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Pigouvian Tolls and Welfare Optimality with Parallel 
Servers and Heterogeneous Customers

1 Introduction
We study service systems in which customers or 
agents can be served by any one of several het-
erogeneous servers. Customers arrive into the 
system according to a random process, reside in 
the system while being served, and then depart. 
Customers differ in their aversion to some con-
gestion-based metric such as their sojourn-time 
in the system or the number of other custom-
ers with whom they share the server. We seek to 
determine how customers may be assigned to 
servers in such a way as to optimize some social 
welfare function, and also how pricing may be 
used to incentivize selfish customers to achieve 
the same social optimum.

Examples of such systems include web server 
farms, cloud and grid computing clusters, com-
munication networks and cognitive radio sys-
tems. In these examples, customers may differ in 
the quality of service they require, and in their 
willingness to pay for it. The quality of service 
of a customer may depend on the share of band-
width or other resources it receives, or the service 
latency or the sojourn time in the system. Another 
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Abstract | Congestion externalities are a well-known phenomenon in 
transportation and communication networks, healthcare etc. Optimiza-
tion by self-interested agents in such settings typically results in equi-
libria which are sub-optimal for social welfare. Pigouvian taxes or tolls, 
which impose a user charge equal to the negative externality caused 
by the marginal user to other users, are a mechanism for combating 
this problem. In this paper, we study a non-atomic congestion game in 
which heterogeneous agents choose amongst a finite set of heterogene-
ous servers. The delay at a server is an increasing function of its load. 
Agents differ in their sensitivity to delay. We show that, while selfish opti-
misation by agents is sub-optimal for social welfare, imposing admission 
charges at the servers equal to the Pigouvian tax causes the user equi-
librium to maximize social welfare. In addition, we characterize the struc-
ture of welfare optimal and of equilibrium allocations.
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example arises in transportation, where users 
may have a choice of tolled and toll-free routes, 
or between multiple modes of transport. Further 
examples include healthcare, where patients may 
be choosing between different service providers. 
Our modeling framework is quite general in this 
regard and encompasses all the above examples.

A common feature of the above examples 
is that the more customers choose a particular 
server, the worse their individual experience. For 
example, if more drivers choose a certain road, 
the slower the flow of traffic on it (above a cer-
tain utilization) and hence the longer the journey 
time. Similarly, if more patients choose a certain 
hospital, then they may have to wait longer for 
treatment, at least in the short run, when service 
capacities cannot be changed. This is known as a 
congestion externality.

Customer preferences are captured by a cost 
function that could depend on the system occu-
pancy or sojourn time in a fairly arbitrary way. 
For example, in a transportation network, the 
cost function could be the expectation of a given 
function of the travel time, e.g., the probability 
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that the travel time exceeds a certain threshold 
value. In a communication network, it could 
be a function of the bandwidth received, or the 
latency, or a combination of the two. We allow 
for customer heterogeneity by applying a suit-
able multiplier to the congestion cost. We call this 
multiplier its delay-sensitivity (but emphasise 
that congestion costs can take account of factors 
other than delay).

We do not constrain service policies except to 
insist that they be non-discriminatory and agnos-
tic of customer characteristics. Thus, for instance, 
one server may adopt a first-come first-served 
(FCFS) policy while another splits its capacity 
equally amongst all its customers (processor-
sharing or PS). Servers may charge a fixed admis-
sion price to each customer choosing that server; 
these can be different between servers but must 
be the same for each customer. In particular, 
servers cannot charge for priority or preferential 
treatment.

Customers choose a server so as to optimize 
their individual expected utility, i.e., to minimize 
the sum of the admission price and the expected 
congestion cost (weighted by their own delay-
sensitivity). As the congestion cost depends on 
the choices of other customers, the interaction 
between them constitutes a game. The payoff 
structure makes this a congestion game21,27. We 
assume in addition that customers are infinitesi-
mal, i.e., that the impact of a marginal customer 
on the congestion cost at any server is negligible. 
This assumption renders the congestion game 
non-atomic. Nash equilibria in non-atomic 
congestion games are also known as Wardrop 
equilibria, from their origins in transportation 
networks32; see (Nisan et al. 23, Chapter 18) for an 
overview of congestion games.

The goal of this paper is to study the social 
cost, i.e., the sum of congestion costs incurred by 
different customers weighted by their sensitivity 
to congestion, of a Wardrop equilibrium. In par-
ticular, we want to know if admission prices can 
be set in such a way as to ensure that the social 
cost at equilibrium is the minimum achiev-
able by a central planner who could assign cus-
tomers to servers. We answer this question in 
the affirmative. One set of such prices admit an 
interpretation as Pigouvian taxes associated with 
congestion externalities at the servers. While the 
welfare optimality of Pigouvian taxes is known in 
general, our contribution in this paper is to show 
that these depend only on the server, and not on 
the customer type. In other words, all customers 
using the same server are charged the same levy 

(which may depend on the mix of customer types 
choosing that particular server). 

A second contribution of the paper is a char-
acterisation of the structure of socially optimal 
allocations and of Wardrop equilibria. Specifi-
cally, we show that in an optimal allocation, the 
server with the smallest congestion cost serves the 
most delay-sensitive customers, the one with the 
next smallest congestion cost serves the next most 
sensitive set of customers, and so on. We show 
that, for arbitrary admission prices at the serv-
ers, Wardrop equilibria have the same structure. 
Furthermore, the higher the admission price at a 
server, the lower its congestion cost (among serv-
ers that are utilized by some customer).

We survey some related work in the remain-
der of this section, before presenting a formal 
statement of the model and problem in the next, 
and stating our main results. Proofs are presented 
in the following section, and we conclude with a 
discussion of limitations of the current work and 
some open problems.

