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Single‐Cell RNA Sequencing for Precision 
Oncology: Current State‑of‑Art

1 Introduction
Most of the cells in the human body have the 

identical genetic material; despite that, at the level 
of gene expression, these cells show exceptional 
 variability38. For example, the cellular compo-
sition and transcriptome of liver (a metabolic 
organ) are very different from  brain31. Moreo-
ver, there is heterogeneity in cellular population 
within the same organ i.e. liver is made up of 
hepatocytes, cholangiocytes and a variety of other 
stromal cells such as endothelial cells, fibroblasts 
and immune  cells28. Therefore, transcriptional 
profiling by bulk sequencing methods provides 
the average transcriptome of different cell types. 
However, in the last decade, we have gained 
exceptional advances in technologies to profile 
the transcriptome of individual  cells54. This paves 
the way for understanding the transcriptional 
heterogeneity of different cell types in seemingly 
homogenous population.

Like any other emerging technology, there are 
challenges that we need to keep in mind espe-
cially when applying scRNA-seq on complex 
clinical samples. One of the major challenges is 
the dissociation and recovery of all the cell types 
within a tissue before proceeding with single-cell 
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Abstract | Tumors exhibit genetic and phenotypic diversity leading to 
intra‑tumor heterogeneity (ITH). Further complex ecosystem (stromal and 
immune cells) of tumors contributes into the ITH. This ITH allows tumors 
to overcome various selection pressures such as anti‑cancer therapies 
and metastasis at distant organs. Single‑cell RNA‑seq (scRNA‑seq) has 
provided unprecedented insights into ITH and its implications in drug 
resistance and metastasis. As scRNA‑seq technology grows and pro‑
vides many new findings, new tools on different programming platforms 
are frequently generated. Here, we aim to provide a framework and 
guidelines for new entrants into the field of scRNA‑seq. In this review, 
we discuss the current state‑of‑art of scRNA‑seq analysis step‑by‑step 
including filtering, normalization and analysis. First, we discuss the brief 
history of experimental methods, followed by data processing and impli‑
cations in precision oncology.
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capture. During enzymatic digestion of solid het-
erogenous tissues, some populations like immune 
cells (lymphocytes) are easy to dissociate when 
compared to epithelial cells (hepatocytes) with 
tight junctions [44. On the other hand, harsher 
dissociation conditions may allow the recovery 
of majority of cells but at the expense of dam-
aging the quality and quantity of RNA in these 
cells. After dissociation, the next step is sequenc-
ing, followed by data processing and filtering for 
good quality of cells. Different cell populations in 
a tissue may have different RNA and mitochon-
drial content. Therefore, filtering steps should be 
optimized for each tissue type. Finally, based on 
the biological question and the experimental set-
up, these data can be probed to understand cel-
lular trajectories and interactions. In this review 
article, we will briefly discuss challenges and best 
practices of single-cell RNA-seq analysis in the 
view of precision oncology.

2  Experimental Set‑up
The querying of single cells started with 

isolating individual cells by limiting dilution 
or mouth pipetting50. However, given the low 
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 Transcriptional heterogene-
ity: Heterogeneity between 
mRNA content of individual 
cells is an inherent feature of 
dynamic cellular processes. 
The scRNA-seq provides an 
opportunity to under-
stand the transcriptional 
heterogeneity in disease and 
developmental contexts
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throughput and tedious nature of experimental 
set-up, flow sorting soon became the method 
of choice. In early 2010s, invention of micro-
fluidics-based isolation technology provided 
the semi-automated and moderate throughput 
solution55 and in 2015/16, droplet-based meth-
ods  (by 10 × Genomics Inc.) revolutionised the 
field of single-cell genomics62. There are a few 
challenges that can be faced while performing 
single-cell experiments in lab. First, the data 
obtained from single cell experiments highly 
depend on the type of sample and dissociation 
method used. PBMCs and cell lines are easy to 
dissociate, while complex solid tissues could be 
challenging due to the heterogeneity of the sam-
ples. A brief schematic of scRNA-seq experi-
mental set-up is depicted in Fig. 1.

