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Mathematical Models for COVID‑19 Pandemic: A 
Comparative Analysis

1 Introduction
The ongoing COVID-19 pandemic is the most 
significant pandemic since the 1918 Influenza 
pandemic. It has already caused over 21 Million 
confirmed cases and 758,000 deaths.1 The eco-
nomic impact is already in trillions of dollars. As 
in other pandemics, researchers and public health 
policy makers are interested in questions such as,2 
(i) How did it start? (ii) How is it likely to pro-
gress and how can we control it? (iii) How can 
we intervene while balancing public health and 
economic impact? (iv) Why did some countries 
do better than other countries thus far into the 
pandemic? In particular, models and their pro-
jections/forecasts have received unprecedented 
attention. With a multitude of modeling frame-
works, underlying assumptions, available datasets 
and the region/timeframe being modeled, these 
projections have varied widely, causing confusion 
among end-users and consumers. We believe an 
overview (non-exhaustive) of the current mod-
eling landscape will benefit the readers and also 
serve as a historical record for future efforts.
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Abstract | COVID‑19 pandemic represents an unprecedented global 
health crisis in the last 100 years. Its economic, social and health impact 
continues to grow and is likely to end up as one of the worst global dis‑
asters since the 1918 pandemic and the World Wars. Mathematical mod‑
els have played an important role in the ongoing crisis; they have been 
used to inform public policies and have been instrumental in many of the 
social distancing measures that were instituted worldwide. In this article, 
we review some of the important mathematical models used to support 
the ongoing planning and response efforts. These models differ in their 
use, their mathematical form and their scope.
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1.1  Role of Models
Models have been used by mathematical epi-
demiologists to support a broad range of policy 
questions. Their use during COVID-19 has been 
widespread. In general, the type and form of 
models used in epidemiology depend on the 
phase of the epidemic. Before an epidemic, mod-
els are used for planning and identifying critical 
gaps and prepare plans to detect and respond in 
the event of a pandemic. At the start of a pan-
demic, policy makers are interested in asking 
questions such as: (i) where and how did the pan-
demic start, (ii) risk of its spread in the region, 
(iii) risk of importation in other regions of the 
world, (iv) basic understanding of the pathogen 
and its epidemiological characteristics. As the 
pandemic takes hold, researchers begin investigat-
ing: (i) various intervention and control strate-
gies; usually pharmaceutical interventions do not 
work in the event of a pandemic and thus non-
pharmaceutical interventions are most appropri-
ate, (ii) forecasting the epidemic incidence rate, 
hospitalization rate and mortality rate, (iii) effi-
ciently allocating scarce medical resources to treat 
the patients and (iv) understanding the change in 
individual and collective behavior and adherence 
to public policies. After the pandemic starts to 
slow down, modelers are interested in developing 
models related to recovery and long-term impacts 
caused by the pandemic.
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As a result comparing models needs to be 
done with care. When comparing models: one 
needs to specify: (a) the purpose of the model, (b) 
the end user to whom the model is targeted, (c) 
the spatial and temporal resolution of the model, 
(d) and the underlying assumptions and limita-
tions. We illustrate these issues by summarizing a 
few key methods for projection and forecasting of 
disease outcomes in the US and Sweden.

Organization. The paper is organized as fol-
lows. In Sect. 2 we give preliminary definitions. 
Section 3 discusses US and UK centric models 
developed by researchers at the Imperial Col-
lege. Section 4 discusses metapopulation mod-
els focused on the US that were developed by 
our group at UVA and the models developed by 
researchers at Northeastern University. Section 5 
describes models developed Swedish researchers 
for studying the outbreak in Sweden. In Sect. 6 
we discuss methods developed for forecasting. 
Section 8 contains discussion, model limitations 
and concluding remarks. In a companion paper 
that appears in this special issue, we address cer-
tain complementary issues related to pandemic 
planning and response, including role of data and 
analytics.

Important note. The primary purpose of the 
paper is to highlight some of the salient compu-
tational models that are currently being used to 
support COVID-19 pandemic response. These 
models, like all models, have their strengths and 
weaknesses—they have all faced challenges aris-
ing from the lack of timely data. Our goal is not 
to pick winners and losers among these model; 
each model has been used by policy makers and 
continues to be used to advice various agencies. 
Rather, our goal is to introduce to the reader a 
range of models that can be used in such situa-
tions. A simple model is no better or worse than 
a complicated model. The suitability of a specific 
model for a given question needs to be evaluated 
by the decision maker and the modeler.

2  Background: Computational Methods 
for Epidemiology

Epidemiological models fall in two broad classes: 
statistical models that are largely data driven and 
mechanistic models that are based on underlying 
theoretical principles developed by scientists on 
how the disease spreads.

Data-driven models use statistical and 
machine learning methods to forecast outcomes, 
such as case counts, mortality and hospital 
demands. This is a very active area of research, 
and a broad class of techniques have been 

developed, including auto-regressive time series 
methods, Bayesian techniques and deep  learning1, 

2, 3, 4, 5, 6. Mechanistic models of disease spread 
within a  population7, 8, 9, 10 use mechanistic (also 
referred to as procedural or algorithmic) methods 
to describe the evolution of an epidemic through 
a population. The most common of these is the 
SIR type models. Hybrid models that combine 
mechanistic models with data driven machine 
learning approaches are also starting to become 
popular, e.g.,11.