1.1  Related Work
The notion of a congestion externality was first 
formalized by Pigou25, who proposed the use 
of a charge or levy to internalize the congestion 
externality in transportation networks, thereby 
guiding the system to a social optimum. Such 
charges are known as Pigouvian taxes and have 
since been studied in a wide variety of contexts 
including queueing systems8,18, transportation 
networks30,33, matching markets15 and climate 
change20. While much of the work on Pigou-
vian taxes focuses on achieving socially optimal 
levels of consumption of a good associated with 
externalities, the work in this paper is most rel-
evant when demand is inelastic (i.e., the quan-
tity of demand does not depend on the price), 
but there is a choice between substitutes which 
generate different externalities. This is the case 
in many queueing and transportation applica-
tions. Secondly, our work considers heterogene-
ous agents, with different delay-sensitivites. In 
the following, we refer to them as multiclass cus-
tomers, with “class” being used as a synonym for 
“delay-sensitivity”.

There is a substantial literature on the alloca-
tion of multi-class customers to parallel queues 
in both centralized and decentralized settings, 
including a variety of pricing schemes and game-
theoretic formulations. Much of this work looks 
at specific cost functions arising from those 
models, whereas we consider a more general and 
abstract formulation. Below, we describe some 
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of the work more closely related to the approach 
taken in this paper and delineate these from the 
results we present. We use Kendall’s notation for 
queueing models, which we now briefly describe. 
A queue is described by a triple X/Y/n, where X 
describes the arrival process, Y the job size dis-
tribution, and n the number of servers. Com-
mon choices for X are M, denoting Markovian 
and referring to a Poisson arrival process, and 
G, denoting “general” and referring to an arrival 
process in which the inter-arrival times are inde-
pendent and identically distributed (i.i.d.), but 
with a general distribution. (Some authors pre-
fer GI to emphasise the assumption of independ-
ence.) Common choices for Y are M, denoting 
Markovian and referring to job sizes with an 
exponential distribution, G, denoting i.i.d. job 
sizes with a general distribution, and D, denot-
ing fixed, deterministic job sizes. If the service 
discipline is not the default FCFS discipline, it 
is added to the notation. Thus, for example, an 
M/G/1− LCFS queue has Poisson arrivals, i.i.d. 
job sizes with a general distribution, and a sin-
gle server which adopts a last-come-first-served 
policy.

There are several works that study the use 
admission prices to reduce congestion. Naor22, 
Edelson and Hilderbrand10 and Littlechild18 stud-
ied M/M/1 queues with identical customers who 
must choose between paying an admission price 
to enter the queue, incurring a random delay and 
receiving a fixed reward for service, or balking 
(i.e., leaving without being served). Admission 
prices are set by an operator who seeks to maxi-
mize revenue. If customers can observe the queue 
length on arrival and base their balking decision 
on it, then the revenue-maximizing admission 
price exceeds the one that maximizes social wel-
fare22. However, if customers cannot observe the 
queue but must base their decision on only the 
known arrival and service rates, then these two 
admission prices coincide10,18. In the latter set-
ting, Littlechild18 obtained the admission fee as a 
Pigouvian tax and showed that this will induce a 
socially optimal arrival rate. Bradford8 extended 
the results to multiclass customers, each with 
their own delay cost function and reward for ser-
vice, and obtains the Pigouvian admission charge 
for each class that achieves the socially optimal 
allocation. The admission charge is independent 
of the queue from which the customer receives 
service but depends on its class, which means 
that the system needs to elicit information of the 
customer class. In contrast, admission charges in 
our model are calculated for each queue but are 
agnostic of the customer class.

The equilibrium allocation of customers 
in multiqueue systems was studied by Bell and 
Stidham5, and Haviv and Roughgarden14. Both 
works focused on homogeneous customers, i.e., 
a single customer class. Bell and Stidham5 stud-
ied a set of parallel M/G/1 queues which differ in 
their holding cost per unit time and in their mean 
service time. They established structural proper-
ties of a socially optimal allocation as well as of 
Wardrop equilibria. Restricting their attention to 
parallel M/M/1 queues, Haviv and Roughgarden14 
obtained an upper bound on the price of anar-
chy (PoA), defined as the ratio of the total cost 
at the Wardrop equilibrium to that at the social 
optimum. In comparison, we consider multiclass 
customer populations and general cost functions.

Borst7 studied the probabilistic allocation of 
multiclass traffic to parallel M/G/1 queues so as to 
minimize a specific social cost function, namely 
the total mean waiting cost per unit of time. He 
established a structural property of the optimal 
allocation. The structure we obtain for the opti-
mal allocation is essentially the same, but our 
results apply to a very general class of queueing 
models and cost functions; we also do not restrict 
to finitely many customer classes. In addition, we 
consider a game-theoretic setting of selfish opti-
mization and determine a pricing mechanism 
that will achieve social optimality with selfish 
optimization.

Sethuraman and Squillante29 considered a 
variant of this problem where, in addition to 
optimal routing, servers decide the order in 
which customers in a queue are served, depend-
ing on their class, so as to optimise social welfare. 
An alternative approach is to allow customers to 
purchase priorities2,3,17,19,26; a comprehensive sur-
vey of these and other similar models is presented 
by Hassin and Haviv13. Our work differs in that 
we do not allow servers to discriminate between 
customers, as a consequence of which they do not 
need to elicit information about customer class. 
This may be more realistic in certain applications.

