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Digital Twin for Drug Discovery 
and Development—The Virtual Liver

1 Introduction
The process of developing a drug is extremely 

research-intensive spanning efforts in biology, 
chemistry and manufacturing, while being char-
acterised by a low probability of success. It is 
estimated that 50,000 hits are tested to achieve 
a successful drug. The odds of a drug molecule 
eventually reaching patients are so low that only 
one in 12 drug molecules that are tested on 
humans in clinical trials make it successfully to 
the market. Toxicity and lack of efficacy account 
for greater than 60% of all drug  failures1. The tra-
ditional approach to drug discovery is akin to a 
pipeline with targets, leads and molecules each 
needing to meet pre-set success criteria to pro-
gress towards clinical development and ultimately 
the market. In such a brute force approach, mak-
ing the right decision about which targets, hits, 

in vivo: experiments in 
animals.

in vitro Experimental system 
in a test-tube or petri dish.

hits: Trial versions of chemi-
cals that are further modified 
to eventually develop a drug

Toxicity: Harmful side-effects 
of a drug.

efficacy: The ability of a drug 
to provide allieviate a disease 
process and provide relief to 
a patient.
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Abstract | Digital twins are defined as digital replicas of processes, sys-
tems or devices developed to foster deeper understanding and predic-
tion. While the concept of digital twins has largely been applied in the 
manufacturing industry, one could conceive of a digital twin that inte-
grates information from diverse scientific and clinical sources to repre-
sent the complex and dynamic relationships within biological networks. 
Such an integrative system would allow one to gain a deeper under-
standing of the biology and be used as a predictive framework to design 
better drugs. The liver is a key organ in the body that is implicated in 
various diseases and injuries leading to drug failures and withdrawals. 
The study describes the development of a digital twin of the liver by inte-
grating the knowledge and understanding gained by studying various 
liver functions, diseases and the effect of drugs, using a mathematical 
framework based on ordinary differential equations. This twin has been 
shown to be effective in reproducing the normal liver function, evolution 
of disease and the impact of treatment. Finally, a system that couples the 
twin with experimental measurements has been demonstrated to provide 
insights into drug-induced liver injury. The approach described in this 
paper is fairly general and can be applied to other organs and biological 
systems to develop drugs more efficiently and safely.
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leads and molecules to take forward is extremely 
critical for the successful launch of a drug in the 
market. However, the decision-making is based 
upon in vitro and in vivo systems which them-
selves have a questionable concordance with out-
comes in the  clinic2. An ideal decision support 
system for drug discovery would provide answers 
to the following questions:

•   What is the extent of impact any target has on 
the clinical outcome of interest?

•   Does the lead/candidate molecule modulate 
the target sufficiently to impact clinical out-
comes?

•   Is the molecule specific enough and does not 
have any side effects or toxic outcomes?

•   Is the observed lack of efficacy due the inabil-
ity of the drug to reach its target?
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•   Has the right dose and dosing regimen been 
selected in the trial?

•   Are there any bio- or surrogate markers pre-
dictive of the success or failure of a drug?

•   Have the right patients been selected in the 
trial?

•   Is there anyway of identifying hyper- and 
hypo-responders at the start of the trial?

2  Digital Twins and In Silico Research
Given the multifactorial nature of drug devel-
opment based upon the questions above, drug 
failures are common and difficult to address. 
This problem needs to be attacked by integrat-
ing data and insights from different points in the 
drug-discovery pipeline and creating a predictive 
system that can forecast the result of an experi-
ment or the impact of a chemical change on a 
drug molecule. To this end, a systems approach to 
modelling and simulation of biological processes 
is a research frontier that is likely to yield under-
standing of the mysteries of life at a qualitatively 
different  level3. Modelling of bioprocesses at the 
genomic (genetic networks) and cellular (virtual 
cell) level has been actively supported by fund-
ing agencies like DARPA, NSF, DOE in the US 
and has resulted in high visibility projects like 
 BioSPICE4. While pre-clinical and clinical devel-
opment programmes that incorporate systems-
modelling approaches are not common today, 
systems approaches are likely to play an impor-
tant role in the future in improving the efficacies 
of therapeutics and diagnostics. Systems biology 
efforts are being used to “jumpstart” therapeutic 
areas that have remained stagnant without signif-
icant  breakthroughs5,6.