2.1  Mass Action Compartmental Models
There are a number of models, which are referred 
to as SIR class of models. These partition a pop-
ulation of N agents into three sets, each cor-
responding to a disease state, which is one of: 
susceptible (S), infective (I) and removed or 
recovered (R). The specific model then specifies 
how susceptible individuals become infectious, 
and then recover. In its simplest form (referred 
to as the basic compartmental model)7, 9, 10, the 
population is assumed to be completely mixed. 
Let S(t), I(t) and R(t) denote the number of peo-
ple who are susceptible, infected and recovered 
states at time t, respectively. Let s(t) = S(t)/N  , 
i(t) = I(t)/N  and r(t) = R(t)/N  ; then, 
s(t)+ i(t)+ r(t) = 1 . Then, the SIR model can 
be described by the following system of ordinary 
differential equations

where β is referred to as the transmission rate, 
and γ is the recovery rate. A key parameter in such 
a model is the “reproductive number”, denoted by 
R0 = β/γ . At the start of an epidemic, much of 
the public health effort is focused on estimating 
R0 from observed  infections12.

Mass action compartmental models have 
been the workhorse for epidemiologists and 
have been widely used for over 100 years. Their 
strength comes from their simplicity, both ana-
lytically and from the standpoint of understand-
ing the outcomes. Software systems have been 
developed to solve such models and a number 
of associated tools have been built to support 
analysis using such models.

2.2  Structured Metapopulation Models
Although simple and powerful, mass action com-
partmental models do not capture the inherent 
heterogeneity of the underlying populations. Sig-
nificant amount of research has been conducted 

ds

dt
= βsi,

di

dt
= βsi − γ i,

dr

dt
= γ i,
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to extend the model, usually in two broad ways. 
The first involves structured metapopulation 
models—these construct an abstraction of the 
mixing patterns in the population into m differ-
ent sub-populations, e.g., age groups and small 
geographical regions, and attempt to capture 
the heterogeneity in mixing patterns across sub-
populations. In other words, the model has states 
Sj(t), Ij(t),Rj(t) for each subpopulation j. The 
evolution of a compartment Xj(t) is determined 
by mixing within and across compartments. 
For instance, survey data on mixing across age 
 groups13 have been used to construct age struc-
tured metapopulation  models14. More relevant 
for our paper are spatial metapopulation mod-
els, in which the subpopulations are connected 
through airline and commuter flow  networks15, 16, 

17, 18, 19.
Main steps in constructing structured meta-

population models. This depends on the disease, 
population and the type of question being stud-
ied. The key steps in the development of such 
models for the spread of diseases over large popu-
lations include

•   Constructing subpopulations and compart-
ments: the entire population V is partitioned 
into subpopulations Vj , within which the 
mixing is assumed to be complete. Depend-
ing on the disease model, there are Sj ,Ej , Ij ,Rj 
compartments corresponding to the subpop-
ulation Vj (and more, depending on the dis-
ease)—these represent the number of individ-
uals in Vj in the corresponding state

•   Mixing patterns among compartments: state 
transitions between compartments might 
depend on the states of individuals within the 
subpopulations associated with those com-
partments, as well as those who they come in 
contact with. For instance, the Sj → Ej transi-
tion rate might depend on Ik for all the sub-
populations who come in contact with indi-
viduals in Vj . Mobility and behavioral datasets 
are needed to model such interactions.

Such models are very useful at the early days of 
the outbreak, when the disease dynamics are 
driven to a large extent by mobility—these can 
be captured more easily within such models, 
and there is significant uncertainty in the disease 
model parameters. They can also model coarser 
interventions such as reduced mobility between 
spatial units and reduced mixing rates. However, 
these models become less useful to model the 
effect of detailed interventions (e.g., voluntary 

home isolation, school closures) on disease 
spread in and across communities.

2.3  Agent‑Based Network Models
Agent-based networked models (sometimes just 
called as agent-based models) extend metapopu-
lation models further by explicitly capturing the 
interaction structure of the underlying popu-
lations. Often such models are also resolved at 
the level of single individual entities (animals, 
humans, etc.). In this class of models, the epidemic 
dynamics can be modeled as a diffusion process 
on a specific undirected contact network G(V, E) 
on a population V—each edge e = (u, v) ∈ E 
implies that individuals (also referred to as 
nodes) u, v ∈ V  come into contact3 Let N(v) 
denote the set of neighbors of v. For instance, in 
the graph in Fig. 1, we have V = {a, b, c, d} and 
E = {(a, b), (a, c), (b, d), (cd)} . Node a has b and 
c as neighbors, so N (a) = {b, c} . The SIR model 
on the graph G is a dynamical process in which 
each node is in one of the S, I or R states. Infec-
tion can potentially spread from u to v along edge 
e = (u, v) with a probability of β(e, t) at time 
instant t after u becomes infected, conditional on 
node v remaining uninfected until time t—this is 
a discrete version of the rate of infection for the 
ODE model discussed earlier. We let I(t) denote 
the set of nodes that become infected at time t. 
The (random) subset of edges on which the infec-
tions spread represents a disease outcome, and is 
referred to as a dendogram. This dynamical sys-
tem starts with a configuration in which there are 
one or more nodes in state I and reaches a fixed 
point in which all nodes are in states S or R. Fig-
ure 1 shows an example of the SIR model on a 
network.

Main steps in setting up an agent-based 
model. While the specific steps depend on the 
disease, the population, and the type of question 
being studied, the general process involves the 
following steps:

•   Construct a network representation G: the set 
V is the population in a region, and is avail-
able from different sources, such as Census 
and Landscan. However, the contact patterns 
are more difficult to model, as no real data are 
available on contacts between people at a large 
scale. Instead, researchers have tried to model 

3 Note that though edge e is represented as a tuple (u, v), it 
actually denotes the set {u, v} , as is common in graph theory.
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activities and mobility, from which contacts 
can be inferred, based on co-location. Multi-
ple approaches have been developed for this, 
including random mobility based on statisti-
cal models, and very detailed models based on 
activities in urban regions, which have been 
estimated through surveys, transportation 
data, and other sources, e.g.,20, 21, 8, 22, 23.