A number of works have studied specific 
applications in which pricing is used to achieve 
service differentiation by incentivising end users 
to segregate themselves on the basis of their will-
ingness to pay for higher quality or lower delay. 
In particular, there is a substantial body of work 
proposing charging for differentiated services 
(Diffserv) in the Internet, and studying the result-
ing user strategies and equilibria; see6,9,16,24, for 
example. Additional examples include queues31 
and transport networks34. There has also been 
work on models in which prices are dynamically 
adapted in response to observed demands12; it 
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is shown that if prices adapt sufficiently slowly, 
then the system converges to a Nash equilibrium. 
Finally, while the work presented in this paper 
focuses on parallel queues, there has been consid-
erable work on general networks; see Roughgar-
den28 for a detailed discussion of selfish routing 
and the PoA, and Fleischer et al.11 for the analysis 
of equilibria in a very general network model.

2 �Model�and Results
Consider a system with N parallel channels for 
service, which we refer to as servers or queues. 
Customers arrive into the system according to 
a marked Poisson process with intensity η × F  ; 
here, η denotes the arrival rate, and F the distri-
bution of the arriving customer’s class or delay-
sensitivity. The only assumption we make about 
the distribution F is that its support is bounded 
away from zero and infinity, i.e., that there are 
constants βmin > 0 and βmax < ∞ such that 
F(x) = 0 for all x < βmin , and F(βmax) = 1 . 
Arriving customers must either select or be 
allocated to one of the queues upon arrival. We 
assume that the allocation has to be made with no 
knowledge of current or past queue occupancies, 
or past arrival times or routing decisions. Such an 
assumption may be less realistic for centralized 
allocation than when customers make individual 
decisions. Nevertheless, imposing this assump-
tion uniformly permits clearer comparison of the 
two settings. The structure of Wardrop equilib-
ria can be very different if queue occupancies are 
known, and requires a separate analysis, which is 
a topic for future research. In general, providing 
additional information can make the Wardrop 
equilibrium worse for all agents1!

Under the assumption that queue occupancies 
are unknown, it is natural to restrict attention 
to Markovian policies, which route customers to 
queues according to some fixed probability vec-
tor that may depend on the customer’s class, but 
not on history. (If queue occupancies are known, 
policies are Markovian with respect to a larger 
state space which includes that information.) 
We assume that customers of all classes have the 
same job size distributions, and that, once they 
join a queue, they are treated identically within 
it. Consequently, we assume that the congestion 
cost associated with a queue depends only on the 
aggregate arrival rate into that queue (and its ser-
vice capacity and policies), but not on the com-
position of those arrivals. We make this precise 
below.

Let η denote the Borel measure on 
[0,βmax] ⊂ R+ defined on intervals by

In other words, the measure of an interval (a, b] 
is defined as the total arrival rate of custom-
ers whose class lies in this interval. As usual, the 
measures of all Borel sets are determined by those 
of intervals. All measures in this paper are non-
negative, finite Borel measures.

Now, Markovian routing corresponds to a 
decomposition of the measure η as

where �j is a measure on [βmin,βmax] for each 
j = 1, . . . ,N  ; arrivals into the jth queue of cus-
tomers with classes in (a, b] constitute a Pois-
son process of rate �j((a, b]) . We denote the total 
arrival rate into the jth queue, and the mean 
delay-senstivity of arrivals into this queue, by

respectively.
Next, we associate with each queue j a cost 

function Dj(·) which specifies the congestion 
cost generated by a given aggregate arrival rate; 
thus, Dj(�) is the congestion cost incurred by 
each customer when the arrival rate into queue j 
is � . The cost could be the mean sojourn time, or 
some higher moment of it, or the probability of 
the sojourn time exceeding a specified threshold. 
Our only assumption is that each function Dj be 
monotone increasing, continuous, and continu-
ously differentiable in the interior of its domain 
(the set of arrival rates for which Dj is finite), 
with strictly positive derivative. In particular, we 
assume that the domain of each Dj is either R+ or 
an interval of the form [0, a), and that in the lat-
ter case, limx↑a Dj(x) = +∞.

The assumptions above are rather mild. We 
do not restrict the number of servers at a queue 
or the service discipline. Indeed, different queues 
may have different numbers of servers and 
employ different service disciplines. They can also 
be associated with different cost functions, for 
example the mean sojourn time at one queue and 
the second moment at another. The only require-
ment is that each queue treat all customers alike, 
irrespective of their class. In addition to tradi-
tional queueing models, our set-up also encom-
passes transportation models, where the mean 
journey time on a road may be some increasing 
function of the traffic intensity on it. The main 

(1)η((a, b]) = η(F(b)− F(a)).

(2)η = �1 + . . .+ �N ,

(3)

�j = �j([βmin,βmax]) and �j =

∫ βmax

βmin

βd�j(β),
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motivation for the assumption of Poisson arrivals 
is that it makes each Dj a function of a single real 
variable. It is not obvious how the monotonicity 
and differentiability assumptions would general-
ize if Dj were to be a function of the law of a sto-
chastic process.

We are now ready to state the social welfare 
maximization problem. The objective is

Thus, the social cost is defined as the sum of the 
expected costs incurred by customers of different 
classes at different queues, weighted by the corre-
sponding flow rates.

Our first result states that, if the social cost 
minimization problem is feasible, then it has a 
solution, i.e., the minimum is attained.

Lemma 1 Let η be a finite measure with bounded 
support. Suppose that the cost functions Dj , 
j = 1, . . . ,N  , satisfy the assumptions stated above. 
If the optimization problem in (4) is feasible, i.e., 
there is some decomposition (�1, . . . , �N ) of η such 
that Dj(�j) is finite for all j = 1, . . . ,N  , then (4) 
has a solution (�∗1, . . . , �

∗
N ).

