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The Role of Cytoskeleton of a Red Blood Cell in Its 
Deformability

1 Introduction
Biological systems are interesting subjects for 
mechanical studies owing to their unique struc-
tural properties. Being one of the earliest studied 
biological systems, historically, blood and spe-
cifically the red blood cell (RBC), enjoys special 
attention due to its mechanical properties.1 The 
RBC surface is soft enough to undergo thermal 
fluctuations yet the cells are able to sustain high 
shearing, repeatedly, within the circulation.

Deformability is the change in morphol-
ogy (compared to its original shape) that a cell 
can undergo, reversibly. It is the most important 
mechanical property of the RBC, originating 
in its structure and responsible for its efficient 
functioning. RBCs are produced within the bone 
marrow through the process of erythropoie-
sis. During this, the progenitor cells lose their 
nucleus and achieve a biconcave discoid shape to 
form mature RBCs. This  process results in the 
RBC having an excess surface area for the con-
tained volume, a property which the cell uses to 
assume energy minimizing shapes while travers-
ing through narrow capillaries.

Being the most abundant of the cells pre-
sent in blood, RBCs impart blood its viscosity. 
Hence, in order to maintain homeostatic blood 
flow, RBCs need to have the right amount of 
deformability which is periodically tested in the 
spleen. The endothelial slits in the spleen act as 
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Abstract | The red blood cell (RBC) is unique in terms of its structure 
and function when compared to other cells in the blood and body. Its 
anucleated characteristic and biconcave shape (indicative of high sur-
face area to volume ratio) render it deformable. This deformability is use-
ful during circulation when the red blood cell has to traverse capillaries 
smaller than its size. The cytoskeleton of the red blood cell, a two dimen-
sional sheet like structure with dynamic linkages, plays a major role in its 
deformability. The interdependent relationship between the cytoskeleton 
and RBC deformability under various conditions such as metabolism, 
hematologic and systemic disorders and senescence is reviewed.
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mechanical filters barring passage back to circula-
tion to the least deformable cells. The cell deform-
ability, therefore, becomes a factor in deciding 
when the cell is to be removed from circulation. 
As they age RBCs are removed from circulation 
within the spleen. This takes place between the 
110 and 130th day of their life cycle.2

As the RBC deformability forms an impor-
tant parameter in all its functions, its origin, and 
factors affecting it, are of significant importance. 
Studies have shown that the RBC cytoskeleton 
contributes significantly to its deformability. The 
focus of this review is to present the literature on 
RBC cytoskeleton limiting itself to the under-
standing of its structure, viscoelastic properties, 
factors it affects and is affected by. This discussion 
is presented in the forthcoming sections.

2  Structure of Red Blood Cell Membrane
The red blood cell membrane is composed of 
lipids and proteins. A schematic of the mem-
brane arrangement is provided in the Fig. 1. The 
lipids exist as a bilayer with asymmetric distri-
bution within the inner and outer leaflets.3 The 
proteins exist either as peripheral or integral pro-
teins. The peripheral proteins in turn are classi-
fied as cytoskeletal and anchoring proteins based 
on their function. The cytoskeletal proteins exist  
as a two dimensional scaffold unlike the trans-
cellular actomyosin cytoskeleton found in most 
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eukaryotic cells. They form junctions with the 
integral proteins which exist within the lipid 
bilayer via the anchoring proteins.4,5

Extensive protein analysis studies have helped 
in determining the composition of the RBC 
cytoskeleton6–9 Band 1 and 2 are high molecular 
weight protein molecules renamed α and β spec-
trin respectively. Other lower molecular weight 
proteins found are the bands 3, 4.1, 4.2, 4.5 
and 4.9. Apart from spectrin, the cytoskeleton 
includes band 5 and 2.1 which are actin and 
ankyrin, respectively.

With the advent of techniques such as freeze 
fracture- and immuno- electron microscopy it 
was discovered that spectrin, most abundant of 
the cytoskeletal proteins, exists as a heterodimer 
where α and β are its subunits.10,11 These heter-
odimers then form hexagonal tetramers which 
constitute the cytoskeletal network.12 Spectrin 
alongwith actin and protein 4.1 forms a junc-
tional complex13,14 which connects to the glyco-
phorins within the lipid membrane while spectrin 
alongwith ankyrin and protein 4.2 forms another 
junctional complex which connects to the band 3 
integral protein.15

