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Centrosome: A Microtubule Nucleating Cellular 
Machinery

1 Introduction
The term microtubule organizing centers 

(MTOCs) was coined by Pickett-Heaps to define 
microtubule nucleation sites in the cell 78. Several 
decades ago, Edouard Van Beneden and Theo-
dor Boveri identified centrosome which primar-
ily functions as a MTOC in many animal cells 4, 

102. Electron microscopy revealed that the centro-
some contains a pair of microtubule-based cylin-
drical structures called centrioles surrounded by 
an electron-dense proteinaceous matrix termed 
as the pericentriolar material (PCM). The PCM 
was subsequently identified to play essential role 
in microtubule nucleation 68, 86, 104, 110.

Microtubules (MTs) are dynamic cytoskel-
etal structures formed by the polymerization of 
α/β-tubulin heterodimers via a process requiring 
assistance of several nucleating factors 85. Centro-
some is involved in spatio-temporal organization 
of MT arrays with defined geometry 66. Several 
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the major molecular mechanisms at the centrosome which affect micro-
tubule nucleation and activation. Finally, we discuss human diseases 
associated with defective microtubule organization resulting from centro-
some abnormalities.
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centrosome localized proteins serve as adaptor 
proteins to facilitate this process. One such pro-
tein component of PCM, γ-tubulin72, 92 forms a 
lock-washer shaped protein complex termed the 
γ-Tubulin Ring Complex (γ-TuRC) which is 
the major MT nucleating molecular machinery 
present at the centrosome 67. The γ-TuRC core 
structure is formed by the lateral association of 
γ-Tubulin Small Complex (γ-TuSC) with multi-
ple γ-tubulin Complex Proteins (GCPs)73. Addi-
tionally, several associated factors aid in γ-TuRC 
targeting and activation at MTOCs.

Recent proteomic analyses of purified cen-
trosomes and biotin proximity labelling tech-
nique have led to the discovery of hundreds of 
centrosome proteins and their interactors3, 29, 39. 
Several of these proteins have been functionally 
characterized and super-resolution microscopy 
has enabled viewing their spatial organization 
at the centrosome25, 54, 91. The overwhelming 

γ-tubulin: It belongs to 
the family of tubulin proteins. 
It is a part of multi-subunit 
protein complex called 
γ-TuRC which is involved in 
microtubule nucleation.
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inter-play of increasing number of centrosome 
proteins enhances the molecular understand-
ing of MT organization at centrosomes. Hence, 
this review showcases the central role of centro-
some in MT nucleation. It also presents the link 
between defective centrosome-mediated MT 
organization and fatal human diseases.

2  Microtubule Cytoskeleton Assembly
The tubulin superfamily members, namely α-, β- 
and γ-tubulins play major role in MT formation. 
The α- and β-tubulin heterodimers assemble in 
a head-to-tail manner of laterally associated lin-
ear polymers termed as protofilaments (PFs), 
which serve as basic building blocks of the MTs59. 
Majority of organisms have MTs made up of 13 
PFs while specialized MTs with 11, 12 or 15 PFs 
have also been reported in some cases6, 15, 32. All 
PFs in a MT have same orientation which results 
in polarity of the structure. One end of a MT has 
α-tubulin ring (referred as minus-end) while 
the opposite end is constituted by β-tubulin ring 
(referred as plus end). The end of polymerizing 
MTs is often stabilized by GTP-cap87. However, 
the GTP bound to the β-tubulin at the plus-end 
has a tendency to hydrolyze to GDP after assem-
bling in MT which leads to plus-end disassem-
bly and shrinkage79. Similar to the plus-end, 
minus-end also undergoes periods of growth and 
shrinkage but at a slower rate in comparison to 
the plus-end and hence it is more stable13.