The condition of samples employed for 
single-cell experiment plays an important role. 
It is not always feasible to perform experiment 
on fresh tissue samples, especially in case of 
clinical samples. Such samples can be cryopre-
served as single-cell suspension in appropri-
ate freezing media (DMSO/FBS). Moreover, 
dissociation protocols vary from digestion by 
collagenase at 37 °C to cold dissociation by 
protease at 4 °C10. Additionally, the incuba-
tion time for digestion varies depending on the 
protocol and nature of the tissue. Some recent 

studies have systematically evaluated the impact 
of cryopreservation on cellular composition 
and transcriptional profiles of solid tissues1, 15, 

51. Additionally, rare cell types can be enriched 
by application of flow cytometric or magnetic-
sorting techniques33. Majority of scRNA-seq 
approaches provide the steady state kinetics of 
mRNA (messenger RNA) expression without 
deeper insights into transcriptional dynamics of 
cells. However, a recent method called scSLAM-
seq (single-cell, thiol-(SH)-linked alkylation of 
RNA for metabolic labelling sequencing) pro-
files the transcriptional activity at the single-
cell resolution which can help in differentiating 
old and new RNA for thousands of genes14 A 
very recent method SMART-Seq3 provides the 
allele and isoform resolution in scRNA-seq 
approach17.

3  Data Preprocessing and Quality 
Control
scRNA-seq inherits a large number of tech-

nologies from bulk RNA-sequencing meth-
ods, including open source RNA-sequencing 
alignment tools such as STAR 12, Salmon34, and 
kallisto4. One of the most popular and user-
friendly scRNA-seq methods is the droplet-
based solution from 10 × Genomics. Raw data 

Figure 1: Schematic of scRNA‑seq experimental set‑up from collection of clinical samples, tissue disso‑
ciation, and optimization to obtain desired cell type, capturing of single cells to data acquisition.

SMART-Seq: A single-cell se-
quencing method with switch 
mechanism at the 5’ end of 
templates and improved read 
coverage across transcripts.

Droplet-based methods: 
Microfluidics based methods 
to generate droplets for single 
cell isolation
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obtained from sequencing systems are in form 
of bcl, fastqs, and bam files. Currently, the most 
favored method for alignment of reads is Cell 
Ranger, which is based on the STAR pipeline. 
However, Cell Ranger is more computationally 
intensive. Recently, it has been proposed that 
for a large reference genome such as the human 
reference genome, kallisto|bustools may reduce 
the time and computational power required 
for alignment32. Cell Ranger uses counts while 
kallisto|bustools and Salmon use the pseudoalign-
ment technique which may provide an advantage 
for large datasets.

Analyzing scRNA-seq data is challenging 
due to its multidisciplinary facet of data pre-
processing. Therefore, a long list of statistical 
methods has been built and tested on different 
datasets generated. Current state-of-art and 
popular scRNA-seq toolkits are Scanpy58 and 
Seurat6. There is not one standardized qual-
ity control pipeline for data clean up. Generally, 
data cleaning retains viable good quality cells by 
filtering out low-quality cells through measuring 
variables such as the number of UMI counts per 
cell, UMI counts per genes, and the proportion of 
mitochondrial genes expressed. Common prac-
tices for single-cell data analysis includes remov-
ing empty droplets and cells that have low count 
and a high proportion of mitochondrial genes. 
Generally, cells that are expressing less than 100–
300 count/cell, 10–30 count/gene and more than 
20% mitochondrial genes are excluded42. These 
can be easily visualized through violin plots to 
determine appropriate cutoffs. It is important to 
exclude these cells as a dying cell might release 
cytoplasmic RNA in reaction mixture and cause 
ambient RNA contamination. For example, in liver 
cancer studies, ALB, HBA, HBB, and MALAT1 are 
known to be some of the contaminant genes found 
ubiquitously in the surrounding. Computational 
approaches tools such as SoupX61 and Soupor-
cell19, 20 can help in detecting ambient RNA and 
removal of unwanted cells. Conversely, cells that 
are expressing too many genes might represent 
doublets that are captured in data processing. 
However, there are more sophisticated algorithms 
implemented such as Scrublet60, DoubletFinder30, 
and DoubletDecon11 to remove outliers and 
doublets.

All variables should be considered jointly 
while QC steps are taken. Unfortunately, there are 
no best general data cleaning thresholds that can 
be set as each data has its own properties to focus 
on. Usually the best data cleaning reflects on the 
annotation of cell types. Note that these cutoffs 
are the same throughout the dataset; however, 

different cell types express different number of 
genes. For example, immune cells yield lower 
number of genes as compared to other cell types 
and cancer cells usually generate more genes 
as compared to non-cancerous cells (Seow and 
Sharma unpublished data). Besides that, different 
technologies capture different number of cells, 
and 10X datasets usually contain a higher num-
ber of dropouts, whereas Smart-seq2 captures 
more genes/cell. Therefore, a common practice is 
to start off with default cutoffs, working through 
the downstream analyses, annotating the clusters, 
and ending off with revisiting and reassessing QC 
cutoffs accordingly.