•   Develop models of within-host disease pro-
gression: such models can be represented 
as finite state probabilistic timed transition 
models, which are designed in close coordi-
nation with biologists, epidemiologists, and 
parameterized using detailed incidence data 
 (see9 for discussion and additional pointers).

•   Develop high-performance computer (HPC) 
simulations to study epidemic dynamics in 
such models, e.g.,24, 25, 26, 27. Typical public 
health analyses involve large experimental 
designs, and the models are stochastic; this 
necessitates the use of such HPC simulations 
on large computing clusters.

•   Incorporate interventions and behavio-
ral changes: interventions include clo-
sure of schools and  workplaces22, 28 and 
 vaccinations21; whereas, behavioral changes 
include individual level social distancing, 
changes in mobility, and use of protective 
measures.

Such a network model captures the interplay 
between the three components of computa-
tional epidemiology: (i) individual behaviors 
of agents, (ii) unstructured, heterogeneous 
multi-scale networks, and (iii) the dynamical 
processes on these networks. It is based on the 
hypothesis that a better understanding of the 

characteristics of the underlying network and 
individual behavioral adaptation can give better 
insights into contagion dynamics and response 
strategies. Although computationally expensive 
and data intensive, network-based epidemi-
ology alters the types of questions that can be 
posed, providing qualitatively different insights 
into disease dynamics and public health poli-
cies. It also allows policy makers to formulate 
and investigate potentially novel and context-
specific interventions.

2.4  Models for Epidemic Forecasting
Like projection approaches, models for epi-
demic forecasting can be broadly classified into 
two broad groups: (i) statistical and machine 
learning-based data-driven models, (ii) causal or 
mechanistic models—see29, 30, 2, 31, 32, 6, 33 and the 
references therein for the current state of the art 
in this rapidly evolving field.

Statistical methods employ statistical and time 
series-based methodologies to learn patterns in 
historical epidemic data and leverage those pat-
terns for forecasting. Of course, the simplest 
yet useful class is called method of analogs. One 
simply compares the current epidemic with one 
of the earlier outbreaks and then uses the best 
match to forecast the current epidemic. Popu-
lar statistical methods for forecasting influenza-
like illnesses (that includes COVID-19) include, 
e.g., generalized linear models (GLM), autore-
gressive integrated moving average (ARIMA), 
and generalized autoregressive moving average 
(GARMA)34, 31, 35. Statistical methods are fast, 
but they crucially depend on the availability of 
training data. Furthermore, since they are purely 

a

b
c

d

a

b
c

d

Figure 1: The SIR process on a graph. The contact graph G = (V , E) is defined on a population 
V = {a, b, c, d} . The node colors white, black and gray represent the Susceptible, Infected and Recovered 
states, respectively. Initially, only node a is infected, and all other nodes are susceptible. A possible out‑
come at t = 1 is shown, in which node c becomes infected, while node a recovers. Node a tries to inde‑
pendently infect both its neighbors b and c, but only node c gets infected—this is indicated by the solid 
edge (a, c). The probability of getting this outcome is (1− p(a, b))p(a, c).
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data driven, they do not capture the underlying 
causal mechanisms. As a result, epidemic dynam-
ics affected by behavioral adaptations are usually 
hard to capture. Artificial neural networks (ANN) 
have gained increased prominence in epidemic 
forecasting due to their self-learning ability with-
out prior knowledge (see1, 11, 36 and the references 
therein). Such models have used a wide variety of 
data as surrogates for producing forecasts. This 
includes: (i) social media data, (ii) weather data, 
(iii) incidence curves and (iv) demographic data.

Causal models can be used for epidemic 
forecasting in a natural  manner30, 3, 37, 32, 38, 

39. These models calibrate the internal model 
parameters using the disease incidence data 
seen until a given day and then execute the 
model forward in time to produce the future 
time series. Compartmental as well as agent-
based models can be used to produce such 
forecasts. The choice of the models depends on 
the specific question at hand and the computa-
tional and data resource constraints. One of the 
key ideas in forecasting is to develop ensemble 
models—models that combine forecasts from 
multiple  models40, 6, 38, 39. The idea which origi-
nated in the domain of weather forecasting has 
found methodological advances in the machine 
learning literature. Ensemble models typically 
show better performance than the individual 
models.

3  Models from the Imperial College 
Modeling Group (UK Model)

Background. The modeling group led by Neil 
Ferguson was to our knowledge the first model to 
study the impact of COVID-19 across two large 
countries: US and UK,  see22. The basic model was 
first developed in 2005—it was used to inform 
policy pertaining to H5N1 pandemic and was 
one of the three models used to inform the fed-
eral pandemic influenza plan and led to the 
now well-accepted targeted layered containment 
(TLC) strategy. It was adapted to COVID-19 as 
discussed below. The model was widely discussed 
and covered in the scientific as well as popular 
 press41. We will refer to this as the IC model.

