widely known, the molecu-
lar mechanisms driving such variations are less 
known. Studies in bacterial persisters have shown 
a role of toxin-antitoxin systems in generating 
growth heterogeneity through activation of strin-
gent  response119. Similarly, variation in expres-
sion of virulence genes in Salmonella has been 
shown to lead to growth heterogeneity and ulti-
mately, to antibiotic tolerance in a subpopulation 



502

R. Dhar

1 3 J. Indian Inst. Sci.| VOL 100:3 | 497–514 July 2020 | journal.iisc.ernet.in

of  cells120. A recent study has shown a key role 
of stress-response regulator RpoS in growth rate 
modulation which enabled stress survival in bac-
terial  populations121. Studies in yeast have identi-
fied the impact of genetic and non-genetic factors 
on growth heterogeneity across a wide range of 
yeast  strains112. Among the non-genetic factors, 

variations in the level of cyclic AMP in cells have 
been shown to trigger growth heterogeneity and 
stress survival through stress responsive tran-
scription factors MSN2 and MSN4122.

To systematically identify the cellular pro-
cesses that contribute to the formation of slow-
growing cells and thereby, generate growth 

Gene functional enrichment 
analysis: Analyzing a list of 
genes to test whether genes as-
sociated with a specific func-
tion are enriched in the list 
than that would be expected 
by chance alone. This might 
suggest an important role of 
a functional class in a cellular 
process.
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Figure 3: Measuring growth heterogeneity in a yeast population. a Single cells of yeast are immobilized 
and grown in appropriate growth condition. b Cells are imaged at regular time intervals; images are pro-
cessed and the changes in area of the microcolonies over time are quantified for calculation of growth 
rate. c Measurement of growth rate across thousands of cells give rise to a growth rate distribution. The 
dashed lines show the mode growth rate and the red dotted curve shows a normal distribution with same 
mode growth rate. d Expected growth rate distribution of gene deletion mutants that reduce the fraction 
of slow-growers from the population (in blue) and growth rate distribution of gene deletions mutants that 
increase the fraction of slow-growers, with and without the change in mode growth rate.

Regulator: A protein or a mol-
ecule that control and regulate 
a cellular process.
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variations in the level of cyclic AMP in cells have 
been shown to trigger growth heterogeneity and 
stress survival through stress responsive tran-
scription factors MSN2 and MSN4122.

To systematically identify the cellular pro-
cesses that contribute to the formation of slow-
growing cells and thereby, generate growth 

Gene functional enrichment 
analysis: Analyzing a list of 
genes to test whether genes as-
sociated with a specific func-
tion are enriched in the list 
than that would be expected 
by chance alone. This might 
suggest an important role of 
a functional class in a cellular 
process.

heterogeneity, one needs to carefully dissect the 
role of each gene present in the genome of the 
cell. Usually this is achieved through a genome-
wide screen, by deleting one gene at a time and 
measuring the changes in the desired phenotype 
of the cell after a gene has been deleted. Any 
change in the phenotype score suggests a role for 
the gene that has been deleted, in generation of 
that phenotype. The same strategy was adopted 
for identifying the genes that contribute to 
growth heterogeneity in yeast Saccharomyces cere-
visiae113. Approximately 1600 genes were deleted 
one by one and their effects on growth heteroge-
neity were identified. Wide variety of growth dis-
tributions were observed in the deletion strains. 
However, two classes of gene deletions were of 
interest as they led to identification of cellular 
processes causing slow-growth. Deletion of genes 
that lead to a reduction in slow-growing sub-
population, with or without change in mode 
growth rate, are likely to be actively involved in 
generation of slow-growers. On the other hand, 
deletion of genes that lead to an increase in slow-
growing sub-population are likely to buffer or 
regulate formation of slow-growing cells. A gene 
functional enrichment analysis showed that a 
majority of the genes whose deletion lead to 
increase in slow-growing sub-population were 
involved in mitochondrial function, suggesting a 
central role of mitochondria in generating growth 
 heterogeneity113.

Mitochondria is an important organelle pre-
sent in all eukaryotic cells and are critical for 
energy generation in the form of  ATP123, 124. The 
energy generation process requires five protein-
complexes that are present in the inner mitochon-
drial  membrane125−128 (Fig. 3a). The complex I to 
complex IV are involved in pumping out proton 
from mitochondrial matrix to the intermem-
brane space (between inner and outer mitochon-
drial membrane). This leads to formation of a 
potential difference across the intermembrane 
space which is referred to as the mitochondrial 
membrane potential (MMP)124, 125. The complex 
V (or the ATP synthase complex) on the inner 
mitochondrial membrane harness this poten-
tial difference to generate ATP from ADP, in the 
process pumping protons into the mitochondrial 
 matrix127, 128.