Next, we consider the formulation of a game 
between customers. Here, we allow the queues to 
charge admission prices, denoted by cj at queue 
j. The goal of a class β customer entering the 
system is to choose a queue j so as to minimize 
cj + βDj(�j) where �j is determined through the 
strategies of all customers. We assume that the 
arrival intensity measure η and the cost functions 
Dj(·) , j = 1, . . . ,N  are common knowledge. As 
we assumed that customers do not have access 
to current or past queue occupancies, or the his-
tory of arrival times or routing choices, they are 
necessarily restricted to choosing a server accord-
ing to a fixed probability distribution, albeit 
one that may depend on their class. Thus, once 
again, the joint strategies may be represented by 
a decomposition of the measure η into measures 
�1, . . . , �N . We want to know when such a decom-
position corresponds to a Wardrop equilibrium 
of the game.

The condition for a decomposition 
(�1, . . . , �N ) of η to be a Wardrop equilibrium is 
that

(4)

inf
�1,...,�N

U(�1, . . . , �N ) =

N
∑

j=1

�jDj(�j),

subject to �1 + · · · + �N = η.

where supp (η) denotes the support of the meas-
ure η , namely the smallest closed set F such that 
η(Fc) = 0 . Here, Fc denotes the complement 
of F. The condition in (5) roughly says that, if 
a positive mass of customers of class β , or in an 
arbitrarily small neighbourhood of it, use queue 
j, then the expected cost of a class β customer in 
that queue must be no higher than its expected 
cost in any other queue.

The existence of a Wardrop equilibrium can 
be shown by looking at an auxiliary optimiza-
tion problem, following Beckmann et al.4 in the 
single-class setting, and Yang and Huang34 in the 
multiclass setting with a finite number of classes. 
Consider the optimization problem

The existence of a solution follows by Lemma 1. It 
can easily be shown that any solution satisfies (5), 
which are essentially first-order conditions for 
optimality in the auxiliary problem. We include a 
formal statement and proof for completeness.

Lemma 2 The infimum in the optimization 
problem (6) is attained. Moreover, any minimizer 
(�W1 , . . . , �WN ) is a Wardrop equilibrium, i.e., it sat-
isfies the condition in (5).

A natural mechanism designA question is 
whether we can set admission prices in such a 
way that selfish users reacting to these prices 
would assign themselves to queues in the propor-
tions required for optimizing social welfare. Our 
main result affirms that this is indeed the case if 
admission prices are set equal to Pigouvian taxes 
corresponding to a welfare-optimal allocation.

Theorem 1 Let (�∗1, . . . , �
∗
N ) be a solution of 

the social cost minimization problem, (4). Set the 
admission price cj at queue j to be

(5)
cj + βDj(�j) ≤ ck + βDk(�k)

∀ j, k = 1, . . . ,N , and β ∈ supp (�j),

(6)

inf Û(�1 . . . , �N )

=

N
∑

j=1

(

∫

�j

0
Dj(x)dx + cj

∫ βmax

βmin

1

α
d�j(α)

)

,

subject to �1 + · · · + �N = η.

A Mechanism design deals with the problem of achieving 
desired social choice objectives by designing the rules of the 
game such that the socially desirable outcome is a Nash equi-
librium of the game; see23 for further details.
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where D′
j denotes the derivative of Dj.

Then, (�∗1, . . . , �
∗
N ) is a Wardrop equilibrium, 

i.e., it satisfies (5) with these admission prices.
Notice that cj given in (7) is precisely the 

total negative externality imposed on existing 
customers at this queue by the admission of a 
marginal customer, and is hence the Pigouvian 
toll for this queue.

We now turn to the question of computing 
the optimal decomposition of a given measure 
η . If we can compute the optimal allocation, 
then we can also compute the corresponding 
Pigouvian taxes. Note that we start by assuming 
that the measure η is given. In practice, one of 
the major challenges of implementing Pigou-
vian taxes is eliciting utility functions; in our 
context, that corresponds to eliciting the true 
delay sensitivities β of different agents. Getting 
agents to truthfully reveal their preferences is a 
major challenge in mechanism design, and one 
which we do not address in this paper. Instead, 
we restrict ourselves to computing the optimal 
allocation given the true distribution of delay 
sensitivities.

The constraint on (�1, . . . , �N ) in the opti-
mization problem (4) is linear, and so the set of 
measures satisfying the constraint is convex. If 
the cost function 

∑N
j=1 �jDj(�j) were a convex 

function of (�1, . . . , �N ) , then the optimization 
problem would be convex, and could be solved 
using gradient descent methods. Unfortunately, 
this is not necessarily the case, as illustrated by 
the following counterexample.

Consider a system with two classes of cus-
tomers and two M/M/1 queues. Class i custom-
ers arrive according to a Poisson process of rate 
ηi and have delay sensitivity βi . Thus, the arrival 
intensity measure is η = η1δβ1 + η2δβ2 , where δx 
denotes the Dirac delta which puts unit mass at 
x. The job sizes for both classes are assumed to 
be i.i.d. exponential random variables with unit 
mean. Both servers have a unit service rate. We 
assume that η1 + η2 < 1 , so that all allocations 
are feasible.

Recall that the mean delay in an M/M/1 
queue with arrival rate � and service rate 1 is 
1/(1− �) . Hence, the (class-weighted) conges-
tion cost corresponding to a decomposition 
(�1, �2) of η is given by

(7)cj = �
∗
j D

′
j(�

∗
j ),

U(�1, �2) =
�1

1− �1
+

�2

1− �2
.

The constraint that �1 and �2 are non-negative 
and decompose η is equivalent to the constraints 
that �1 + �2 = η1 + η2 , �1 + �2 = β1η1 + β2η2 , 
and that they are all non-negative. Thus, the 
welfare optimization problem (4) can be rewrit-
ten as

We now have the following negative result.

Lemma 3 The optimization problem in (8) is not 
convex.