Model structure. The basic model structure 
consists of developing a set of households based 
on census information for a given country. The 
structure of the model is largely borrowed from 
their earlier work,  see42, 28. Landscan data were 
used to spatially distribute the population. Indi-
vidual members of the household interact with 
other members of the household. The data to 
produce these households are obtained using 

Census information for these countries. Census 
data are used to assign age and household sizes. 
Details on the resolution of census data and the 
dates were not clear. Schools, workplaces and ran-
dom meeting points are then added. The school 
data for US were obtained from the National 
Centre of Educational Statistics, while for UK 
schools were assigned randomly based on popu-
lation density. Data on average class sizes and 
staff-student ratios were used to generate a syn-
thetic population of schools distributed propor-
tional to local population density. Data on the 
distribution of workplace size were used to gen-
erate workplaces with commuting distance data 
used to locate workplaces appropriately across the 
population. Individuals are assigned to each of 
these locations at the start of the simulation. The 
gravity-style kernel is used to decide how far a 
person can go in terms of attending work, school 
or community interaction place. The number of 
contacts between individuals at school, work and 
community meeting points are calibrated to pro-
duce a given attack rate.

Each individual has an associated disease 
transmission model. The disease transmission 
model parameters are based on the data col-
lected when the pandemic was evolving in 
Wuhan; see page 4  of22.

Finally, the model also has rich set of inter-
ventions. These include: (i) case isolation, (ii) 
voluntary home quarantine, (iii) Social distanc-
ing of those over 70 years, (iv) social distancing of 
the entire population, (v) closure of schools and 
universities; see page  622. The code was recently 
released and is being analyzed. This is important as 
the interpretation of these interventions can have 
substantial impact on the outcome.

Model predictions. The Imperial college (IC 
Model) model was one of the first models to evalu-
ate the COVID-19 pandemic using detailed agent-
based model. The predictions made by the model 
were quite dire. The results show that to be able to 
reduce R to close to 1 or below, a combination of 
case isolation, social distancing of the entire popu-
lation and either household quarantine or school 
and university closure is required. The model had 
tremendous impact—UK and US both decide to 
start considering complete lock downs—a policy 
that was practically impossible to even talk about 
earlier in the Western world. The paper came out 
around the same time that Wuhan epidemic was 
raging and the epidemic in Italy had taken a turn 
for the worse. This made the model results even 
more critical.

Strengths and limitations. IC model was one 
of the first models by a reputed group to report the 
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potential impact of COVID-19 with and without 
interventions. The model was far more detailed 
than other models that were published until then. 
The authors also took great care parameterizing 
the model with the best disease transmission data 
that was available until then. The model also con-
sidered a very rich set of interventions and was 
one of the first to analyze pulsing intervention. On 
the flip side, the representation of the underlying 
social contact network was relatively simple. Sec-
ond, often the details of how interventions were 
represented were not clear. Since the publication 
of their article, the modelers have made their code 
open and the research community has witnessed 
an intense debate on the pros and cons of various 
modeling assumptions and the resulting software 
system,  see43. We believe that despite certain valid 
criticisms, overall, the results represented a signifi-
cant advance in terms of the when the results were 
put out and the level of details incorporated in the 
models.

4  Spatial Metapopulation Models: 
Northeastern and UVA Models (US 
Models)

Background. This approach is an alternative to 
detailed agent-based models, and has been used 
in modeling the spread of multiple diseases, 
including  Influenza15, 18,  Ebola17 and  Zika19. It 
has been adapted for studying the importation 
risk of COVID-19 across the  world16. Struc-
tured metapopulation models construct a sim-
ple abstraction of the mixing patterns in the 
population, in which the entire region under 
study is decomposed into fully connected geo-
graphical regions, representing subpopulations, 
which are connected through airline and com-
muter flow networks. Thus, they lack the rich 
detail of agent-based models, but have fewer 
parameters, and are, therefore, easy to set up 
and scale to large regions.

Model structure. Here, we summarize 
 GLEaM15 (Northeastern model) and  PatchSim18 
(UVA model). GLEaM uses two classes of 
datasets—population estimates and mobility. 
Population data are used from the “Gridded 
Population of the World”44, which gives an esti-
mated population value at a 15× 15 minutes 
of arc (referred to as a “cell”) over the entire 
planet. Two different kinds of mobility processes 
are considered—airline travel and commuter 
flow. The former captures long-distance travel; 
whereas, the latter captures localized mobility. 
Airline data are obtained from the International 
Air Transport Association (IATA)45, and the 

Official Airline Guide (OAG)46. There are about 
3300 airports world wide; these are aggregated 
at the level of urban regions served by multiple 
airport (e.g., as in London). A Voronoi tessel-
lation is constructed with the resulting airport 
locations as centers, and the population cells are 
assigned to these cells, with a 200 mile cutoff 
from the center. The commuter flows connect 
cells at a much smaller spatial scale. We repre-
sent this mobility pattern as a directed graph on 
the cells, and refer to it as the mobility network.

In the basic SEIR model, the subpopula-
tion in each cell j is partitioned into compart-
ments Sj ,Ej , Ij and Rj , corresponding to the 
disease states. For each cell j, we define the force 
of infection �j as the rate at which a susceptible 
individual in the subpopulation in cell j becomes 
infected—this is determined by the interactions 
the person has with infectious individuals in cell 
j or any cell j′ connected in the mobility network. 
An individual in the susceptible compartment 
Sj becomes infected with probability �j�t and 
enters the compartment Ej , in a time interval �t . 
From this compartment, the individual moves to 
the Ij and then the Rj compartments, with appro-
priate probabilities, corresponding to the disease 
model parameters.

The  PatchSim18 model has a similar struc-
ture, except that it uses administrative boundaries 
(e.g., counties), instead of a Voronoi tesselation, 
which are connected using a mobility network. 
The mobility network is derived by combining 
commuter and airline networks, to model time 
spent per day by individuals of region (patch) i 
in region (patch) j. Since it explicitly captures the 
level of connectivity through a commuter-like 
mixing, it is capable of incorporating week-to-
week and month-to-month variations in mobility 
and connectivity. In addition to its capability to 
run in deterministic or stochastic mode, the open 
source  implementation47 allows fine-grained con-
trol of disease parameters across space and time. 
Although the model has a more generic force of 
infection mode of operation (where patches can 
be more general than spatial regions), we will 
mainly summarize the results from the mobility 
model, which was used for COVID-19 response.