Proper functioning of mitochondria requires 
approximately 800 proteins in the yeast S. cerevi-
siae and approximately 1300 proteins in 
 human129, 130. Most of these proteins are encoded 
by genes present on the nuclear genome both in 
the case of yeast and human. In addition, mito-
chondria also contain its own genome and a small 

Genome: The genetic material 
of an organism and is present 
inside each cell of the organ-
ism. It contains all the gene 
sequences and non-coding 
DNA sequences.

number of genes are present on the mitochon-
drial  genome131, 132. Mutations in the genes 
important for mitochondrial function, whether 
the gene is present in the nuclear genome or in 
the mitochondrial genome, can affect normal 
mitochondrial function which can perturb sev-
eral important cellular processes and thereby can 
affect the cellular  phenotype133, 134. In humans, 
many such mutations in the nuclear genome and 
mitochondrial genome have been mapped and 
linked to a variety of mitochondrial 
 diseases135−137.

Unlike nuclear genome, a cell can harbor mul-
tiple copies of the mitochondrial genome. This 
can vary between 25 and 100 copies per cell in 
 yeast138 and between 100 and 100,000 copies per 
cell in human depending on the tissue where the 
cell is  located139−142. Mitochondrial genome har-
bors genes encoding for some of the essential pro-
tein subunits of the complex IV and ATP synthase 
complex (complex V), as well as genes encod-
ing mitochondrial rRNA and tRNA molecules. 
Interestingly, a cell can harbor mitochondrial 
genome with mutations along with non-mutated 
genomes, a condition known as  heteroplasmy143, 

144. Only when the number of mutated mito-
chondrial genomes exceeds the number of unmu-
tated genomes, the effects of the mutations begin 
to manifest in the cellular phenotypes. However, 
the exact ratio between mutated and unmutated 
mitochondrial genomes beyond which these 
effects manifest is not known.

In addition, changes in mitochondrial genome 
copy number can lead to non-optimal expression 
level of mitochondrial protein and RNA mole-
cules and can thereby affect normal mitochon-
drial function. Indeed, quantitative measurements 
of the mitochondrial genome (hereon termed 
mtGenome) copy number across sub-population 
of yeast cells suggested that mtGenome can spon-
taneously and substantially vary in copy number 
among members of a cell population who share 
the same nuclear  genome113 (Fig. 4b). Variation 
in mtGenome copy number altered mitochon-
drial membrane potential and perturbed normal 
mitochondrial function and ultimately, generated 
sub-populations of cells with different levels of 
mitochondrial  activity113 (Fig. 4b). Mitochondrial 
DNA polymerase (MIP1) in yeast has a key role 
in the maintenance of mtGenome copy number. 
Overexpression of MIP1 gene in yeast increased 
mtGenome copy number and reduced growth 
 heterogeneity113.

Variations in mtGenome copy number lead 
to generation of variable mitochondrial func-
tional states that are likely to affect several 

DNA polymerase: An enzyme 
that is responsible for replica-
tion of DNA molecules.
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key cellular processes and eventually alter cel-
lular phenotypes. Specifically, cells with nor-
mal mtGenome copy number had normal 
mitochondrial function and were growing 
normally (Fig. 4b). At the other end of the 
spectrum, there were cells with very few cop-
ies of the mtGenome and had dysfunctional 
mitochondria and these cells were enriched for 

slow-growers. In between the extremes, there 
were cells with intermediate mtGenome copy 
number which were still able to grow normally 
(Fig. 4b). As mitochondria is essential for respi-
ration, mitochondrial dysfunction will lead to 
less efficient oxidative phosphorylation, which, 
in turn, will reduce the ATP generation in the 
cell as well as affect other cellular  processes145, 
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Figure 4: Variations in mitochondrial functional state is generated by variations in mitochondrial genome 
copy number. a Mitochondrial complexes I to IV are involved in exporting protons from mitochondrial 
matrix to mitochondrial intermembrane space. This leads to a potential difference across mitochondrial 
inner membrane that is known as mitochondrial membrane potential (MMP). b Variations in mitochondrial 
genome copy number in yeast cells lead to variation in mitochondrial membrane potential and mitochon-
drial function. Cells with mitochondrial dysfunction show enrichment for slow-growers.
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146. This is likely to slow down growth of the 
cells. Thus, variations in mtGenome copy 
number led to variations in the mitochondrial 
activity, which ultimately caused growth hetero-
geneity in the yeast population.