4  Normalization
The capture of mRNA from individual cells 

varies within and across the samples; therefore, 
normalization of data helps in overcoming this 
bias. Methods such as Scanpy58, Seurat6, and 
CellRanger employ the same global library nor-
malization method. This method first multiplies 
each cell by a scale factor of  10e4 and a natural 
log transform each value. This helps in handling 
data that biases towards large values and does not 
diminish small values. Some methods scale data 
to unit variance, mean value, and standard devia-
tion of a maximum of 10 preventing over domi-
nation of certain genes. The practice of regressing 
out biological covariates such as cell cycle effects, 
mitochondrial genes, and count depth is still 
in debate of whether they are helpful or not as 
these factors may represent biological processes. 
Since not all biological processes are understood, 
regressing one or two biological technicalities 
might enhance or mask the others.

Subsequent to normalization, a common 
problem with scRNA-seq datasets is batch effects. 
This is where a variation between scRNA-seq 
datasets can be visualized based on samples pre-
pared in separate batches. This can be common in 
cancer samples as different patients, tissue types, 
and treatment conditions can lead to batch effect. 
Some algorithms such as ComBat have been 
developed to correct for these effects7. However, 
the most popular algorithms for scRNA-seq batch 
correction are Harmony24, LIGER57, and Seurat 
347, as it has been shown to outperform exist-
ing batch correction methods in most datasets53. 
Currently, Cell Ranger 3.0 by 10X Genomics has 
also implemented the mutual nearest neighbours  
(MNN) algorithm18 to correct for its different 
chemistries. In some cases where the batches 
are more widely different from each other such 

Pseudoalignment: this ap-
proach determines each read’s 
compatibility with transcripts 
in sequencing data.

Ambient RNA contamina-
tion: Background contamina-
tion of RNA from dying 
single cells in droplet-based 
methods

Natural log transform: To 
transform skewed data to ap-
proximately conform to nor-
mality. This results in a data 
set that is roughly symmetric 
and often roughly normal

Mutual Nearest Neighbours:  
a pair of cells from each batch 
is contained in each other’s set 
of nearest neighbours

Batch correction: scRNA-seq 
datasets generated across 
different conditions or from 
technologies that contain 
batch specific systematic 
bias leading to batch-effect. 
Removal and correction of 
this effect by data integration 
is batch correction.
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as ones with different tissue types, or different 
chemistries, MNN batch correction may not be 
sufficient. Thus, integration methods such as Seu-
rat47, LIGER57, Harmony24 and BBKNN (Polan-
ski et al., 2020) can be used to correct for batch 
effects allowing for better integration of scRNA-
seq datasets.

5  Clustering and Annotation
A large-scale scRNA-seq atlas can contain 

around a million cells16. To condense our analy-
ses and determine the identities of cellular land-
scape, clustering is employed to partition single 
cells into groups based on similarities in gene 
expression pattern. There are a variety of cluster-
ing methods that exists; however, one of the most 
popular method is the k-means algorithm23, 27. 
First, a number of k clusters are identified, then 
each cell is subsequently assigned to the clos-
est cluster23. However, as scRNA-seq datasets 
have increased in size over the number of years, 
community-detection-based algorithms are now 
being popularized for scRNA-seq clustering, spe-
cifically K-nearest neighbours graphs (KNN). This 
graph-based algorithm only searches for cell pairs 
within its neighborhood (nearest neighbors) to 
determine a cell’s identity, thus reducing compu-
tational time and power27. Currently, Louvain is 
one of the most popularized community detec-
tion algorithms that is implemented in Seurat and 
Scanpy. However, a recent comparison of Louvain 
and Leiden revealed that Louvain may lead to 
poorly connected communities and Leiden out-
performs Louvain in computational speed52.

Following clustering, annotation is needed 
to determine the cellular identity of each clus-
ter. Similar to quality control, there are many 
approaches to this and not one standardized 
pipeline. Traditionally, identifying cell identities 
is done manually where a known list of differ-
entially expressed genes for specific cell types is 
required. Known marker genes are plotted onto 
a UMAP (uniform manifold approximation and 
projection) and a heatmap with the differentially 
expressed genes which can be employed to anno-
tate specific cell types. Another approach is to 
use algorithms like reference component analy-
sis25 where it first broadly identifies cell identi-
ties and subsequently one can manually identify 
specific cell identities through differentially 
expressed genes. More recently, automatic anno-
tation algorithms have begun to emerge where it 
can simplify or speed up this process. Seurat was 
identified as one of the top-performing automatic 

annotation algorithms in a benchmarking analy-
sis47. However, a caveat of this method is that it 
currently can only transfer cell type labels from 
the reference dataset onto one other query data-
set. Garnett is a different automatic annotation 
algorithm that uses machine learning combined 
with a marker list input35. It trains on one data-
set or a subset of a dataset and can transfer cell 
identity labels onto another and its performance 
depends heavily on the marker list which leads to 
better annotations. A brief workflow of scRNA-
seq normalisation and clustering is depicted in 
Fig. 2.