More recently, large consortia have been ini-
tiated to study organ systems in detail such as 
the German Virtual Liver Network that intends 
to create an integrated multi-scale model of  
the  liver7 or The Physiome Project, a multi-scale 
modelling framework that allows models of dif-
ferent parts of the human body to be combined 
and linked in a hierarchical  fashion8. While we 
expect that the benefits from these large-scale 
“bottom-up” initiatives will bear fruit over the 
next decade as multiple models are refined  
and integrated, a more top-down approach to 
model building or models that are more limited  
in scope and address a specific need in drug 
development are being produced and applied 
by consulting or contract research organiza-
tions such as Applied Biomath  LLC9, Certara 
L.P.10, RES  Group11, Simulations  Plus12, Syngene 
 International13, Vantage  Research14 and others. 

bio- or surrogate markers: 
An easily measured parameter 
in a human (like cholesterol) 
that acts as a representative 
for the underlying disease 
process.

These organizations have demonstrated that 
smaller “bespoke models” designed to address 
very specific questions can have a huge impact  
by driving efficiencies in drug development. A 
survey conducted by Abbvie revealed that 62%  
of pharmaceutical organizations consider quan-
titative systems pharmacology to be an integral 
part of their research process and agree that its 
impact has been  substantial15,16.

Digital twins are defined as digital replicas 
of processes, systems or devices used for under-
standing study or  prediction17. While the con-
cept of digital twins has largely been applied in 
the manufacturing industry, in the pharmaceuti-
cal context, one could conceive of a digital twin 
that behaves in a manner akin to a process, an 
organ system or an individual. Creating such a 
system requires the integration of information 
from diverse scientific and clinical sources to rep-
resent the complex and dynamic relationships 
within biological networks. This would allow the 
prediction methodology to be applied in various 
phases of drug discovery and research such as 
target selection and validation, lead optimization 
and candidate selection, biomarker identification, 
assay and screen development and clinical trial 
optimization. For example, simulation results 
from target validation studies could be used to 
validate clinically relevant targets and identify 
screening assays. Optimal binding, pharmacoki-
netics (PK), and mechanism-of-action profiles 
can then be defined for lead compounds and bio-
logics. Simultaneously, biomarkers can be identi-
fied to characterize the pathophysiologic basis of 
patient subtypes or used as surrogate markers for 
patient response. By incorporating such simula-
tion results into clinical trial design, researchers 
can identify key parameters that predict thera-
peutic responses, including dosing, dose regimen, 
and inclusion/exclusion criteria. At each point 
in the drug development process, this approach 
can help focus efforts to fully exploit the product 
opportunities for a therapeutic-area franchise.

3  The “Top‑Down” Digital Twin
Ideally one would want to represent all the 
complexity inherent in a biological system at a 
multi-scale level, starting from genetic changes 
all the way to phenotypic ones. However, such 
an endeavour is challenging requiring a very 
deep understanding of each component of a 
biological system and how various components 
interact with one another in a quantitative man-
ner. A more practical approach is to work “top-
down” by identifying and focusing only on those 

pharmacokinetics (PK): the 
study of how a drug molecule 
distributes throughout the 
body.

screening assays: high 
throughput experimental 
systems that can study the 
effect of thousands of drug 
molecules all at once.

biologics: drug molecules that 
are not chemical in nature but 
are based upon proteins or 
nucleic acids.



655

 

1 3J. Indian Inst. Sci. | VOL 100:4 | 653–662 October 2020 | journal.iisc.ernet.in

components relevant to the disease/process 
under consideration, starting with the major 
organ systems, and working down to relevant 
tissues, cells, proteins, and genes. This approach 
is illustrated in Fig. 1. Using this approach, 
only those systems relevant and important to 
the disease are detailed. This process does not 
however, keep us from investigating targets 
that are not yet explicitly represented. Because 
higher-order activities are represented, we can 
reproduce modulatory effects indirectly, allow-
ing its application to a wide number of research 
needs. In addition this approach allows us to 
marry dynamic simulations with alternative 
approaches such as clustering or classification 
in the same platform. Since the focus remains 
on the biology, the resultant “twin” is not tai-
lored to a specific disease or chemical class.