2.1  γ‑TuRC: Composition and Geometry
The third tubulin super-family member, 
γ-tubulin is a major player involved in MT nucle-
ation. γ-tubulin together with specific sets of 
γ-tubulin complex proteins (GCPs), is involved 
in formation of multi-subunit protein complexes 
referred as the γ-tubulin ring complex (γ-TuRC) 
and/or γ-tubulin small complex (γ-TuSC), which 
differ in their protein composition and capacity 
to nucleate MTs50. MTs can be nucleated either 
by γ-TuRCs or γ-TuSCs but the γ-TuRC pathway 
is prevalent in vertebrates. These multi-subunit 
protein complexes are present at minus-ends of 
MTs and provide binding sites for MTs emanat-
ing from MTOCs. In most eukaryotes, γ-TuSC 
is made-up of a dimer of GCP2 and GCP3, each 
bound to one molecule of γ-tubulin. In contrast, 
γ-TuRC contains five distantly related proteins 
i.e. GCP2, GCP3, GCP4, GCP5 and GCP670. 
Depleting these GCPs cause reduced recruit-
ment of γ-tubulin complexes to the MTOCs and 
induce errors in centriole duplication and bipolar 
spindle formation12, 21, 99. Recently, cryo-electron 

microscopy has revealed the asymmetric cone-
shaped structure of γ-TuRC, where GCP4/GCP5 
and GCP4/GCP6 form unique Y-shaped assem-
blies similar to GCP2/GCP3 in γ-TuSC (Peng61, 

101). Two distinct domains of GCPs i.e. N-termi-
nus Grip1 and C-terminus Grip2, are involved 
in their lateral interactions and γ-tubulin asso-
ciation, respectively21. Structural work has iden-
tified interesting details about the functioning of 
γ-TuRC. For instance, the γ-tubulin assembled in 
γ-TuSC is subjected to conformational activation 
in order to achieve microtubule geometry which 
is potentially provided by the flexibility of GCP3 
hinge region48, 51. GCP phosphorylation also 
regulates conformational changes needed for the 
activation of γ-TuRC49. γ-TuRCs can assemble in 
cytosol and/or MTOCs depending on the organ-
ism and cell type. The activation of γ-TuRCs 
coincides with its recruitment to the MTOCs 
which could be centrosome, golgi, mitochondria, 
nuclear envelope, cell membrane and/or spin-
dles20. This review focuses on the role of centro-
some as the major MT organizing center.

3  Centrosome: A Microtubule Organizing 
Center (MTOC)

Centrosome is a cytoplasmic non-membranous 
cell organelle of approximately 0.4–1 µm in size. 
It acts as a major MTOC in various animal cells 
and performs diverse functions including regu-
lation of cell motility and polarity during the 
interphase stage of the cell cycle98, 100, 107. Inter-
estingly, centrosome has been suggested to act as 
a signalling center by providing platform for the 
interaction of several cell cycle kinases and phos-
phatases2. Structurally, it is comprised of a core 
structure made up by two orthogonally arranged 
MT-based hollow cylinders referred as centrioles, 
which are embedded in an electron-dense pro-
teinaceous matrix known as pericentriolar mate-
rial (PCM). These centrioles are composed of 
nine triplet MTs symmetrically arranged around 
a central cartwheel-like structure. There is an 
intrinsic age-related asymmetry among the cen-
triole pair. The mature centriole is referred as the 
mother centriole and the less mature one is called 
the daughter centriole. The mother centriole also 
exhibits ultra-structural differences as compared 
to the daughter centriole, for instance distal and 
sub-distal appendages are observed only on the 
mother centriole at certain stage in the cell cycle 
of vertebrates103. In ciliated or flagellated cells, 
the distal appendages assist in the mother cen-
triole anchoring to the plasma membrane. The 
anchored mother centriole generates MT-based 

γ-tubulin complex proteins 
(GCPs): γ-tubulin-associated 
proteins involved in the 
assembly of multi-subunit 
protein complexes at minus-
ends of microtubules.

Gamma-Tubulin Small Com-
plex (γ-TuSC): It is a 300 kDa 
tetrameric sub-complex com-
prised of two molecules of 
γ-tubulin and one molecule 
of GCP 2 and 3.

Gamma-Tubulin Ring 
Complex (γ-TuRC): It is a 
major microtubule nucleating 
molecular machinery of the 
cell. The core structure is 
formed by the lateral associa-
tion of multiple γ-TuSCs with 
additional associated GCPs.
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axoneme of cilia or flagella, thereby functions as 
basal body of these cellular structures (Fig. 1)47, 88. 
The PCM was long thought to be an unorganized 
proteinaceous cloud until recently when sub-dif-
fraction light microscopy techniques successfully 
identified the concentric toroids of discrete diam-
eter around the centrioles in the PCM of cells at 
the interphase stage of cell cycle54, 65, 91. However 
during mitosis, PCM is known to expand and 
loose the organized concentric arrangement of 
proteins.