6  Phenotypic Consequences 
of Variations in Mitochondrial 
Functional State

Besides ATP generation, mitochondria also play 
very important roles in diverse cellular processes 
(Fig. 5a). The tri-carboxylic acid (TCA) cycle 
that generates important intermediate metabo-
lites for diverse cellular functions operates inside 
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Figure 5: Variations in mitochondrial functional state drives variation in diverse cellular processes. a Mito-
chondria has important role in diverse cellular processes. b Changes in mitochondrial functional state 
lead to changes in cytoplasmic translation, iron homeostasis and influence survival of cells in the face of 
environmental stress and drugs.
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mitochondria. In addition, the MMP is criti-
cal for homeostasis of iron and calcium inside 
the  cell145, 146. The mitochondria are the hub 
for biosynthesis of heme, iron-sulfur clusters, 
amino acids and precursors required for nucleo-
tide  biosynthesis146. Further, during the process 
of oxidative phosphorylation and generation of 
ATP, reactive oxygen species (ROS) are gener-
ated which are then neutralized by mitochondrial 
 enzymes146−148. The mitochondria also maintain 
a redox balance across the cells in the form of 
NADH/NAD+ balance through aspartate-malate 
and malate-citrate shuttles that operate across 
mitochondrial  membrane146, 149, 150.

Given the important role of mitochondria in 
a cell, any change in mitochondrial membrane 
potential and mitochondrial functional state 
will lead to changes in diverse cellular processes. 
Changes in mitochondrial activity will primar-
ily lead to changes in oxidative phosphorylation 
and ATP generation. Cells with mitochondrial 
dysfunction showed reduced expression of genes 
involved in oxidative phosphorylation and cel-
lular respiration (Fig. 4b). Further, cells with 
mitochondrial dysfunction were growing slowly 
and thus, required less proteins for biomass for-
mation, which was reflected in sharp decrease 
in expression of genes involved in cytoplasmic 
translation (Fig. 5b). Changes in mitochondrial 
potential will lead to changes in iron homeostasis 
and indeed, the cells with mitochondrial dysfunc-
tion displayed signs of iron starvation (Fig. 5b)113, 

151, 152. Iron starvation can lead to reduction in 
iron-sulfur cluster biosynthesis which has been 
shown to cause genome  instability152. Thus, not 
surprisingly, slow-growing cells showed signs of 
DNA damage as the DNA repair proteins were 
 upregulated113. Interestingly, signs of DNA dam-
age have been observed in slow-growing cells 
across several  studies96, 153. Variation in mito-
chondrial content has earlier been shown to 
affect transcriptional rate and to generate gene 
expression noise in  yeast154, 155. Similarly, analysis 
of transcriptome of cells with different levels of 
mitochondrial activity showed that variation in 
mitochondrial activity can also lead to heteroge-
neity in gene  expression113 (Fig. 6). Heterogene-
ity generated in gene expression from variations 
in mitochondrial content and functional state can 
thus drive phenotypic heterogeneity.

Mitochondria are involved in management 
of ROS damage in the cell and thus, have a criti-
cal role in cellular response to environmental 
stress. Thus, cells with mitochondrial dysfunc-
tion showed poor stress survival against salt and 
oxidative  stress113 (Fig. 5b). These cells also had 

lower expression of stress responsive  genes113. In 
contrast, some of the other studies have shown 
that more stress-resistant cells tend to be slow-
growing68, 96. However, it is likely that these stress-
resistant cells form only a small fraction of the 
sub-population of slow-growers.