This following sections describe the top-
down approach used to develop a digital twin 
for the liver—“Virtual Liver”18 and its applica-
tion in understanding liver disease and pre-
dicting drug toxicity, one of the major causes 
for drug failures in the clinic.

4  Model Development
The systems approach to the liver digi-

tal twin is based on the principle that if liver 
homeostasis can be modelled, any liver disease 

homeostasis: the normal or 
steady state of a biological 
system.

or toxicity can be considered as perturbation of 
this normal system.

The model development was started by com-
piling a list of the diseases that affect the liver 
and a performing a survey of the literature to 
identify mechanisms by which drugs injure the 
 liver19,20. Some paradigm examples of the for-
mer are diseases such as metabolic syndrome or 
diabetes while examples of the latter are drugs 
such as chlorpromazine, which causes chol-
estasis and acetaminophen that causes necro-
sis. The underlying biochemical pathways that 
are impaired upon action of these drugs were 
then compiled. Some of the pathways include 
glutathione metabolism, bile salt and bilirubin 
metabolism and energy homeostasis including 
pathways of nutrient metabolism. These path-
ways were then represented by a system of ordi-
nary differential equations of the form:

Rate of change of metabolitemetabolite con-
centration = rate of synthesis of the metabo-
lite – rate of utilization of the  metabolite21,22.

The approach produced a system of differ-
ential equations with 112 states and a couple 
of hundred parameters. While the system was 
indeed large, one could apply multiple con-
straints on the behaviour of the entire system 
such as the liver’s role in feeding or fasting, its 
diurnal variation and its behaviour under nor-
mal versus diabetic conditions. In addition the 

necrosis: cell and tissue 
death resulting from a lack of 
nutrients or energy 

glutathione: main antioxidant 
in the body.

metabolite: any chemical in 
the body that is formed or 
broken down.

Figure 1: A top-down approach to developing a digital twin of a biological system.
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various sub-modules had their own constraints 
such as the bile turnover during the day or the 
amount of ATP needed and produced by the 
liver among others. Hence we could recast the 
problem as a constrained parameter optimiza-
tion problem and the parameter space was con-
siderably narrowed. Adding a further constraint 
that the parameters needed to be in physiologi-
cal ranges allowed us to further narrow their 
value and a suitable parameter set could be 
identified that allowed the system to reproduce 
the liver homeostasis. The model was then per-
turbed to represent disease, treatment and drug 
toxicity as described in the sections below.

5  Model in action
Homeostasis: Table 1 shows the compari-

son between the predicted and experimentally 
observed values for a selected set of metabo-
lites from the virtual liver. A good concordance 
is observed between the values of metabolites 
as well as fluxes indicating that the model rep-
resents the biology of liver with fidelity. The 
energy production (ATP) from mitochondrial 
and non-mitochondrial sources predicted by 
the model is very close to experimentally meas-
ured values. The model is also able to represent 
the transition of liver physiology from the fed 
state to the fasted state and captures the impact 
of fatty acid metabolism under glycolytic and 
gluconeogenic conditions.

5.1  Representation of Disease
Bile acids are produced in the liver and stored 

in the gall bladder. When food arrives in the 
intestine, bile salts are secreted into the small 
intestine where they help in the digestion of fats. 
At conclusion of digestion, 95% of the bile salts 
are reabsorbed back into the liver and sent back 

fluxes: the rate of metabolite 
change.

glycolytic: The fed state of the 
body when the liver plays a 
role is nutrient storage.

gluconeogenic: Fasted state 
of the body when the liver 
produces glucose for the rest 
of the body.