In view of the above lemma, it is not obvi-
ous how to numerically compute socially opti-
mal allocations in general. Nevertheless, we show 
below that both socially optimal allocations and 
Wardrop equilibria possess nice structural prop-
erties. These might suggest efficient algorithms 
for finding optima and equilibria in the model 
studied here.

Theorem 2 Let (�∗1, . . . , �
∗
N ) achieve the mini-

mum in (4). Suppose i and j are distinct queues, 
β2 > β1 ≥ 0 , and

Then Di(�
∗
i ) > Dj(�

∗
j ). This inequality also holds if 

�
∗
i = 0 and �∗j > 0.

The theorem says that if some of the custom-
ers served at queue j have higher delay sensitiv-
ity than some of the customers served at queue 
i (where “some” is to be interpreted as “a set of 
positive measure”), then the congestion cost at 
queue j must be smaller. Moreover, any queue 
which serves no customers (or a set of measure 
zero) must have larger congestion cost than any 
queue which serves some customers. The theo-
rem implies that the queues segregate traffic by 
class as follows:

Corollary 1 Suppose (�∗1, . . . , �
∗
N ) solves 

the optimization problem (4). Re-order 
the queues (permute their labels) such that 
D1(�

∗
1) ≥ D2(�

∗
2) ≥ . . . ≥ DN (�

∗
N ) . Then, there 

exist 0 = β0 ≤ β1 ≤ . . . ≤ βN = βmax such that 
supp (�∗j ) ⊆ [βj−1,βj] for all j = 1, . . . ,N .

The corollary says that customers are almost 
segregated by class, i.e., that each queue serves a 

(8)

inf U(�1, �1, �2, �2) =
�1

1− �1
+

�2

1− �2
,

subject to �1 + �2 = η1 + η2,

�1 + �2 = β1η1 + β2η2,

�1, �1, �2, �2 ≥ 0.

�
∗
j ([β2,∞)) > 0 and �

∗
i ([0,β1]) > 0.
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set of customer classes that is nearly disjoint from 
those served in other queues. By nearly disjoint, 
we mean that the customer classes served at dis-
tinct queues constitute intervals (closed, open 
or neither), which may only intersect at their 
boundaries. If the measure η has atoms (e.g., if 
there are only finitely many classes), then it is 
possible that customers belonging to some of 
these atoms are split across two or more queues. 
In routing terms, this would imply probabilistic 
routing to the corresponding queues. Secondly, 
the congestion costs at the queues are ordered 
such that more delay-sensitive customers incur 
smaller delays. Note that we are not claiming that 
queues with smaller delays have faster servers. 
Indeed, all servers may be identical, or the servers 
in less congested queues may even be slower! The 
differentiation in congestion costs is an emer-
gent property of the optimal solution rather than 
a consequence of intrinsic differences between 
servers.

Next, we consider the same model, augmented 
with admission prices. Without loss of general-
ity, we take c1 < c2 < · · · < cN ; if ci = cj , then we 
can collapse these two queues into a single queue 
whose delay function is the inf-convolution of the 
delay functions of its constituent queues, i.e.,

Each customer seeks to join a queue that mini-
mizes the sum of the admission price, which is 
common to all classes, and the expected conges-
tion cost, which is weighted by its own delay-
sensitivity. We wrote down conditions in (5) for 
a decomposition of the arrival intensity measure 
η to be a Wardrop equilibrium. We now show that 
any Wardrop equilibrium has the same struc-
ture that we demonstrated above for a social 
optimum.

Theorem 3 Suppose (�W1 , . . . , �WN ) satisfies the 
conditions in (5), i.e., is a Wardrop equilibrium. 
Suppose i and j are distinct queues, β2 > β1 ≥ 0 , 
and

Then cj > ci.
The theorem says that if some of the custom-

ers served at queue j have higher delay sensitiv-
ity than some of the customers served at queue 
i, then the admission price at queue j must be 
larger. Whereas the social optimum does not use 
queues whose congestion cost at zero load is too 

D(�) = inf{Di(�i)+ Dj(�j) :

�i, �j ≥ 0, �i + �j = �}.

�
W
j ([β2,∞)) > 0 and �

W
i ([0,β1]) > 0.

high, a queue could remain unused in a Wardrop 
equilibrium either because its congestion cost at 
zero load is too high, or because its admission 
price is too high, or a combination of the two. 
The theorem implies that the queues segregate 
traffic by class as follows:

Corollary 2 Suppose (�W1 , . . . , �WN ) sat-
isfy the conditions in (5), with admission 
prices c1 < c2 < · · · < cN . Then, there exist 
0 = β0 ≤ β1 ≤ . . . ≤ βN = βmax such that 
supp (�Wj ) ⊆ [βj−1,βj] for all j = 1, . . . ,N .

An important difference with the social opti-
mum is that the ordering of queues by congestion 
cost at the social optimum is not obvious a priori. 
Hence, we do not know which queue will serve 
more delay-sensitive customers and which will 
serve less delay sensitive ones. On the other hand, 
at a Wardrop equilibrium, queues which charge 
a higher admission price (and are not idle) will 
serve more delay-sensitive customes than ones 
which charge a lower admission price.

3 �Proofs
We now present proofs of the various results 
stated in the previous section.

Proof of Lemma 1 It is well-known that the set of 
sub-probability measures on R+ is compact in the 
weak topology. Hence, so too is the set of meas-
ures � on R+ such that � ≤ η , where � = �(R+) , 
and η = η(R+) < ∞ . By Tychonoff ’s theorem, 
the set {(�1, . . . , �N ) : �i ≤ η ∀ i = 1, . . . ,N } 
is compact in the product topology. Next, 
the map (�1, . . . , �N )  → �1 + · · · + �N is 
continuous in this topology, and so the set 
{(�1, . . . , �N ) : �1 + . . .+ �N = η} is closed. As it 
is a closed subset of a compact set, it is compact.