Centrosome duplicates during the cell division 
in a regulated fashion which result in arrange-
ment of a new centriole adjacent to the proximal 
wall of each parent centriole and accompanied 
with accumulation of robust PCM around them. 
At the late G1 phase of the cell cycle, the centriole 
pair present in a centrosome disengages by a pro-
cess of centriole disengagement. They move apart 
but are still tethered loosely by several proteina-
ceous tethering factors. This signals the centriole 
for duplication in the S-phase of the cell cycle. 
Each pre-existing centriole serves as a template 
for the organization of a new centriole (procen-
triole) which involves cartwheel-like assembly of 
core centriole proteins. The centrosome specific 
kinase, Polo-Like Kinase 4 (PLK4) (SAK, Dros-
ophila orthologue) is a key centrosome duplica-
tion factor. Accordingly, PLK4/SAK misregulated 
expression result in abnormal centrosome num-
ber5. Work in Caenorhabditis elegans has identi-
fied sequential recruitment of the core cartwheel 
proteins16. In C. elegans, ZYG-1 (functional 
orthologue of PLK4/SAK) requires the PCM 
protein SPD-2 (CEP192, human orthologue) for 
centriole recruitment77. ZYG-1 is involved in the 
recruitment of the centriole cartwheel hub and 
spoke protein SAS-6. SAS-6 requires another core 
protein, SAS-5 (ANA2, Drosophila orthologue; 
STIL, human orthologue) for central cartwheel 
tube formation76. The length of radial spokes 
and their association with centriole microtu-
bules is regulated by CEP135 (Bld10, Drosophila 
orthologue)33, 42 and CPAP (SAS-4, Drosophila 
and C. elegans orthologue) centriole proteins57, 

60, respectively. Depending on the cell type, the 
procentrioles elongate by MT growth to achieve 
proper organelle length. In the G2 phase of the 
cell cycle, centrosomes accumulate robust PCM 
which prepare them for spindle organization. 
These mature centrosomes also start separating 
from each other by breaking their tethering pro-
teins and move towards opposite poles of a cell in 
order to organize bipolar spindle by the M phase 
of the cell cycle22.

Centrosome forms MTs both during inter-
phase (radial astral MT organization) and mitosis 
(spindle MT apparatus)44 by orchestrating events 
involved in MT nucleation, anchoring and/or 
stabilization and release. The sub-distal append-
ages are suggested to engage in the process of MT 
nucleation by housing the γ-tubulin protein in 
their head region17. However, the outer region 
of centrosome i.e. PCM serves as a major plat-
form for several protein complexes involved in 
MT nucleation. Immuno-electron microscopic 
tomography of isolated centrosomes revealed ring 
structures in the PCM containing multiple copies 
of γ-tubulin which are involved in MT nuclea-
tion68. Further studies later identified these struc-
tures as γ-TuRCs67. Several proteins localized at 
PCM are known be required for MT nucleation 
(Fig. 2). Table 1 provides a list of some of the 
well-studied centrosome localized proteins and 
their role in microtubule organization (indicated 
in the Fig. 2). The following section provides an 
insight into the molecular mechanisms governing 
MT nucleation at the centrosome.