to the gall bladder where they are stored until the 
next meal. 5% of the bile salts lost through faeces 
is supplemented by de novo synthesis in the liver. 
This process of bile-salt movement from the liver 
to the gall bladder, then to the intestine and back 
is called the enterohepatic circulation of bile. 
Transporters play a critical role in maintaining 
the enterohepatic circulation and bile acid home-
ostasis in the liver and the  intestine23. Specifically, 
the secretion of bile acids from the liver to the 
gall bladder is mediated by the bile-salt export 
pump (BSEP), which sits on the cell membrane in 
hepatocytes. Any block of this pump would result 
in bile acids building up in the hepatocyte and 
eventually being refluxed into the blood leading 
to jaundice. Defects in BSEP are responsible for 
inherited forms of liver disease, one of them being 
progressive familial intrahepatic cholestasis type 
2 (PFIC2), associated with low bile acid secre-
tion, failure to thrive, intractable pruritus, pro-
gressive cholestasis, and a significantly increased 
risk for hepatobiliary malignancy24. In patients 
with PFIC2, BSEP synthesis, cellular trafficking, 
or stability is significantly  impaired25 and they 
exhibit jaundice characterized by very high levels 
of bile acids in the blood and the urine. Many of 
the children with this disease will die at young age 
unless they can obtain a liver transplant.

To represent this disease in the virtual liver, a 
virtual knockdown of the BSEP transporter was 
performed. Figure 2 shows the predicted levels of 
total bile acids (TBA) in the plasma that results 
from different levels of BSEP malfunction. It is 
observed that there is a transient increase in TBA 
that resolves over several days finally settling at a 
new homeostatic value that is 30–50 times higher 
than normal representing stable disease. Thus, 
starting from a model of normal liver, one can 
generate a disease phenotype by representing the 
genetic disease cause by a parameter change in 
the model. Two of the scenarios, 90% and 95% 

enterohepatic: pertaining to 
the liver and the intestines.

Transporters: a small pump 
on the surface of a cell that 
selectively transports ions 
and metabolites in and out 
of the cell.

hepatocytes: a type of cell 
found in the liver

pruritus: itch.

hepatobiliary malignancy: 
specific type of liver cancer.

knockdown: a partial 
disruption of function due to 
genetic changes.

phenotype: observable char-
acteristics of an individual

Table 1: Comparison of the simulations of metabolite concentrations and fluxes with their experimental 
values.

Metabolite Simulated value Experimental value References

GSH (cytosolic) 7.96 mM 5–10 mM 33

ATP (cytosolic) 2.95 mM 2.76 mM 34

Phosphate (cytosolic) 3.38 mM 3.34 mM 34

ATP from glycolysis 33% 38% 35

ATP from oxidative phosphorylation 66% 57% 35

Fraction of fatty acids influx in oxidation (Fed) 28% 34% 36

Fraction of fatty acids influx in oxidation (fasted) 70% 70% 36
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BSEP block resulting in 25.3 and 46 fold increase 
of plasma TBA were characterized as moderate 
and severe disease respectively and taken forward 
as “Virtual patient: A digital twin representation 
of a diseased individual” for further examination.

5.2  Target Validation and Drug 
Treatment

A potential use of a digital twin in pharma-
ceutical R&D is to examine targets and their 
impact on clinical phenotypes and treatment 
outcomes. In the case of PFIC2 illustrated in the 
section above, it was hypothesized that inhibit-
ing bile-salt reabsorption in the intestine would 
lead to greater bile-salt excretion from the faeces 
eventually leading to lower levels of bile acids in 
the blood and consequently in the liver thus ame-
liorating disease severity. This hypothesis was 
tested in the virtual liver by retarding intestinal 
bile-reabsorption mediated by another trans-
porter pump called the ileal bile acid transporter 
(IBAT), in the virtual patients described in the 
previous section. IBAT was blocked to varying 
degrees to simulate different doses of a drug. The 
levels of bile salts in the blood and the dynamics 
of change were studied along with the amounts 
of bile excreted in the faeces. A comparison of 
the simulations with the results of a clinical trial 
of A4250, a potent and selective inhibitor of the 
IBAT transporter was performed. Under normal 
conditions, 95% of bile salts are reabsorbed from 
the intestine into the liver and only 5% excreted. 

ileal bile acid transporter 
(IBAT): a transporter on the 
intestinal cells that helps in 
absorbing bile acids from the 
gut into the liver.