Let βmax = sup{ supp (η)} . Then βmax is 
finite by assumption. Hence, the support of �j is 
also restricted to [0,βmax] for all j, and the maps 
�j  → �j are continuous in the weak topology; so, 
too, are the maps �j  → �j . even without requiring 
bounded support. Finally, since the optimization 
problem (4) is feasible, we can restrict the mini-
mization to a set of (�1, . . . , �N ) on which U is 
bounded; in particular, each �j is in the domain of 
Dj(·) . On this set, U is continuous in the product 
topology. Thus, (4) involves the minimization of 
a continuous function over a compact set. There-
fore, the minimum is attained. �
Proof of Lemma 2 The constrained optimization 
problem (6) seeks the minimum of a continuous 
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function over a compact set; this follows along 
the same lines as the proof of Lemma 1. Hence, a 
minimizer exists.

Let �W = (�W1 , . . . , �WN ) be one such mini-
mizer. Suppose by way of contradiction that it is 
not a Wardrop equilibirum, i.e., that it does not sat-
isfy (5). Then, there exist queues j and k such that

By definition of the support, for any δ > 0 , there 
is an ǫ > 0 such that �Wj ((β − δ,β + δ) = ǫ . We 
now define a new decomposition of η which cor-
responds to shifting the mass in (β − δ,β + δ) 
from queue j to queue k. More formally, denote 
the restriction of a measure µ to a set A by µ|A . 
Define µ = �

W
j |(β−δ,β+δ) . For ǫ ∈ (0, 1) , define

Clearly, νǫi  , i = 1, . . . ,N  are non-negative meas-
ures and decompose η , for any ǫ ∈ (0, 1) . We see 
from (6) that

By (9), the quantity in the last line above is nega-
tive, for small enough δ and ǫ . This contradicts 
the optimality of �W  . The lemma is proved by 
contradiction. �

Proof of Theorem 1 The proof is by contradic-
tion. Suppose �∗ = (�∗1, . . . , �

∗
N ) solves the welfare 

optimization problem, (4), and that the admis-
sion prices cj are set equal to the correspond-
ing Pigouvian taxes, defined in (7). Suppose 
that (�∗1, . . . , �

∗
N ) do not satisfy (5), i.e., are not a 

Wardrop equilibrium for these prices. Then, there 
exist queues j and k such that

(9)
cj + βDj(�

W
j ) > ck + βDk(�

W
k )

for some β ∈ supp (�Wj ).

ν
ǫ
i =







�
W
i , i �= j, k

�
W
j − ǫµβ ,δ , i = j,

�
W
k + ǫµβ ,δ , i = k .

Û(νǫ)− Û(�W )

=

∫

�
W
k +ǫµ

�
W
k

Dk(x)dx −

∫

�
W
j

�
W
j −ǫµ

Dj(x)dx

+ ǫ

∫ β+δ

β−δ

ck − cj

α
dµ(α)

=
(

Dk(�
W
k )− Dj(�

W
j )+

ck − cj

β

)

µǫ + o(ǫ)+ O(δǫ).

(10)
cj + βDj(�

∗
j ) > ck + βDk(�

∗
k)

for some β ∈ supp (�∗j ).

By definition of the support, for any δ > 0 , there 
is an ǫ > 0 such that �∗j ((β − δ,β + δ) = ǫ . We 
now define a new decomposition of η which cor-
responds to shifting the mass in (β − δ,β + δ) 
from queue j to queue k. Denoting the restriction 
of a measure µ to a set A by µ|A , we define

Clearly, �β ,δi  , i = 1, . . . ,N  are non-negative meas-
ures, and decompose η . We see from (4) that

Substituting the expression for the Pigouvian 
taxes cj and ck from (7) in the above, we get

If we let δ decrease to zero, then so does ǫ , 
and the last two terms in the expression 
above are negligible compared to the first. 
Hence, it follows from the above and (10) that 
U(�

β ,δ
1 , . . . , �

β ,δ
N )− U(�∗1, . . . , �

∗
N ) < 0 for δ suffi-

ciently small. This contradicts the assumed opti-
mality of (�∗1, . . . , �

∗
N ).

We have thus shown by contradiction that the 
conditions, (5), for a Wardrop equilibrium must 
be satisfied at a socially optimal allocation when 

�
β ,δ
i =







�
∗
i , i �= j, k
�
∗
j − �

∗
j |(β−δ,β+δ), i = j,

�
∗
k + �

∗
j |(β−δ,β+δ), i = k .

U(�β ,δ)− U(�∗)

= �
β ,δ

j Dj(�
β ,δ
j )+ �

β ,δ

k Dk (�
β ,δ

k )

− �
∗
j Dj(�

∗
j )− �

∗
kDk (�

∗
k )

=

(

�
∗
j − βǫ + O(δǫ)

)(

Dj(�
∗
j )− ǫD′

j(�
∗
j )+ o(ǫ)

)

− �
∗
j Dj(�

∗
j )

+

(

�
∗
k + βǫ + O(δǫ)

)(

Dk (�
∗
k )+ ǫD′

k (�
∗
k )+ o(ǫ)

)

− �
∗
kDk (�

∗
k )

= ǫ

(

βDk (�
∗
k )+ �

∗
kD

′
k (�

∗
k )− βDj(�

∗
j )− �

∗
j D

′
j(�

∗
j )

)

+ O(δǫ)+ o(ǫ).