What did the models suggest? GLEaM model 
is being used in a number of COVID-19-related 
studies and analysis.  In48, the Northeastern Uni-
versity team used the model to understand the 
spread of COVID-19 within China and relative 
risk of importation of the disease internation-
ally. Their analysis suggested that the spread of 
COVID-19 out of Wuhan into other parts of 
mainland China was not contained well due 
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to the delays induced by detection and official 
reporting. It is hard to interpret the results. The 
paper suggested that international importa-
tion could be contained substantially by strong 
travel ban. While it might have delayed the onset 
of cases, the subsequent spread across the world 
suggest that we were not able to arrest the spread 
effectively. The model is also used to provide 
weekly projections (see https ://covid 19.gleam 
proje ct.org/); this site does not appear to be 
maintained for the most current forecasts (likely 
because the team is participating in the CDC 
forecasting group).

The PatchSim model is being used to support 
federal agencies as well as the state of Virginia. 
Due to our past experience, we have refrained 
from providing longer term forecasts, instead of 
focusing on short-term projections. The model is 
used within a Forecasting via Projection Selection 
approach, where a set of counterfactual scenarios 
are generated based on on-the-ground response 
efforts and surveillance data, and the best fits are 
selected based on historical performance. While 
allowing for future scenarios to be described, they 
also help to provide a reasonable narrative of past 
trajectories, and retrospective comparisons are 
used for metrics such as ‘cases averted by doing 
X’. These projections are revised weekly based on 
stakeholder feedback and surveillance update. 
Further discussion of how the model is used by 
the Virginia Department of Health each week can 
be found at https ://www.vdh.virgi nia.gov/coron 
aviru s/covid -19-data-insig hts/#model .

Strength and limitations. Structured meta-
population models provide a good tradeoff 
between the realism/compute of detailed agent-
based models and simplicity/speed of mass 
action compartmental models and need far 
fewer inputs for modeling, and scalability. This is 
especially true in the early days of the outbreak, 
when the disease dynamics are driven to a large 
extent by mobility, which can be captured more 
easily within such models, and there is signifi-
cant uncertainty in the disease model param-
eters. However, once the outbreak has spread, it 
is harder to model detailed interventions (e.g., 
social distancing), which are much more local-
ized. Further, these are hard to model using a 
single parameter. Both GLEaM and PatchSim 
models also faced their share of challenges in 
projecting case counts due to rapidly evolving 
pandemic, inadequate testing, a lack of under-
standing of the number of asymptomatic cases 
and assessing the compliance levels of the popu-
lation at large.

5  Models by KTH, Umea and Uppsala 
Researchers (Swedish Models)

Sweden was an outlier amongst countries in that 
it decided to implement public health interven-
tions without a lockdown. Schools and univer-
sities were not closed, and restaurants and bars 
remained open. Swedish citizens implemented 
“work from home” policies where possible. 
Moderate social distancing based on individual 
responsibility and without police enforcement 
was employed but emphasis was attempted to be 
placed on shielding the 65+ age group.

5.1  Simple Model
Background. Statistician Tom Britton developed 
a very simple model with a focus on predicting 
the number of infected over time in Stockholm.

Model structure.  Britton49 used a very simple 
SIR general epidemic model. It is used to make 
a coarse grain prediction of the behavior of the 
outbreak based on knowing the basic reproduc-
tion number R0 and the doubling time d in the 
initial phase of the epidemic. Calibration to cal-
endar time was done using the observed number 
of case fatalities, together with estimates of the 
time between infection to death, and the infec-
tion fatality risk. Predictions were made assuming 
no change of behavior, as well as for the situation 
where preventive measures are put in place at one 
specific time-point.

Model predictions. One of the controversial 
predictions from this model was that the number 
of infections in the Stockholm area would quickly 
rise towards attaining herd immunity within a 
short period. However, mass testing carried out 
in Stockholm during June indicated a far smaller 
percentage of infections.

Strength and limitations. Britton’s model 
was intended as a quick and simple method to 
estimate and predict an on-going epidemic out-
break both with and without preventive measures 
put in place. It was intended as a complement to 
more realistic and detailed modeling. The esti-
mation-prediction methodology is much sim-
pler and straight-forward to implement for this 
simple model. It is more transparent to see how 
the few model assumptions affect the results, and 
it is easy to vary the few parameters to see their 
effect on predictions so that one could see which 
parameter uncertainties have biggest impact on 
predictions, and which parameter uncertainties 
are less influential.

https://covid19.gleamproject.org/
https://covid19.gleamproject.org/
https://www.vdh.virginia.gov/coronavirus/covid-19-data-insights/#model
https://www.vdh.virginia.gov/coronavirus/covid-19-data-insights/#model
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5.2  Compartmentalized Models I: FHM 
Model

Background. The Public Health Authority 
(FHM) of Sweden produced a model to study 
the spread of COVID-19 in four regions in Swe-
den: Dalarna, Skåne, Stockholm, and Västra 
Götaland.50.

Model structure. It is a standard compart-
mentalized SEIR model and within each com-
partment, it is homogeneous; so, individuals are 
assumed to have the same characteristics and act 
in the same way. Data used in the fitting of the 
model include point prevalences found by PCR-
testing in Stockholm at two different time points.