Of the reabsorbed bile salts ~ 58% is absorbed 
“actively”, via IBAT and the rest passively via dif-
fusion across the gut. As the inhibition of IBAT 
function increases, the actively absorbed com-
ponent of the bile salts is blocked, resulting in a 
greater elimination through the faeces (Table 2). 
When 50% and 80% IBAT block is applied to the 
“virtual patients” representing a moderate and 
severe phenotype (red and blue curves in Fig. 2) 
50–75% reduction in serum bile acid level and 
350–500% increase in faecal excretion is pre-
dicted over a period of 2 weeks (Figs. 3, 4). These 
results compare well with clinical studies that 
showed a 300–600% increase in faecal excretion 
and 50–75% reduction in TBA  levels26. This is 
an example of how a digital twin can be used to 
represent a disease situation; where a target can 
be studied for its feasibility in changing disease 
course and consequentially, the implications of a 
therapeutic intervention can be predicted.

Drug-induced liver injury 
Mitochondria are cell organelles that generate 
most of the chemical energy needed to power 
the cell’s biochemical reactions. This energy is 
stored in the form of a molecule called adeno-
sine triphosphate (ATP). However, it has been 
observed that mitochondria are commonly 
involved in the toxicity of many drugs and xeno-
biotics that leads to liver injury. One of the ways 
injuries occur is by the inhibition of mitochon-
drial complex I, that depletes hepatocellular 

organelles: a small structure 
inside a cell that performs a 
specific function

xenobiotics: synthetic chemi-
cal that can harm the body.

complex I: an enzyme in the 
mitochondria that is involved 
in energy generation
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Figure 2: Total bile acid (TBA) levels in the blood upon virtual knockdown of the BSEP transporter.
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Table 2: % Increase in bile excreted by IBAT inhibition of active bile salt reabsorption.

Total bile (%)
IBAT inhibition 
(%)

% Bile reabsorbed

Excreted (%)
Elimination 
(fold change)Active Passive Total

100 None 55 40 95 5 1

50 27.5 40 67.5 32.5 6.5

80 11 40 51 49 9.8
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Figure 3: a IBAT block causes a reduction in bile acid levels in plasma of moderate patients: 49% 
reduction with 50% block, 66% reduction with 80% block. b IBAT block causes a reduction in bile acid 
levels in plasma of severe patients: 68% reduction with 50% block; 76% reduction with 80% block.
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ATP and leads to cellular damage. Idiosyncratic 
liver injury has also been associated with altera-
tions in mitochondrial function by exposing cells 
with partially compromised complex I activity 
to mitochondria targeting  drugs27. To assess the 
enhanced risk of ATP depletion in specific indi-
viduals, complex I activity was reduced over a 
range (up to 50%) to simulate the different extent 
of drug effects on mitochondria. The impact of 
this change was compared in normal individuals 

Idiosyncratic: person specific.versus metabolic syndrome (MetS) individuals. 
Metabolic syndrome represents a cluster of con-
ditions; high blood pressure, high blood sugar, 
excess body fat around the waist, and abnormal 
cholesterol levels that increase the risk of heart 
disease, stroke, and diabetes.

Firstly, a MetS virtual patient was created by 
changing enzyme rates in a set of pathways that 
are dysregulated in the disease. The following 
pathways were modified from the baseline levels 
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Figure 4: a IBAT block causes an increase in faecal elimination of bile acids in moderate patients: 343% 
increase with 50% block, 490% increase with 80% block. b IBAT block causes an increase in faecal elimi-
nation of bile acids in severe patients: 372% increase with 50% block, 527% increase with 80% block.
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by changing the appropriate parameters in the 
model; transporter mediated fatty acid entry, de 
novo lipogenesis, plasma lipoproteins turnover 
and re-uptake, pentose phosphate pathway and 
oxidative phosphorylation and  stress28. If one 
compares the impact of complex I inhibition in a 
MetS patient to a normal individual, at the same 
level of complex I inhibition there is a profound 
reduction in cellular ATP in MetS individu-
als likely leading to cytotoxic damage (Fig. 5). 
This example illustrates the process by which 
the impact of a drug can be different in different 
individuals. In such a scenario, a drug that targets 
the mitochondria may appear safe when tested in 
healthy volunteers but may prove problematic in 
diseased individuals. The digital twin allows one 
to create virtual patient populations the represent 
the biological variability seen in different individ-
uals and assess the population level risk for side 
effects well before a large-scale testing.