Cells have evolved mechanisms to sense 
changes in mitochondrial functional state and to 
remodel their metabolism accordingly. Specifi-
cally, mitochondrial dysfunction activates retro-
grade signaling pathway which remodels nuclear 
gene expression through activation factors RTG1, 
RTG2 and RTG3 in  yeast156, 157. Since the normal 
TCA cycle is disrupted in the cells with dysfunc-
tional mitochondria, retrograde signaling enables 
these cells to produce necessary metabolites 
bypassing the TCA  cycle151, 152. Very interestingly, 
mitochondrial dysfunction also activates the 
multidrug efflux pump PDR5 through the tran-
scription factor PDR3, however, the complete cel-
lular pathway for this activation is  unknown158, 

159. The drug efflux pumps help yeast cells survive 
and grow in antifungal drugs by actively pumping 
the drugs out of the cells. Thus, as expected, cells 
with mitochondrial dysfunction showed higher 
expression of the PDR5 gene and were able to 
survive and grow in antifungal drug whereas the 
cells with normal mitochondrial function were 
 killed113 (Fig. 5b). Taken together, changes in 
mitochondrial function led to variations in 
diverse cellular phenotypes including environ-
mental stress tolerance and drug resistance.

7  Mitochondrial Heterogeneity 
and Human Diseases

As mitochondria are essential for diverse cellular 
functions, disruptions in normal mitochondrial 
function can perturb cellular homeostasis and 
can lead to cellular abnormality. Such abnormal-
ity can manifest themselves as disease in humans. 
Indeed, mitochondria has been linked to many 
diseases in humans. Mitochondrial diseases range 
from Alpers-Huttenlocher syndrome, Pearson 
syndrome, Mitochondrial Encephalopathy, Lac-
tic acidosis, and Stroke like episodes (MELAS), 
Mitochondrial Neuro-gastrointestinal Encepha-
lopathy Disease (MNGIE), Amyotrophic lateral 
sclerosis (ALS), to neurodegenerative disorders 
such as Alzheimer’s and Parkinson’s diseases 
to diabetes, cardiac diseases, and respiratory 
 diseases135–137, 160–165. Mitochondria has also been 
shown to be a key component of cellular aging in 
yeast  model166, 167. In addition, changes in mito-
chondrial genome copy number has also been 
observed in several  cancers168, 169, suggesting an 

Multidrug efflux pump: 
Protein complexes present 
on cell surface that actively 
recognize drug molecules and 
help transport them out of 
the cell. These pumps are a 
major cause of failure of drug 
treatments.

TCA cycle: A central part of 
the cellular metabolism that 
generates several important 
cellular molecules required 
for growth and survival of 
cells.

Retrograde signaling: 
Intracellular signaling from 
mitochondria to nucleus 
for modification of cellular 
processes in accordance to 
the internal state and external 
environment of the cell.

Iron-sulfur clusters: These 
are organometallic ensembles 
of iron and sulfur atoms and 
serve as cofactor for many 
important biological enzymes.
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important role of mitochondria in cancer pro-
gression and malignancy. Although, it is widely 
presumed that the disruptions in normal mito-
chondrial function lead to problems in ATP gen-
eration, which, in turn, results in disease state, 
recent studies are painting a much more complex 
scenario. For example, problems in iron transport 
and iron homeostasis as a result of mitochondrial 
dysfunction has been shown to underlie cardio-
myopathy and neurodegenerative  disorders164, 165.

Although many studies till date has identi-
fied mutations in the nuclear genome as well 
as in the mitochondrial genome across diverse 
mitochondrial  diseases135−137, 162, how mitochon-
drial heterogeneity impacts disease phenotype 
and drug resistance is less clear. Several studies 
are uncovering a role of heterogeneity in mito-
chondrial genome sequence, heteroplasmy, in 
human  diseases143, 170–172. Interestingly, a very 
recent study has shown existence of three differ-
ent energetic states with distinct mitochondrial 
structure and dynamics in ovarian tumor initiat-
ing  cells173, suggesting potentially important role 
of such heterogeneity in tumor development and 

 progression173, 174. In addition, mitochondrial 
heterogeneity has been suggested to be impor-
tant for pluripotent stem cell reprogramming and 
 differentiation174, 175.

8  Summary and Future Scope
Phenotypic heterogeneity can arise due to 
presence of genetic variations, due to epige-
netic variations or due to stochastic variations 
in cellular processes from one cell to another. 
As a consequence, a cell population is always 
likely to exhibit a range of phenotypic scores 
whether the population contains cells with 
identical genotype or not. Although our under-
standing of phenotypic heterogeneity gener-
ated due to genetic and epigenetic variations is 
quite mature, we are only beginning to uncover 
the phenotypic heterogeneity generated due to 
variations in cellular processes. As the cellular 
processes involve small biological molecules, 
variations in cellular processes due to variabil-
ity in interaction between molecules and vari-
ability in initiation and termination of cellular 
processes is inevitable. There are thousands of 

Normal mtGenome
copy number

Low mtGenome
copy number

Intermediate mtGenome
copy number

Variation in number of protein molecules
(gene expression noise)

?