Model predictions. The model estimated the 
number of infected individuals at different time 
points and the date with the largest number of 
infectious individuals. It predicted that by July 1, 
8.5% (5.9–12.9%) of the population in Dalarna 
will have been infected, 4% (2.4–9.9%) of the 
population in Skåne will have been infected, 19% 
(17.7–20.2%) of the population in Stockholm 
will have been infected, and 9% (6.3–12.2%) 
of the population in Västra Götaland will have 
been infected. It was hard to test these predic-
tions because of the great uncertainty in immune 
response to SARS-CoV-2—prevalence of anti-
bodies was surprisingly low but recent stud-
ies show that mild cases never seem to develop 
antibodies against SARS-CoV-2, but only T-cell-
mediated  immunity51.

The model also investigated the effect of 
increased contacts during the summer that sta-
bilizes in autumn. It found that if the contacts in 
Stockholm and Dalarna increase by less than 60% 
in comparison to the contact rate in the begin-
ning of June, the second wave will not exceed the 
observed first wave.

Strength and limitations. The simplicity 
of the model is a strength in ease of calibration 
and understanding but it is also a major limita-
tion in view of the well-known characteristics 
of COVID-19: since it is primarily transmitted 
through droplet infection, the social contact 
structure in the population is of primary impor-
tance for the dynamics of infection. The com-
partmental model used in this analysis does not 
account for variation in contacts, where few 
individuals may have many contacts, while the 
majority have fewer. The model is also not age 
stratified, but COVID-19 strikingly affects dif-
ferent age groups differently; e.g., young peo-
ple seem to get milder infections. In this model, 
each infected individual has the same infectivity 
and the same risk of becoming a reported case, 
regardless of age. Different age groups normally 

have varied degrees of contacts and have changed 
their behavior differently during the COVID-19 
pandemic. This is not captured in the model.

5.3  Compartmentalized Models II
Background. A group around statistician Joacim 
Rocklöv developed a model to estimate the 
impact of COVID-19 on the Swedish population 
at the municipality level, considering demogra-
phy and human mobility under various scenarios 
of mitigation and suppression. They attempted to 
estimate the time course of infections, health care 
needs, and the mortality in relation to the Swed-
ish ICU capacity, as well as the costs of care, and 
compared alternative policies and counterfactual 
scenarios.

Model structure.52 used a SEIR compart-
mentalized model with age structured compart-
ments (0–59, 60–79, 80+) susceptibles, infected, 
in-patient care, ICU and recovered populations 
based on Swedish population data at the munici-
pal level. It also incorporated inter-municipality 
travel using a radiation model. Parameters were 
calibrated based on a combination of values 
available from international literature and fitting 
to available outbreak data. The effect of a num-
ber of different intervention strategies was con-
sidered ranging from no intervention to modest 
social distancing and finally to imposed isolation 
of various groups.

Model predictions. The model predicted an 
estimated death toll of around 40,000 for the 
strategies based only on social distancing and 
between 5000 and 8000 for policies imposing 
stricter isolation. It predicted ICU cases of up 
to 10,000 without much intervention and up to 
6000 with modest social distancing, way above 
the available capacity of about 500 ICU beds.

Strength and limitations. The model showed 
a good fit against the reported COVID-19-related 
deaths in Sweden up to 20th of April, 2020, How-
ever, the predictions of the total deaths and ICU 
demand turned out to be way off the mark.

5.4  Agent‑Based Microsimulations
Background. Finally,53, 54 used an individual-
based model parameterized on Swedish demo-
graphics to assess the anticipated spread of 
COVID-19.

Model structure.53 employed the individual 
agent-based model based on work by Fergu-
son et al.22. Individuals are randomly assigned 
an age based on Swedish demographic data and 
they are also assigned a household. Household 
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size is normally distributed around the average 
household size in Sweden in 2018, 2.2 people 
per household. Households were placed on a lat-
tice using high-resolution population data from 
Landscan and census dara from the Statstics Swe-
den and each household is additionally allocated 
to a city based on the closest city center by dis-
tance and to a county based on city designation. 
Each individual is placed in a school or workplace 
at a rate similar to the current participation in 
Sweden.

Transmission between individuals occurs 
through contact at each individual’s workplace 
or school, within their household, and in their 
communities. Infectiousness is, thus, a property 
dependent on contacts from household mem-
bers, school/workplace members and community 
members with a probability based on household 
distances. Transmissibility was calibrated against 
data for the period 21 March–6 April to repro-
duce either the doubling time reported using 
pan-European data or the growth in reported 
Swedish deaths for that period. Various types of 
interventions were studied including the policy 
implemented in Sweden by the public health 
authorities as well as more aggressive interven-
tions approaching full lockdown.

Model predictions. Their prediction was that 
“under conservative epidemiological param-
eter estimates, the current Swedish public-health 
strategy will result in a peak intensive-care load in 
May that exceeds pre-pandemic capacity by over 
40-fold, with a median mortality of 96,000 (95% 
CI 52,000 to 183,000)”.

Strength and limitations. This model was 
based on adapting the well-known Imperial 
model discussed in Sect. 3 to Sweden and con-
sidered a wide range of intervention strategies. 
Unfortunately the predictions of the model were 
woefully off the mark on both counts: the deaths 
by June 18 are under 5000 and at the peak the 
ICU infrastructure had at least 20% unutilized 
capacity.

6  Forecasting Models
Forecasting is of particular interest to policy 
makers as they attempt to provide actual counts. 
Since the surveillance systems have relatively sta-
bilized in recent weeks, the development of fore-
casting models has gained traction and several 
models are available in the literature. In the US, 
the Centers for Disease Control and Prevention 
(CDC) has provided a platform for modelers to 
share their forecasts which are analyzed and com-
bined in a suitable manner to produce ensemble 

multi-week forecasts for cumulative/incident 
deaths, hospitalizations and more recently cases 
at the national, state, and county level. Probabil-
istic forecasts are provided by 36 teams as of July 
28, 2020 (there were 21 models as of June 24, 
2020) and the CDC with the help  of55 has devel-
oped uniform ensemble model for multi-step 
 forecasts56.