3  Red Blood Cell Deformability
3.1  Structural Basis
An RBC has to go through repeated mechanical 
constrictions throughout its life-cycle. Its mem-
brane structure imparts it the ability to deform 
and recover. The red blood cell membrane has 
a viscoelastic nature. The lipid bilayer with the 
transmembrane proteins behaves as a viscous 
fluid while the cytoskeletal protein layer shows 

a solid-like elastic behavior.16 Perturbing the 
skeletal-skeletal protein and skeletal-anchoring 
protein interactions is shown to negatively affect 
the RBC deformability and stability indicat-
ing the role of cytoskeleton in its deformabil-
ity.17 To understand how the molecular design of 
cytoskeleton translates to macroscale viscoelastic-
ity multiple studies have focused on the dynamic 
changes in the structure of the cytoskeletal and 
membrane proteins. The heterodimers of spec-
trin in their relaxed state exist as loosely coiled 
double helix and only bind on ends to form 
tetramers. The lengths of the heterodimers and 
tetramers are approximately 97 nm and 194 nm, 
respectively.18 In native state, the tetramers are 
found to assume a length of approximately 70 nm 
and have a very low energy of 2.5 RT (where R is 
the universal gas constant and T is the tempera-
ture) for doubling their length to a maximum of 
∼200 nm upon extension.19–22 At the molecular 
level, the spectrin molecule has repeats which are 
found to be dynamic imparting the protein with 
flexibility.23 Based on this structural informa-
tion, the cytoskeleton is modeled to behave as a 
linearly extending elastic spring where certain 
spectrin molecules extend while others compress 
effectively maintaining constant surface area.17

3.2  Constitutive Models
On the basis of this structural information, con-
stitutive models for RBC mechanics are devel-
oped. These models help better understand RBC 
deformation behaviour during flow. The bilayer 
which consists of lipids held together with hydro-
phobic forces resists area dilatation and bending 

Figure 1: A schematic representing the red blood cell cytoskeleton arrangement.
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but flows easily upon shearing while the spectrin 
cytoskeleton is resistant to shear forces. A math-
ematical description of the red blood cell should, 
therefore, consider the moduli of area compress-
ibility, bending rigidity and shear elasticity.

Along these lines, one of the many approaches 
to model the complex elastic behavior of the RBC 
is using the neo-Hookean or Mooney–Rivlin 
model. Pozrikidis24 use it to model RBC deforma-
tion during capillary flow. More commonly, the 
Skalak law25 is used to model RBC behaviour as it 
intrinsically considers the contribution from area 
dilatation. It was used by Kellar and Skalak26 to 
obtain novel RBC dynamics seen in flow experi-
ments such as tumbling and tank-treading. To 
obtain the shear rate dependency of these defor-
mation regimes, Abkarian et al.27 used the Kel-
vin-Voigt viscoelastic model to describe RBC 
mechanics.

Continuum based numerical RBC simula-
tions also make use of one of the above consti-
tutive models to describe cell mechanics which 
when combined with methods to simulate the 
fluid flow have been successful in capturing large 
deformation behavior seen in experiments.28,29 
Another approach to model RBC behavior are the 
particle based models where techniques such as 
dissipative particle dynamics are used. A compre-
hensive review of numerical RBC models can be 
found in Li et al.30

3.3  Measurement Techniques
All the above models make use of values of RBC 
elastic moduli to predict accurate deforma-
tion behavior. Various methods have been used 
to measure these properties, the most common 
being: micropipette aspiration, optical tweezers, 
atomic force microscopy, ektacytometry and 
microfluidic approaches.

In the micropipette aspiration technique, RBC 
is held within a pipette tip via suction pressure. 
This is manipulated in a controlled manner aspi-
rating the cell further into the tube. The aspira-
tion pressure and dimensions of the deformed 
RBC are used to obtain the mechanical param-
eters. For single RBCs micropipette aspiration 
is quite popular as it can be used to obtain most 
of the elastic moduli. Typical values of moduli 
for normal RBCs, obtained through this tech-
nique are κ = 7µ N/m , κB = 1.8× 10−19 N/m 
and KA = 193 dynes/cm, where κ , κB,KA are the 
shear, bending and area compressibility modulus, 
respectively.31–33

Another approach to obtain RBC mechani-
cal properties is by optical tweezing. Focused 

laser beams are used to trap silica beads (placed 
diametrically opposite on the RBC surface) and 
move them stretching the cell.34 The optical 
tweezer approach provides the modulii of elastic-
ity as the micropipette aspiration technique. The 
atomic force microscope, on the other hand, is 
used to obtain the Young’s modulus of the cell. In 
this technique, a microtip attached to a cantilever 
is used to locally indent the RBC and its retrac-
tion force is measured. Typical Young’s modulus 
for a normal RBC is reported to be approximately 
26± 7 kPa and changes drastically for diseased 
cells.35

In contrast to the single cell measurement 
methods discussed above, microfluidic and ekta-
cytometry methods are more suitable for study-
ing RBC populations. In ektacytometry RBCs are 
sheared in a rheoscope and diffraction patterns 
of the deformed RBCs obtained from an incident 
laser beam are used to estimate a deformability 
index.36 This technique is used in commercial 
instruments to measure RBC deformability and is 
being replicated using microfluidic techniques to 
make point of care devices.37,38

4  Factors Affecting RBC Cytoskeleton
RBC deformability enables it to pass through nar-
row capillaries ensuring perfusion to every tissue 
within the body. But the intricate RBC cytoskel-
eton, responsible for its deformability is affected 
by several factors throughout the cell’s four 
month life span.