U(�β ,δ)− U(�∗) =ǫ
(

ck + βDk(�
∗
k)− cj − βDj(�

∗
j )
)

+ O(δǫ)+ o(ǫ).
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the admission prices are given by Pigouvian taxes. 
�

Proof of Lemma 3 The proof is an exercise 
in calculus. The set of (�1, �1, �2, �2) satisfy-
ing the constraints in (8) is convex. A neces-
sary condition for the objective function to 
be convex on the feasible set is that the Hes-
sian of U be positive semi-definite on the sub-
space {(x1, x2, x3, x4) : x1 + x3 = 0, x2 + x4 = 0} 
of feasible deviations, at each feasible point 
(�1, �1, �2, �2).

Denoting the Hessian by [D2U ] , we consider 
the quadratic form

where we have used the fact that x1 = −x3 and 
x2 = −x4 on the subspace of interest to obtain 
the second equality. Now, it is is clear that the 
expression above can be made negative by 
choosing x1 and x2 non-zero and of opposite 
signs, and x1 sufficiently small in absolute value.

In other words, the quadratic form is not 
always non-negative, i.e., the Hessian is not pos-
itive semi-definite on the subspace of interest. 
Therefore, the objective function U is not con-
vex on the feasible set. �

Proof of Theorem 2 Let �∗ = (�∗1, . . . , �
∗
N ) solve 

(4), and let i, j, β1 and β2 be as in the statement 
of the theorem. We shall prove the theorem by 
contradiction.

Suppose first that �
∗
i > 0 and that 

Di(�
∗
i ) < Dj(�

∗
j ) . We shall show that shifting a 

small mass of customer from queue j to queue i 
and an equal mass from i to j reduces the social 
cost, contradicting the optimality of �∗ . Let µi 
and µj be measures such that

It is clear from the assumptions that such meas-
ures exist. Since βj > βi , we also have µj > µi.

Consider the measures �̃ defined as follows:

(x1, x2, x3, x4)[D
2U(�1, �1, �2, �2)](x1, x2, x3, x4)

T

=
2�1x

2
1

(1− �1)3
+

2x1x2

(1− �1)2
+

2�2x
2
3

(1− �2)3
+

2x3x4

(1− �2)2

=

(

2�1

(1− �1)3
+

2�2

(1− �2)3

)

x21

+

(

2

(1− �1)2
+

2

(1− �2)2

)

x1x2,

µi ≤ �i, µj ≤ �j , µi = µj > 0,

supp (µi) ⊆ [0,βi], supp (µj) ⊆ [βj ,∞).

Then, �̃k = �
∗
k for all k, since equal masses are 

swapped between queues i and j while flows 
into all other queues are unchanged. Hence, 
the congestion costs Dk at all queues remain 
unchanged. Thus, we get

since µj > µi as noted, while Di(�
∗
i ) < Dj(�

∗
j ) by 

assumption. But this contradicts the optimality 
of �∗ . Thus, we cannot have Di(�

∗
i ) < Dj(�

∗
j ) and 

�
∗
i > 0.

Suppose next that �
∗
i > 0 and 

Di(�
∗
i ) = Dj(�

∗
j ) . Let �̃ be as above, and define

Then, for all α ∈ [0, 1] , �αi = �
∗
i  and �αj = �

∗
j  , so 

Di(�
α
i ) = Di(�

∗
i ) = Dj(�

∗
j ) = Dj(�

α
j ) . Hence, 

U(�α) = U(�∗) , which implies that (�α1 , . . . , �
α
N ) 

solve the welfare optimization problem, (4), for 
every α ∈ [0, 1].

Now, for α ∈ (0, 1) , and small enough |ǫ| , 
define the measures να,ǫk  , k = 1, . . . ,N  , by

If |ǫ| is sufficiently small, depending on α , then 
these are non-negative measures. We now have

For U(�α) to be a global minimum, the coefficient 
of ǫ in the above expression must be zero. Thus,

But �αk = �
∗
k for all α ∈ [0, 1] and k = 1, . . . ,N  . 

Combining this with the fact that Di(�
∗
i ) = Dj(�

∗
j ) 

by assumption, we can rewrite the last equation as

Now, �
α

i  is strictly increasing in α and �
α

j  is strictly 
decreasing, as �α is obtained by swapping a 

�̃k =







�
∗
k , k �= i, j,
�
∗
i + µj − µi, k = i,

�
∗
j − µj + µi, k = j.

U(�̃)− U(�∗) = (µj − µi)

(

Di(�
∗
i )− Dj(�

∗
j )

)

< 0,

�
α = α�̃+ (1− α)�∗, α ∈ [0, 1].

ν
α,ǫ
k =







�
α
k , k �= i, j,
�
α
i + ǫµj , k = i,

�
α
j − ǫµj , k = j.

U(να,ǫ)− U(�α)

= ν
α,ǫ
i Di(ν

α,ǫ
i )+ ν

α,ǫ
j Dj(ν

α,ǫ
j )

− �
α

i Di(�
α
i )− �

α

j Dj(�
α
j )

= ǫ

(

µjDi(�
α
i )+ µj�

α

i D
′
i(�

α
i )

−µjDj(�
α
j )− µj�

α

j D
′
j(�

α
j )

)

+ o(ǫ).

µj

(

�
α

i D
′
i(�

α
i )− �

α

j D
′
j(�

α
j )

)

= µj(Dj(�
α
j )− Di(�

α
i )).

(11)µj

(

�
α

i D
′
i(�

∗
i )− �

α

j D
′
j(�

∗
j )

)

= 0.
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volume of more delay-sensitive traffic in queue j 
for an equal volume of less delay-sensitive traffic 
in queue i, and these volumes are increasing in α . 
Moreover, D′

i(�
∗
i ) and D′

j(�
∗
j ) are strictly positive, 

and hence non-zero, by assumption. It follows 
that (11) cannot hold for all α ∈ (0, 1) , or even 
for two distinct values of α.