3.1  Mechanisms Regulating 
Centrosome‑Dependent MT 
Nucleation

During the G2 phase of the cell cycle, γTuRCs 
are accumulated at the PCM. There is growth in 
the size of PCM which is subsequently getting 
ready for the spindle organization. The process 
is referred as centrosome maturation. Hundreds 
of proteins involved in centrosome duplica-
tion and maturation have been identified by the 
mass spectrometry1 and RNAi approaches18. 
The cell-cycle kinases are involved in dynamic 
localization of PCM matrix proteins, namely 
PCNT (pericentrin), CDK5RAP2/CEP215 and 
CEP192 which recruit γ-TuRCs. In C. elegans, 
PLK-1 mediated phosphorylation of PCM local-
ized SPD-5 (functional orthologue of human 
CEP215 and Drosophila Cnn) and SPD-2 (CEP-
192 human orthologue) were shown to result into 
supramolecular scaffolds which could explain 
PCM expansion during mitosis53, 106. These PCM 
proteins and kinases exist in positive feedback 
loop for their efficient timely recruitment and 
activation as observed during the PCM expan-
sion. In humans, CEP19228 is involved in PCNT-
dependent recruitment of Aurora A and PLK143. 
During interphase, Aurora A binds to CEP192 
and gets activated by trans-autophosphorylation 
of its catalytic domain. The PLK1 phosphoryl-
ates threonine-44 residue of CEP192 via a self-
priming mechanism and this recruits PLK1 to 
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the centrosome where it is further activated by 
Aurora A–mediated phosphorylation of the acti-
vation loop. Alternatively, PLK1 could also bind 
to another site i.e. phosphorylated serine-995 of 
CEP192 which is also sufficient to recruit PLK1 at 
the centrosome. Thereafter, PLK1 further phos-
phorylates CEP192 to enhance the γ-tubulin 
recruitment capacity of CEP192-Aurora A-PLK1 
complex64. Interestingly, the centriole duplication 
protein CPAP has also been shown to be required 
for efficient PCM organization35, 46. Aurora A 
mediated phosphorylation of CPAP protein is 
required for maintaining the integrity of PCM 
during mitosis11. CPAP orthologue in Drosophila 
(SAS4) is also involved in direct interaction with 
Polo (PLK1, human orthologue)71 which sug-
gest a possible mechanism which could explain 
its role in centrosome maturation. However, in 
certain organisms, depletion of γ-tubulin does 
not completely inhibit MT nucleation function 
of PCM, thereby suggesting existence of alterna-
tive mechanisms of MT nucleation at the PCM84, 

94. Accordingly, the kinase activity of PLK1 is 
also known to be required for the recruitment 
of PCM protein CDK5RAP2/CEP215 (vertebrate 
orthologue of Drosophila CNN) at the centro-
some which offer binding site for the γ-TuRC24, 

31. However, CNN can also recruit MT-associated 
protein TACC (Transforming Acidic Coiled-
Coil) (Jiuli108 which in turn brings MT stabiliz-
ing XMAP215/ch-TOG (Colonic and hepatic 
Tumour Overexpressed Gene) protein at the cen-
trosomes possibly suggesting an alternative route 
for spindle organization26. Similarly, Aurora-A 
kinase is also known to phosphorylate MT-asso-
ciated proteins TPX2 (targeting protein for the 
Xenopus kinesin-like protein 2)52 and TACC 80 at 
the centrosomes which also influence their MT 
nucleating function.

Additionally, distinct adaptor proteins 
are involved in recruitment and activation of 
γ-TuRCs to different MTOCs, whereas certain 
adaptor proteins can function at multiple loca-
tions in a cell. For instance, NEDD1 is known 
to be involved in recruitment of γ-TuRCs to the 
centrosome and as well as to spindle MTs. The 
phosphorylation of NEDD1, increases the affin-
ity of NEDD1 to the γ-TuRC and enables the 
interaction with proteins at the PCM and spin-
dle MTs27. However, Grip71, NEDD1 homologue 
in Drosophila has been shown to be involved 
in γ-TuRC at spindles but not at centrosomes, 
thereby suggesting possible functional differ-
ences among organisms82. Non-centrosome MT 
nucleation pathways relies on Augmin (HAUS in 
mammals), a multi-protein complex. Augmin is 

comprised of eight protein subunits and mediates 
MT nucleation from the lateral surface of pre-
existing spindle MTs using NEDD1 as an adap-
tor. This mechanism amplifies the density of MT 
arrays in neurons, mitotic spindle and plant cell 
cortex. Accordingly, it is found to be a prevalent 
mechanism during the early embryonic cell divi-
sions and female meiosis in various species62, 63.