6  Trajectory Inference
Cells are lysed during scRNA-seq prepara-

tion; therefore, we can only capture static time-
points from biological processes. To model the 
dynamics, trajectory inference can be employed 
to transform discrete models such as clusters into 
a continuous one (Fig. 3a). Particularly in can-
cer, trajectories of cancer cell lines can be used 
to identify whether there is a continuity or dis-
continuity in cell states45. The trajectory infer-
ence can indicate the mode of tumor evolution 
i.e. clonal selection or adaptation (cellular repro-
gramming)43–45. In early methods of trajectory 
inference, algorithms prioritized ordering cells 
correctly over determining best-fit trajectory 
models41. However, for more complex biological 
processes such as cancer plasticity, these earlier 
methods based on fixed topology or maximum 
parsimony are not optimal for modeling cellular 
trajectories. Since the development and popu-
larization of Monocle55, term “pseudotime” has 
gained the momentum and subsequently a num-
ber of trajectory inference algorithms have been 
developed27. A recent benchmarking analysis 
compared 45 existing trajectory inference algo-
rithms on multiple datasets (https ://dynav erse.
org/)41. This determined slingshot46 to be an out-
standing candidate for simple trajectories, while 
PAGA (partition-based graph abstraction)59 
was the best algorithm for complex trajectories. 
PAGA preserves existing clustering information 
to minimize transcriptional changes between 
neighboring cell types when inferring trajectory 
and utilizes clusters as nodes and the computed 
connections between clusters as edges59. However, 
a caveat of these trajectory inference algorithms 
is the trajectories generated that do not have to 
mimic biological processes and, therefore, addi-
tional evidence should be collected to validate 
biological insight from trajectory inferences.

K-nearest neighbours: The 
k closest cells from data set 
used for classification and 
regression for single-cell 
RNA-seq data

Pseudotime:  Extraction of 
latent temporal features from 
single-cell RNA-seq data sets 
to comprehend dynamic 
biological processes such as 
cell fate transition from time 
A to B.

https://dynaverse.org/
https://dynaverse.org/
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A prime example of additional informa-
tion that can be embedded with trajectory infer-
ences is splicing information29. RNA velocity 
calculates the change in the state of a cell over 
time by extracting unspliced and spliced mRNA 
reads from scRNA-seq data. This is used to infer 
future directionalities of single cells. Thus, algo-
rithms like Velocyto29 and scVelo3 are currently 
being popularized in the field as it can calculate 
velocities and project them onto UMAPs with 
existing clustering information. This informa-
tion can be represented by velocity grid plots 
where longer arrows correspond to large changes 
in gene expression and shorter arrows repre-
sent a terminally differentiated state of cell49. 
Alternatively, velocity stream plots from scVelo 
can minimize this information and extrapolate 
directionality of cell fates. This information has 
also been extended to gene level where candidate 
genes that drive differentiation can be depicted 
through gene-resolved velocities. Furthermore, 
RNA velocity can be used to calculate transition 
probabilities into specific subpopulations of cell 

types39. Although RNA velocity seems promis-
ing in providing additional evidence on top of 
inferred trajectories, a large limitation is that 
it currently only predicts a cell’s fate in the for-
ward direction. With the recent development of 
dynamo14, 37, it can solve some of these problems 
as it can predict a cell’s forward and backward 
states with the use of scSLAM-seq14. Thus, as 
multi-omic technologies improve for single-cell 
analyses, traditional lineage inference may trans-
form into building vector fields of single cells.