6  The Road Ahead
In fields where complex and expensive R&D is 

needed to create a product, digital twins increas-
ingly provide an attractive alternative to tradi-
tional approaches to test hypotheses in silico. 
With high performance computing now avail-
able ubiquitously, it is possible to create digital 
versions of biological systems informed by the 
breadth of knowledge accumulated over the last 

cytotoxic damage: cell death 
due to an external chemical

in silico: on the computer 
using models

several decades, which replicate the complexity 
inherent in them.

In this study one such digital twin of a com-
plex organ, the liver based on an understanding 
of its homeostasis and perturbations by the envi-
ronment, genetics and drugs has been described. 
Since the underlying biochemical framework of 
the digital twin encompasses basic metabolic pro-
cesses within the liver such as antioxidant, bile, 
energy and nutrient metabolism, it can be applied 
in a comprehensive manner to describe various 
disease and drug related processes, allowing it to 
be used across the drug discovery and develop-
ment pipeline as demonstrated by the examples 
in the previous section. All biological systems 
upon perturbation respond actively and adapt to 
resist the change. An understanding of this is only 
possible if one builds models using methods that 
allow non-linearity, feedback and dynamic analy-
sis such as ordinary differential equations. The 
approach, homeostasis leading to disease evolu-
tion or drug perturbation or a combination of 
both is versatile and general making it applicable 
to other organ systems.

One of the biggest challenges in drug devel-
opment is the prediction of idiosyncratic tox-
icity in humans; impossible to predict using 
existing in vitro and in vivo models. The digi-
tal twin approach defines the initial state of any 
simulation and can be easily modified to repre-
sent disease conditions and immunological states 
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allowing the creation of a new homeostasis that 
mimics disease or patient-specific effects. Idi-
osyncrasy therefore is a logical outcome of com-
plexity driven by a combination of factors that 
relate to the impact of drug, disease and the 
patient. Hence an entire population of patients 
that represent varying combinations can be cre-
ated and tested to predict the occurrence of what 
was hitherto considered as unpredictable or 
idiosyncratic.

Parameter sensitivity analyses can be per-
formed to identify pathways and processes that 
perturb the system significantly away from the 
starting homeostasis. A computational “mining” 
of this nature will allow one to design appro-
priate in vitro assays that measure the impact  
of any perturbation on the pathways, enzymes 
and processes that have the greatest potential 
impact on the liver. Combining the effects of 
these perturbations via simulations provides  
for true integration of multiple measurements 
using multiple methodologies (in silico and 
in vitro). This approach brings with in an ethical  
component where by reducing animal experi-
mentation. Approximately 200 million animals 
are used every year in laboratory experiments 
world  wide29,30. The digital twin allows a direct 
translation of in vitro measurements into what 
could expected in vivo either in animal models  
or in humans.

However, one needs to be cognisant of the 
limitations of the approach. In our study, we 
focused on specific systems in the liver and  
were thus limited by the “biological space” that 
we were operating in. For example, the pro-
pensity of a drug to injure the liver is by caus-
ing cancer in liver cells cannot be predicted by  
the current system. Another important point to 
note is that while this study describes a mecha-
nistic approach to create a digital twin, a com-
plementary approach could take a data-driven 
route by linking liver related outcomes to 
 measurements using machine learning or deep 
learning.

In summary, as the field continues to move 
away from the current state-of-art where biology 
is an observational discipline recording effects 
on animals towards one, where consequences of 
hypotheses can be predicted; integrative methods 
that combine in vitro and in silico approaches to 
understand the basic mechanisms is key. Over the 
past decade the idea of developing digital twins 
has grown, with multiple twins under develop-
ment such as the  heart31, that combines vari-
ous functional measurements with multi-scale 
modelling and the virtual  kidney32 that uses 

distributed computing to integrate geographically 
separated models and databases. The approach 
presented in this study shows the potential of 
being able to provide a quantitative and mecha-
nistic assessment of disease pathology, therapeu-
tic interventions and toxic liabilities of chemical 
entities in the liver.
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