Other additional protein identified in γ-TuRC 
activation is a nucleoside diphosphate kinase, 
NME7, which is mostly expressed in tissues with 
motile cilia and in sperms. It interacts with solu-
ble inactive γ-TuRCs and also with centrosome-
bound active γ-TuRCs37, Pengfei62, 63. Recently, 
Mozart1 has been identified as an additional com-
ponent of γ-TuRC which directly interacts with 
the N-terminus of GCPs12. Its paralogue Mozart2, 
is involved in the centrosomal recruitment of 
γ-TuRCs via NEDD1 exclusively during inter-
phase97. In mammals, several other centrosome 
associated factors aid in the recruitment and acti-
vation γ-TuRCs, including pericentrin (PCNT/
kendrin)105, ninein (GSK3B-interacting protein)55, 
ninein-like protein (NLP)7, A-kinase anchoring 
(AKAP450/AKAP9/CG-NAP) protein96 and cen-
trosomal P4.1-associated protein (CPAP)81. These 
proteins associate together forming molecular scaf-
folds to cluster γ-TuRCs. It is of interest to explore 
whether all of these proteins randomly recruit 
γ-TuRCs or whether these proteins individually 
regulate the binding process. For instance, PCNT 
and AKAP450 directly interact with GCP2 and 
GCP3 and hence with γ-TuRC without the involve-
ment of NEDD196, 111. The centrosome duplicat-
ing factor, CPAP has been shown to be associated 
with the γ-tubulin in yeast-two-hybrid screening. 
Furthermore, MT destabilizing motifs have also 
been identified in CPAP36. Additional work has 
revealed that Aurora-A mediated phosphorylation 
of CPAP is required for maintaining spindle pole 
integrity11. Several proteins affecting the structural 
integrity of PCM also influence its MT nucleation 
function. For example, Lectin galactoside-binding 
soluble 3 binding protein (LGALS3BP) plays a cru-
cial role in maintenance of centriole integrity and 
biogenesis. Disrupted levels of the protein cause 
PCM dispersion with abnormal γ-tubulin recruit-
ment and defects in MT aster formation23. Simi-
larly, depletion of Centrobin, a daughter centriole 
specific protein enhances the recruitment of PCM 
proteins to the centrosome and result in abnor-
mal MT organization41. Moreover, centrosomal 
MT nucleation can also be regulated by signalling 
proteins including Protein Kinase D 3 (PKD 3)109, 
G protein-coupled receptor kinase-interacting pro-
tein 1 (GIT1), p21 protein [Cdc42/Rac]-activated 
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kinase 1 (PAK1)8 and p21-activated kinase interact-
ing exchange factor (βPIX)95 which require further 
studies to enhance the understanding of complex 
molecular networks at the centrosome.

3.2  Aberrant Centrosome‑Mediated MT 
Nucleation Cause Human Diseases

Defects in centrosome structure or number in 
animal cells is often accompanied by MT nucle-
ation and organization abnormalities. Dys-
functional MTs cause loss of cell polarity and 
cytoskeletal malformations, eventually affecting 

organelle positioning and protein cargo move-
ments. Any abnormalities in MT organization 
function of centrosomes could give rise to a wide 
range of human cancers, ciliopathies and neu-
rodevelopmental disorders.

The two centrosomes in a dividing cell gen-
erate bipolar mitotic spindle which ensure 
proper DNA segregation between the resulting 
daughter cells. Increase in the number of centro-
some which is referred as centrosome amplifica-
tion, could cause either a multipolar spindle or 
an abnormal clustering of spindle poles. Such 

Table 1: List of centrosome-localized proteins and their microtubule-associated function

* The localization of listed proteins is also indicated in Fig. 2. PCM pericentriolar material, MT microtubule

S. no Protein
Centrosome locali-
zation

Centrosome func-
tion

Centrosome-asso-
ciated microtubule 
function References

1 AKAP450/AKAP9/
CG-NAP

PCM Centrosome duplica-
tion

Microtubule nuclea-
tion via γ-TuRC

Keryer et al.45, Taka-
hashi et al.96)