4.1  RBC Metabolism
RBCs lack nuclear material but carry all the essen-
tial enzymes required for metabolism. During 
their lifetime they do produce a limited amount 
of ATP via glycolysis. The RBC ATP, among many 
other functions, is used for both static (maintain-
ing biconcave shape) and dynamic (fluctuations, 
deformation) changes within the cytoskeletal 
proteins. The biconcave resting shape of the RBC 
is shown to be energy dependent as depleting ATP 
from the cell over time resulted in them assum-
ing a smooth spherical shape.39 In addition to its 
role in maintaining the resting biconcave shape 
of RBCs, ATP is seen to contribute to the ther-
mal fluctuations seen in the membrane bilayer. 
This active component to the membrane fluctua-
tions is seen to have a root-mean-square (r.m.s) 
length comparable to the distance between the 
cytoskeletal junctional complexes. Hence, leading 
to the conclusion that ATP dependent formation 
and breaking of junctional complexes contrib-
utes to undulations on the RBC surface.40 ATP 



42

S. Paradkar and P. Gambhire

1 3 J. Indian Inst. Sci.| VOL 101:1 | 39–46 January 2021 | journal.iisc.ernet.in

depletion is seen to have a reversible decrease in 
RBC deformability via an increase in membrane 
calcium.41 Stiffness of the membrane is also 
found to increase which is attributed to reduction 
in spectrin phosphorylation.42 It is also reported 
that upon deformation, RBCs release ATP to reg-
ulate the vascular tone43,44 indicating an intrinsic 
relationship between RBC metabolism and its 
deformability.

4.2  RBCs in Disease
4.2.1  Disorders of Membrane Proteins
The cytoskeleton regulates RBC deformability 
through folding and unfolding of spectrin and 
dynamic linkages of anchoring proteins. Any 
disruption to these elements lead to disorders 
accompanied with chronic anemia. Hereditary 
spherocytosis (HS) and hereditary ovalocytosis 
(HO) occur as result of decrease and increase 
in the cytoskeleton and lipid bilayer linkages, 
respectively. Both these disorders cause a loss 
in cell deformability but the cell stability is not 
affected to a great extent in HO. HS RBCs, on the 
other hand, show a loss in membrane due to the 
ineffective linkage to cytoskeleton, resulting in 
cell shape being close to spherical.45

Disorders in the cytoskeletal proteins them-
selves such as deficiency in protein 4.1, distur-
bance in spectrin dimer-tetramer equilibrium can 
lead to disorders such as hereditary elliptocytosis 
(HE, wherein cells acquire an elliptical shape) 
and hereditary pyropoikilocytosis (HPP, wherein 
cell have microcysts on the surface). RBCs in all 
these disorders exhibit loss of deformability and 
are cleared within the spleen leading to hemolytic 
anemia and splenomegaly.

4.2.2  Disorders of Cytoplasmic Protein
Sickle cell Disease (SCD) is an inheritable blood 
disorder caused by a single point mutation in 
one of the hemoglobin (Hb) gene. This muta-
tion triggers the polymerization of the deoxygen-
ated Hb (HbS) and leads to the formation of long 
rod like stiff fibers which compel the RBCs to 
assume an elongated (sickle) shape (sRBCs).46,47 
Patients with SCD suffer from chronic anemia 
due to increased hemolysis, vaso-occlusive cri-
ses and in certain cases tissue/organ damage.48 
SRBCs are stiffer than normal RBCs.49,50 Pres-
ence of HbS leads to an increase in cytoplasmic 
viscosity contributing to alteration of rheology 
of sickle RBCs51 Altered rheology of sickle cells 
is also attributable to the increased associa-
tion of HbS with the membrane proteins (such 

band 3 protein).52–54 Studies show that sRBCs 
and HbS are more prone to generation of reac-
tive oxygen species (ROS) and auto-oxidation, 
respectively.55,56 Increased ROS production leads 
to loss in membrane deformability as hemo-
globin, cytoskeletal and transmembrane proteins 
are oxidized.57,58 Additional contributions to 
cytoskeletal changes in SCD are due to phospho-
rylation of cytoskeletal membrane proteins59and 
increased concentration of calcium ions in the 
membrane.60