6.1  COVID‑19 Forecast Hub Ensemble 
Model

It has been observed previously for other infec-
tious diseases that an ensemble of forecasts from 
multiple models perform better than any indi-
vidual contributing  model39. In the context of 
COVID-19 case count modeling and forecasting, 
a multitude of models have been developed based 
on different assumptions that capture specific 
aspects of the disease dynamics (reproduction 
number evolution, contact network construction, 
etc.). The models employed in the CDC Forecast 
Hub can be broadly classified into three catego-
ries, data-driven, hybrid models, and mechanis-
tic models with some of the models being open 
source.

Data-driven models. They do not model the 
disease dynamics but attempt to find patterns 
in the available data and combine them appro-
priately to make short-term forecasts. In such 
data-driven models, it is hard to incorporate 
interventions directly; hence, the machine is pre-
sented with a variety of exogenous data sources 
such as mobility data, hospital records, etc. with 
the hope that its effects are captured implicitly. 
Early iterations of Institute of Health Metrics 
and Evaluation (IHME)  model34 for death fore-
casting at state level employed a statistical model 
that fits a time-varying Gaussian error function 
to the cumulative death counts and is param-
eterized to control for maximum death rate, 
maximum death rate epoch, and growth param-
eter (with many parameters learnt using data 
from outbreak in China). The IHME models are 
undergoing revisions (moving towards the hybrid 
models) and updated implementable versions are 
available  at57. The University of Texas at Austin 
COVID-19 Modeling Consortium  model58 uses 
a very similar statistical model  as34 but employs 
real-time mobility data as additional predictors 
and also differ in the fitting process. The Car-
negie Mellon Delphi Group employs the well 
known auto-regressive (AR) model that employs 
lagged version of the case counts and deaths 
as predictors and determines a sparse set that 
best describes the observations from it by using 
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LASSO  regression59.60 is a deep learning model 
which has been developed along the lines  of1 and 
attempts to learn the dependence between death 
rate and other available syndromic, demographic, 
mobility and clinical data.

Hybrid models. These methods typically 
employ statistical techniques to model disease 
parameters which are then used in epidemio-
logical models to forecast cases. Most statistical 
 models34, 58 are evolving to become hybrid mod-
els. A model that gained significant interest is the 
Youyang Gu (YYG) model and uses a machine 
learning layer over an SEIR model to learn the 
set of parameters (mortality rate, initial R 0 , post-
lockdown R) specific to a region that best fits 
the region’s observed data. The authors (YYG) 
share the optimal parameters, the SEIR model 
and the evaluation scripts with general public 
for  experimentation61. Los Alamos National Lab 
(LANL)  model35 uses a statistical model to deter-
mine how the number of COVID-19 infections 
changes over time. The second process maps the 
number of infections to the reported data. The 
number of deaths is a fraction of the number of 
new cases obtained and is computed using the 
observed mortality data.

Mechanistic models. GLEaM and JHU 
models are county-level stochastic SEIR model 
dynamics. The JHU model incorporates the effec-
tiveness of state-wide intervention policies on 
social distancing through the R 0 parameter. More 
recently, model outputs from UVA’s PatchSim 
model were included as part of a multi-model 
ensemble (including autoregressive and LSTM 
components) to forecast weekly confirmed cases.

7  Comparative Analysis Across Modeling 
Types

We end the discussion of the models above by 
qualitatively comparing model types. As dis-
cussed in the preliminaries, at one end of the 
spectrum are models that are largely data driven: 
these models range from simple statistical models 
(various forms of regression models) to the more 
complicated deep learning models. The differ-
ence in such model lies in the amount of train-
ing data needed, the computational resources 
needed and how complicated the mathematical 
function one is trying to fit to the observed data. 
These models are strictly data driven and, hence, 
unable to capture the constant behavioral adapta-
tion at an individual and collective level. On the 
other end of the spectrum SEIR, meta-population 
and agent-based network models are based on 
the underlying procedural representation of the 

dynamics—in theory, they are able to represent 
behavioral adaptation endogenously. But both 
class of models face immense challenges due to 
the availability of data as discussed below. 

(1) Agent-based and SEIR models were used in 
all the three countries in the early part of the 
outbreak and continue to be used for coun-
ter-factual analysis. The primary reason is 
the lack of surveillance and disease specific 
data and hence, purely data-driven models 
were not easy to use. SEIR models lacked 
heterogeneity but were simple to program 
and analyze. Agent-based models were more 
computationally intensive, required a fair bit 
of data to instantiate the model but captured 
the heterogeneity of the underlying coun-
tries. By now it has become clear that use 
of such models for long term forecasting is 
challenging and likely to lead to mis-leading 
results. The fundamental reason is adaptive 
human behavior and lack of data about it.

(2) Forecasting, on the other hand, has seen 
use of data-driven methods as well as 
causal methods. Short-term forecasts 
have been generally reasonable. Given 
the intense interest in the pandemic, a lot 
of data are also becoming available for 
researchers to use. This helps in validating 
some of the models further. Even so, real-
time data on behavioral adaptation and 
compliance remain very hard to get and is 
one of the central modeling challenges.