7  Cell–Cell Interactions
Tumor ecosystem plays an important role in 
the process of tumorigenesis and metastasis. 
In early methods of analyzing cell–cell interac-
tions, published datasets of ligand and receptor 
networks were used9, 40. This was coupled with 
gene list and bioinformatic resource such as the 
David GO annotation tool9, 21. In addition, to 
infer function of gene sets, databases such as the 
Gene Ontology2 or KEGG22 are employed to 

Figure 2: scRNA‑seq from data normalization, dimensionality reduction to clustering and annotation of 
cell types.
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assign biological processes and pathways. More 
recently, CellPhoneDB: a repository of recep-
tors, ligands, and their respective interactions, 
was developed56. By utilizing public databases to 
annotate receptors and ligands, CellPhoneDB can 
perform an unbiased cell–cell interaction analy-
sis. From single-cell transcriptomic data, Cell-
PhoneDB calculates significant receptor–ligand 
pairs from cluster information and differentially 
expressed genes. Typically, ligands and recep-
tors expressed in more than 10% of cells in a 
subpopulation are considered. As a standard to 
determine the receptor/ligand expression levels, 
the algorithm iterates through the clusters of all 
the cells for 1000 permutations. One can use Cell-
PhoneDB to elucidate which tumor subpopula-
tions are expressing ligands to a corresponding 
receptor in a neighboring immune or stromal cell 
population. This information is usually repre-
sented as dot-plot or heatmap of ligand–receptor 
interactions (Fig. 3b). With complexity of tumor 
microenvironment, there is expected increase in 
the number of interactions in tumors compared 
to normal tissue48. The number of interactions 
between clusters along with their magnitudes 
has also been represented through a heat map 
or a circle plot39, 56. In the latest release of Cell-
phoneDB v2.013, it includes a comprehensive 
protocol and accepts a larger range of input data, 

making it more accessible and user friendly. One 
limitation of CellphoneDB v1.0 is that it only 
accepts gene ensemble identifiers (Ensembl IDs). 
One gene name could correspond to more than 
one Ensembl ID, thus this can be problematic 
when converting from gene names to Ensemble 
IDs. However, as the input parameters in Cell-
phoneDB v2.0 are more flexible, it allows the user 
to specify their choice of gene name identifiers 
including gene names, Ensembl ID, and hgnc_
symbol annotations.

Furthermore, another limitation of Cell-
phoneDB is that it is currently only available for 
human data and not mouse data. Thus, users  
with mouse data have to convert mouse gene 
names to human gene names to use the reposi-
tory. However, with the recent development 
of NicheNet5, this issue is solved as it accepts 
both human and mouse gene expression data. 
NicheNet is a method that integrates single-cell 
gene expression data with gene regulatory net-
works to predict cell–cell ligand–target interac-
tions5. It ranks ligand–target interactions based 
on the activity of sending cells’ ligand activity 
on receiving cells’ gene expression5. This extra  
layer of information and ranking of significant 
cell–cell interactions may be beneficial for users 
who do not want to sort through a large list of 
interactions outputted by CellPhoneDB.

Figure 3: Implication of scRNA‑seq data in (a) inferring cellular trajectories and (b) ligand–receptor inter‑
actions.
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8  Implications in Precision Oncology
Recently, scRNA-seq has been applied to under-
stand the impact of chemotherapy45 and immu-
notherapy (Sade-Feldman et al. 2018) on tumor 
evolution. Using scRNA-seq, we demonstrated 
that chemotherapy leads to either selection of 
pre-existing cancer-stem-like cells or adaptation 
into mesenchymal cell state45. We demonstrated 
that pre-existing epigenetic state guides the drug-
induced epithelial to mesenchymal transition. 
In future, we anticipate clinical implication of 
scRNA-seq as a discovery tool in clinical trials. 
This will allow us to understand if pre-existing 
cell type/state can predict the response to anti-
cancer therapy (Fig. 4). These discoveries will 
pave the way for scRNA-seq-based diagnostic 
tools which will facilitate the next generation of 
precision oncology by providing the right drug 
for the right patient.

9  Conclusions
In last 10 years, single-cell genomics has moved 
from profiling gene expression in few cells to 
identifying novel cell populations, developmen-
tal trajectories, and cell–cell interactions. In the 
next decade, we anticipate development in multi-
modal technologies where we will be able to pro-
file DNA, epigenome, RNA, protein, metabolome 
and spatial information from the same cell. This 
will provide unprecedented multilayered insights 
into functioning of a cell. We also foresee direct 
application of single-cell genomics in trials and 
decision-making process in the clinic. Currently, 
we are living through an unprecedented global 
pandemic COVID-1926. scRNA-seq has provided 
a tool to identify the cell types susceptible to 
viral infections42. Moreover, scRNA-seq has been 
employed to understand the immune response of 
individual against SARS-CoV-28. Overall, scRNA-
seq technology has revolutionized our under-
standing of the basic unit of life at single ‘cell’ 
resolution.
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