Thus, we have shown by contradiction that we 
cannot have �∗i > 0 and Di(�

∗
i ) = Dj(�

∗
j ) . It only 

remains to consider the possibility that �∗i = 0 . 
Let µj be as above. Fix ǫ > 0 sufficiently small, 
and define the measures νǫ as follows:

Then, we have

Since D′
j(�

∗
j ) > 0 , the above quantity is nega-

tive, contradicting the optimality of �∗ , unless 
Di(0) > Dj(�

∗
j ) . This completes the proof of the 

theorem. �

Proof of Corollary 1 Suppose the corollary is 
false. Then, there is a solution �∗ = (�∗1, . . . , �

∗
N ) 

of (4), and queues i and j, such that 
Di(�

∗
i ) ≥ Dj(�

∗
j ) but queue i also serves a non-

zero mass of customers who are more delay-
sensitive than some of the customers served in 
queue j. More precisely, there exist β2 > β1 such 
that �∗i ([β2,∞)) > 0 and �∗j ([0,β1]) > 0 . But this 
contradicts Theorem 2. �

Proof of Theorem 3 Suppose �W = (�W1 , . . . , �WN ) 
satisfies the conditions in (5). Suppose i and j are 
distinct queues and β2 > β1 ≥ 0 are such that

Pick β ≤ β1 ∈ supp (�Wi ) and 
γ ≥ β2 ∈ supp (�Wj ) . We have by (5) that

It follows from these inequalities that 
(γ − β)(Di(�

W
i )− Dj(�

W
j ) ≤ 0 . Since γ > β , it 

follows that Di(�
W
i ) ≥ Dj(�

W
j ) . Substituting this 

in (12), we obtain that ci ≤ cj . As it was assumed 
that admission prices are all distinct, we have 
ci > cj , as claimed. �

ν
ǫ
k =







�
∗
k , k �= i, j,

ǫµj , k = i,

�
∗
j − ǫµj , k = j.

U(ν)− U(�∗) = ǫµj(Di(0)− Dj(�
∗
j ))

− ǫµj�
∗
j D

′
j(�

∗
j )+ o(ǫ).

�
W
j ([β2,∞)) > 0 and �

W
i ([0,β1]) > 0.

(12)
ci + βDi(�

W
i ) ≤ cj + βDj(�

W
j ),

cj + γDj(�
W
j ) ≤ ci + γDi(�

W
i ).

Proof of Corollary 2 Consider two queues i and 
j. Suppose β1 ∈ supp (�Wi ) , β2 ∈ supp (�Wj ) and 
β1 < β2 . Then, there is a δ > 0 sufficiently small 
that

Hence, by Theorem 3, cj > ci , i.e., j > i . This 
proves the corollary. �

4 �Summary�and Discussion
We considered a very general model of multiple 
parallel queues serving a heterogeneous customer 
population, and studied the problem of rout-
ing customers to queues so as to maximize social 
welfare. We characterized certain structural prop-
erties of the welfare-optimizing allocation. We 
also considered selfish routing decisions made 
by individual customers when the queues charge 
admission prices, and characterized the structure 
of Wardrop equilibria. Finally, we showed that, if 
the admission prices at the queues are set equal 
to the congestion externalities at a socially opti-
mal allocation, then the social optimum coincides 
with a Wardrop equilibrium.

The setting we studied was very general, and 
encompassed a variety of applications with con-
gestion externalities. Nevertheless, some of the 
assumptions are restrictive. We model customer 
heterogeneity by applying different multipli-
ers to a common measure of congestion cost at 
each queue. But it might be the case that some 
customers care about mean delay, while others 
care about the probability of exceeding a certain 
threshold. In that case, no multiplier on the con-
gestion cost would be appropriate for capturing 
this diversity. Another restrictive assumption is 
that customers may differ in delay sensitivity, but 
not in the distribution of the workload they bring 
into the system. Indeed, this is why Pigouvian 
tolls depend on the queue, but not on the cus-
tomer class. If this assumption were relaxed, the 
externality imposed by a customer would depend 
on its workload, and hence on its class; this would 
need to be taken into account in setting Pigou-
vian tolls.

We briefly discussed the difficulty of deter-
mining the optimal allocation. We showed that 
the optimization problem is non-convex, but did 
not prove that it is hard. The structural proper-
ties of the optimal allocation that we established 
do not resolve this question, as the optimal order-
ing of the queues is unknown. Even if the opti-
mal ordering were given, it is not entirely obvious 

�
W
j ([β2 − δ,∞)) > 0, �

W
i ([0,β1 + δ]) > 0,

β − δ > β1 + δ.
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that the thresholds can be computed efficiently. 
Likewise, the computational complexity of deter-
mining the Wardrop equilibria is also unknown. 
Note that the ordering of queues in this case is 
determined by the given prices. Thus, one open 
problem for future research is developing efficient 
algorithms for these problems, or proving that 
they are hard.

A second question concerns the infor-
mational constraints on the model. We have 
assumed that the arrival intensity measure is 
known, and available as input to determining a 
socially optimal allocation or setting admission 
prices. In practice, this information is unlikely 
to be available, but needs to be inferred from 
observation. If a customer’s delay sensitivity 
is revealed upon arrival, then the arrival dis-
tribution can easily be measured. But eliciting 
delay sensitivities truthfully can be a challenge 
in practice. It is an open question whether it is 
still possible to set admission prices in such a 
way as to ensure that the Wardrop equilibrium 
either coincides with the welfare optimizing 
allocation,or approximates it to within some 
factor.

Finally, we have assumed that a benevolent 
mechanism designer sets admission prices to 
maximize social welfare; it is interesting to ask 
what happens if the admission prices are set by 
a revenue maximizing service provider. Further, 
in such a revenue maximizing scenario it would 
be interesting to see if competing service pro-
viders can sustain differentiated services.
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