8  Models and Policy Making
Were some of the models wrong? In a recent 
opinion piece,4 Professor Vikram Patel of the 
Harvard School of Public Health makes a stinging 
criticism of modeling:

Crowning these scientific disciplines is the field 
of modeling, for it was its estimates of moun-
tains of dead bodies which fuelled the panic 
and led to the unprecedented restrictions on 
public life around the world. None of these 
early models, however, explicitly acknowl-
edged the huge assumptions that were made,

A similar article in NY Times recounted the mis-
takes in COVID-19 response in Europe5; also 
 see62.
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Our point of view. It is indeed important to 
ensure that assumptions underlying mathemati-
cal models be made transparent and explicit. 
But we respectfully disagree with Professor 
Patel’s statement: most of the good models tried 
to be very explicit about their assumptions. The 
mountains of deaths that are being referred to 
are explicitly calculated when no interventions 
are put in place and are often used as a worst case 
scenario. Now, one might argue that the authors 
be explicit and state that this worst case scenario 
will never occur in practice. Forecasting dynam-
ics in social systems is inherently challenging: 
individual behavior, predictions and epidemic 
dynamics co-evolve; this coevolution immediately 
implies that a dire prediction can lead to extreme 
change in individual and collective behavior lead-
ing to reduction in the incidence numbers. Would 
one say forecasts were wrong in such a case or 
they were influential in ensuring the worst case 
never happens? None of this implies that one 
should not explicitly state the assumption under-
lying their model. Of course our experience is 
that policy makers, news reporters and common 
public are looking exactly for such a forecast—
we have been constantly asked “when will peak 
occur” or “how many people are likely to die”. 
A few possible ways to overcome this tension 
between the unsatiable appetite for forecasts and 
the inherent challenges that lie in doing this accu-
rately, include:

•   We believe that, in general, it might not be 
prudent to provide long term forecasts for 
such systems.

•   State the assumptions underlying the mod-
els as clearly as possible. Modelers need to be 
much more disciplined about this. They also 
need to ensure that the models are transpar-
ent and can be reviewed broadly (and expedi-
tiously).

•   Accept that the forecasts are provisional and 
that they will be revised as new data comes in, 
society adapts, the virus adapts and we under-
stand the biological impact of the pandemic.

•   Improve surveillance systems that would pro-
duce data that the models can use more effec-
tively. Even with data, it is very hard to esti-
mate the prevalence of COVID-19 in society.

Communicating scientific findings and risks is an 
important topical area in this context,  see41, 63, 64, 

65.
Use of models for evidence-based policy 

making. In a new book,66, Radical Uncertainty, 
economists John Kay and Mervyn King (formerly 
Governor of the Bank of England) urge caution 
when using complex models. They argue that 
models should be valued for the insights they 
provide but not relied upon to provide accurate 
forecasts. The so-called “evidence-based policy” 
comes in for criticism where it relies on models 
but also supplies a false sense of certainty where 
none exists, or seeks out the evidence that is 
desired ex ante—or “cover”—-to justify a policy 
decision. “Evidence-based policy has become pol-
icy-based evidence”.

Our point of view. The authors make a good 
point here. But again, everyone, from public to 
citizens and reporters clamor for a forecast. We 
argue that this can be addressed in two ways:(i) 
viewing the problem from the lens of control the-
ory so that we forecast only to control the devia-
tion from the path we want to follow and (ii) not 
insisting on exact numbers but general trends. As 
Kay and King opine, the value of models, espe-
cially in the face of radical uncertainty, is more in 
exploring alternative scenarios resulting from dif-
ferent policies:

a model is useful only if the person using it 
understands that it does not represent the “the 
world as it really is” but is a tool for exploring 
ways in which a decision might or might not 
go wrong.

Supporting science beyond the pandemic. 
In his new book The Rules of Contagion, Adam 
 Kucharski67 draws on lessons from the past. 
In 2015 and 2016, during the Zika outbreak, 
researchers planned large-scale clinical studies 
and vaccine trials. But these were discontinued as 
soon as the infection ebbed.

This is a common frustration in outbreak 
research; by the time, the infections end, fun-
damental questions about the contagion can 
remain unanswered. That is why building 
long-term research capacity is essential.

Our point of view. The author makes an 
important point. We hope that today, after wit-
nessing the devastating impacts of the pandemic 
on the economy and society, the correct lessons 
will be learnt: sustained investments need to be 

4 Indian Express, July 30, 2020.
5 NY Times July 20, 2020: https ://www.nytim 
es.com/2020/07/20/world /europ e/coron aviru s-mista kes-franc 
e-uk-italy .html.

https://www.nytimes.com/2020/07/20/world/europe/coronavirus-mistakes-france-uk-italy.html
https://www.nytimes.com/2020/07/20/world/europe/coronavirus-mistakes-france-uk-italy.html
https://www.nytimes.com/2020/07/20/world/europe/coronavirus-mistakes-france-uk-italy.html
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made in the field to be ready for the impact of the 
next pandemic.

9  Concluding Remarks
The paper discusses a few important computa-
tional models developed by researchers in the US, 
UK and Sweden for COVID-19 pandemic plan-
ning and response. The models have been used by 
policy makers and public health officials in their 
respective countries to assess the evolution of the 
pandemic, design and analyze control measures 
and study various what-if scenarios. As noted, 
all models faced challenges due to availability 
of data, rapidly evolving pandemic and unprec-
edented control measures put in place. Despite 
these challenges, we believe that mathematical 
models can provide useful and timely informa-
tion to the policy makers. On on hand the mod-
elers need to be transparent in the description 
of their models, clearly state the limitations and 
carry out detailed sensitivity and uncertainty 
quantification. Having these models reviewed 
independently is certainly very helpful. On the 
other hand, policy makers should be aware of 
the fact that using mathematical models for pan-
demic planning, forecast response rely on a num-
ber of assumptions and lack data to over these 
assumptions.
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