Variation in mtGenome copy number

Figure 6: Variations in mitochondrial genome copy number lead to mitochondrial activity which lead 
to variations in gene expression. The question how the variations in mtGenome copy number arise and 
whether gene expression noise has any role in this process, however remains to be answered.
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biochemical reactions that occur in a cell at a 
given point of time and thus, there are thou-
sands of ways in which two cells can differ in 
their cellular processes. Phenotypic heteroge-
neity generated due to process variations can 
thus complicate predictive genotype–phenotype 
mapping.

Phenotypic heterogeneity can have far reach-
ing implications for our ability to treat human 
diseases. Small phenotypic variations among 
cells in a population can heavily influence the 
viability of cell populations. Phenotypic varia-
tions in microbial cell population can enable a 
small fraction of cells to survive environmental 
stress and antibiotic treatment, thus ensuring 
the survival of the microbial population. This 
process can lead to persistence of microbial 
infections even after antibiotic treatment and 
in the long-term, could aid in the emergence 
of antibiotic-resistant populations. Presence of 
phenotypic heterogeneity in a tumor cell popu-
lation can affect efficacy of anti-cancer therapy 
where a small sub-fraction of cells can survive 
the treatment and can lead to relapse of cancer. 
This can also enable drug-resistant cancer cells 
to emerge and proliferate.

Variations in growth rate among individual 
cells in a population is a common phenotypic 
heterogeneity observed in microbial and tumor 
cell populations and have been shown to have 
important impact on their ability to resist and 
survive drug treatment. A systematic genetic 
screen in yeast has established that the growth 
heterogeneity is primarily driven by mitochon-
dria. Variations in mitochondrial genome copy 
number lead to variations in mitochondrial 
membrane potential and eventually to vari-
ations in mitochondrial functional state. As 
mitochondria perform important roles in sev-
eral key cellular processes, variations in mito-
chondrial functional state leads to variations in 
several cellular phenotypes. Most interestingly, 
mitochondrial dysfunction caused by reduction 
in mitochondrial genome copy number leads to 
higher drug resistance in yeast. As depletion in 
mitochondrial genome copy number has also 
been observed across different cancers, it would 
be interesting to investigate whether this deple-
tion might also enable tumor cells to resist anti-
cancer drug treatments.

Variation in mitochondrial genome copy 
number has been shown to underlie growth 
heterogeneity in yeast. Such variations have also 
been observed across many human diseases and 
cancer. However, we do not understand how 
such variations in mitochondrial genome copy 

number arise and what are the cellular processes 
that contribute to this variation. Mitochondria 
divide and merge through the process of fis-
sion and  fusion176, 177. Mitochondrial genome 
is present in mitochondrial nucleoids which 
are inherited along with mitochondria from 
the mother cell to the daughter cell during cell 
 division178, 179. Thus, it is conceivable that the 
partitioning of mitochondrial nucleoids dur-
ing cell division is asymmetric  [180, 181] and gives 
rise to variability in mitochondrial copy num-
ber. Alternatively, stochastic variation in expres-
sion level of cellular machinery responsible for 
maintenance of mitochondrial genome could 
also contribute to this process.

Changes in mitochondrial functional state has 
been observed across a plethora of human dis-
eases. However, our understanding of how these 
changes and the disease phenotypes are con-
nected to the disease mutations is quite limited. 
As mitochondria participate in several impor-
tant cellular processes, it is conceivable that spe-
cific mutations and copy number changes of the 
mitochondrial genome can alter other cellular 
processes besides ATP generation. Further, it is 
also likely that these changes in mitochondrial 
genome can drive cell-to-cell heterogeneity and 
could have potentially important impacts on dis-
ease progression and outcomes. Thus, a concrete 
understanding of the effects of the mitochondrial 
genomic changes on cell-to-cell heterogeneity 
and disease phenotypes is the need of the hour. 
Spontaneous variations in mitochondrial genome 
copy number in yeast cells and presence of muta-
tions and copy number variations in mitochon-
drial genome across many human diseases show 
that in eukaryotic cells with identical nuclear 
genome phenotypic heterogeneity can be driven 
by an organelle. It remains to be seen how cellular 
organelles other than mitochondria contribute to 
phenotypic heterogeneity.
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