4.2.3  Infectious Diseases—Malaria
Infectious diseases such as malaria directly 
affect RBCs. The parasite, plasmodium falcipa-
rum enters the host RBC (trophozoite stage) 
and multiplies to form daughter cells (schizont 
stage). The infected RBC (iRBC) eventually rup-
tures and releases the daughter parasites (mero-
zoite stage) which continue infecting other cells. 
During the trophozoite stage, iRBC membrane 
forms nanoscale knob-like protrusions.61,62 The 
knob proteins form additional linkages with the 
spectrin-actin-protein 4.1 junction increasing 
the cytoskeleton-bilayer adherence. 63 Cytoskel-
etal proteins such as adducin, tropomyosin and 
Rac1 which are part of the spectrin-actin junc-
tion are reduced. At longer times post infection, 
large holes appear in the cytoskeleton and key 
proteins such as spectrin and ankyrin are proteo-
lysed either via the RBC’s calpain-1 or parasitic 
proteases.64 The length of the spectrin filaments 
is found to increase to almost 74% of its original 
value with the progression of the infection.62 At 
the schizont stage of infection, iRBCs are found 
to have increased adhering properties to endothe-
lium. This helps the iRBCs escape clearance by 
the immune system and increases morbidity due 
to vaso-occlusion.65

4.2.4  Chronic Diseases—Diabetes Mellitus
Non-hematological diseases also affect RBCs. 
Most prevalent of these is the metabolic disor-
der of diabetes mellitus (DM) which leads to 
a systemic increase in plasma glucose concen-
tration. RBCs in diabetic patients (dRBCs) are 
found to have a larger than average size, exhibit 
lower concavity and a decrease in surface rough-
ness.66 One reason for the increase in cell volume 
observed in the case of dRBCs is the dysfunction 
of Na+, K+ ATPase which is reversible with the 
blood glucose levels.67 These cells are also less 
deformable, slow to recover their original shape 
and have a higher tendency to aggregate when 
compared to non-diabetic patients.68–72. The 
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loss of deformability correlated with the extent 
of glycemic control, that is, formation of glyco-
sylated hemoglobin.73–75 At the cytoskeletal level, 
β spectrin, actin and protein 4.2 are found to be 
glycosylated leading to their oxidative damage76,77 
contributing to the cell stiffness. Increase in nitric 
oxide and viscosity of blood plasma, as observed 
in DM patients, when combined with the less 
deformable RBCs leads to vascular complications 
such as atherosclerosis.78,79

4.3  RBCs and Senescence
RBCs do not undergo autophagy as they lack the 
required cellular machinery. They are instead 
removed from circulation by macrophages in 
a process termed erythrophagocytosis. As they 
age, RBCs accumulate certain markers on them 
which enables their selection and uptake by 
macrophages.80,81

One of the markers of RBC senescence is loss 
in deformability.82 This results in them being fil-
tered out of circulation by the inter-endothelial 
slits and phagocytosed in the red pulp of the 
spleen. The cytoskeletal changes resulting in this 
loss of deformability can be attributed to multiple 
pathways. As they age, senescent RBCs (sRBCs) 
accumulate increasing amounts of irreversibly 
oxidized proteins/hemoglobin83 leading to an 
increase in their density.84,85 There is an increase 
in membrane bound hemoglobin which triggers 
an increase in ROS within the cell.86,87 Within 
the membrane, hemoglobin binds to the protein, 
band 3, leading it to cluster.88–90 Band 3 is an inte-
gral membrane protein which also functions as a 
surface antigen for immunoglobulin antibodies. 
These antibodies mark cells to be phagocytosed. 
On the cytoplasmic side band 3 protein is a site 
for cytoskeleton and membrane linkage via the 
protein ankyrin.91,92 Hence, a band 3 cluster for-
mation disrupts the cytoskeleton and lipid mem-
brane linkages. In addition, there are reports of 
in vivo crosslinking of hemoglobin to spectrin 
which also contributes to increased cell rigidity 
with aging.86,93

5  Summary
It can be seen that deformability affects all aspects 
of RBC health and functioning. The morphol-
ogy of the RBC is such as to impart the cell high 
deformability, the cell metabolism is directed 
towards maintaining it and the disease states 
and senescence progress by affecting it. Many 
studies have therefore focused on understand-
ing the pathways affecting RBC deformability. A 

knowledge of this can help in developing poten-
tial techniques aimed at restoring it.
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