2 CDK5RAP2/CEP215/
CNN

PCM Centrosome matura-
tion

Spindle organization 
via γ-TuRC and 
TACC 

Fong et al.24, 
Haren et al.31, 
Jiuli Zhang & 
Megraw108

3 Cenexin Sub-distal append-
ages

Centrosome posi-
tioning

Astral MTs length 
and Spindle 
organization

Hung et al.34

4 Centrin Distal lumen of cen-
triole/basal bodies

Centrosome duplica-
tion

MT severing Paoletti et al.75

5 Centrobin Daughter centriole Centrosome duplica-
tion and elonga-
tion

Nucleation and sta-
bilization of mitotic 
spindles

Jeffery et al.2010

6 CEP135/Bld10p Centriole-cartwheel 
protein

Centrosome elonga-
tion and PCM 
organization

Microtubule binding; 
central axoneme 
of cilia/flagella

Mottier-Pavie & 
Megraw69, Ohta 
et al.74

7 CEP192 PCM Centrosome duplica-
tion and PCM 
integrity

Spindle organization 
via γ-TuRC

Gomez-Ferreria 
et al.28, Joukov 
et al.43, Meng 
et al.64

8 CEP295 Centriole MT wall Centrosome elonga-
tion

Post-translational 
modification of 
centrosome MTs

Chang et al.10

9 γ-Tubulin PCM Centrosome matura-
tion; forms γ-TuRC

Astral and spindle 
MT nucleation

Moritz et al.67,68

10 NEDD1 PCM Centrosome duplica-
tion

γ-TuRC targeting to 
centrosome and 
spindle assembly

Haren et al.30

11 Ninein Sub-distal append-
ages

Centrosome matura-
tion

MT Nucleation Stillwell et al. 93

12 PCM-1 Centriolar-satellite 
enriched around 
centrosome (PCM)

Centrosome matura-
tion

Astral MT organiza-
tion

Dammermann & 
Merdes 14

13 Pericentrin/PLP PCM Centrosome elonga-
tion and PCM 
integrity

MT organization via 
CNN and SAS4

Lee & Rhe56, 
Richens et al.83, 
Singh et al.90

14 SAS4/CENPJ/CPAP Centriole-cartwheel 
protein

Centrosome duplica-
tion, elongation 
and maturation

MT organization via 
CNN and γ-tubulin

Ramani et al.81
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abnormalities in a dividing cell subsequently 
result in mitotic defects and genomic instabil-
ity which is often associated with wide range of 
cancers. Consequently, increased expression of a 
number of core centriole duplicating proteins like 
Polo-like kinase 4 (PLK4)58, SAS689 and STIL19 
have been observed in a wide range of cancers like 
breast, prostate, kidney, brain, liver, colorectal and 
bone9.

Not just the centrosome number, but their 
positioning also plays an important role in cor-
rect divisions of certain cell types. During the 
brain development, centrosome positioning 
with respect to cell polarity in dividing neural 
stem cells decides the spindle axis and thereby 
the segregation of cell-fate determinants among 
resulting daughter cells. During the early stages 
of neurodevelopment, positioning of the two 
centrosomes creates a spindle axis which is per-
pendicular with respect to the polarity axis of a 
neural stem cell. This results in symmetric divi-
sion and generates two daughter cells with self-
renewing capacity. However, during the later 
stages of embryonic development, centrosomes 
are positioned at an angle to the polarity axis 
which causes asymmetric division of stem cells. 
The switch to asymmetric mode of division 
results in a daughter cell with self-renewing 
capacity and another one differentiates to neu-
ron. Centrosome-related defects in these cells 
could disrupt this timely switch from symmetric 
to asymmetric division thereby affecting the pool 
of stem- and neural cells in a developing brain. In 
agreement, centrosome-related defects have been 
reported in neurodevelopmental disorders such 
as autosomal recessive primary microcephaly 
(MCPH) and seckel syndrome (SCKL)40. Patients 
with these neurodevelopmental disorders have 
small brain size, distinct morphological features 
and intellectual disability. As per OMIM (Online 
Mendelian Inheritance in Man) database, cur-
rently 8 centrosome-associated gene loci have 
been mapped in patients with MCPH and 4 cen-
trosome-associate gene loci have been mapped in 
patients with SCKL syndrome. This include sev-
eral core centriole and PCM associated genes like, 
ASPM, CDK5RAP2, CEP63, CEP135, CEP152, 
CPAP/CENPJ, SAS6, STIL, NIN and WDR6238.

In resting cells, centrosomes act as basal bod-
ies of other MT based structures like cilia (pri-
mary/non-motile or motile) and flagella which 
are involved in cell signalling and motility, respec-
tively88. Nearly all animal cells have primary cilia, 
so their dysfunction affect majority of organs 
system resulting in diverse disorders collectively 
refereed as ciliopathies. Different mutations at the 

centriole/basal body associated genes like ALSM1, 
NEK2, PLK4, OFD1 and KIA00556 which result 
in non-functional proteins have been identified 
in patients with ciliopathies38.

4  Perspective
MT organization is one of the principle functions 
of centrosomes. Centrosome proteins influence 
the stability and dynamics of MTs through vari-
ous mechanisms. The advancement in proteom-
ics has successfully identified several centrosome 
proteins that regulate MT nucleation, activation 
and stability. Despite our knowledge on diverse 
centrosome proteins associated with MT dynam-
ics, their mechanism of action is not entirely clear. 
The field will benefit from further studies provid-
ing coherent picture of molecular mechanisms 
involved in centrosome-mediated MT nucleation. 
Elucidating these mechanisms will pave ways 
towards deciphering new targets to combat dis-
eases associated with MT organization.
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