
1 3J. Indian Inst. Sci. | VOL 101:3 | 443–453 July 2021 | journal.iisc.ernet.in

Hyperedge Prediction Using Tensor Eigenvalue
Decomposition

1 Introduction
Link prediction is the study of predicting the
existence of an edge between two nodes in a
graph. This problem has found its application
in various domains such as bioinformatics18, 22,
social networks27, and recommender systems12.
Most of existing heuristic approaches like com-
mon neighbours3, Jaccard index16, Adamic-
Adar35, PageRank6 are limited to modelling
pairwise interactions only.

Relationships among nodes can be more com-
plex than simple pairwise associations. Hyper-
graphs relax this assumption of pairwise
interaction and provide the freedom to model the
interaction among k nodes. Such networks com-
monly occur in social networks7,15, metabolic
networks32, recommender systems17, 28 and multi-
actor collaboration25.

Most of the recent works on hyperedge pre-
diction13, 30, 32 utilize the approach of clique
expansion to reduce the hypergraph to a graph1,

Hypergraph: A generaliza-
tion of a graph in which an
edge can join any number of
vertices.

Super-dyadic: A group of any
number (> 2) of entities.

Dyadic: A group of exactly
two entities.

Clique: A subset of the
vertices in a graph, such that
every two distinct vertices are
adjacent.

Deepak Maurya* and Balaraman Ravindran

J. Indian Inst. Sci.
A Multidisciplinary Reviews Journal

ISSN: 0970-4140 Coden-JIISAD

Abstract | Link prediction in graphs is studied by modeling the dyadic
interactions among two nodes. The relationships can be more complex
than simple dyadic interactions and could require the user to model
super-dyadic associations among nodes. Such interactions can be mod-
eled using a hypergraph, which is a generalization of a graph where a
hyperedge can connect more than two nodes. In this work, we consider
the problem of hyperedge prediction in a k-uniform hypergraph. We uti-
lize the tensor-based representation of hypergraphs and propose a novel
interpretation of the tensor eigenvectors. This is further used to propose
a hyperedge prediction algorithm. The proposed algorithm utilizes the
Fiedler eigenvector computed using tensor eigenvalue decomposition of
hypergraph Laplacian. The Fiedler eigenvector is used to evaluate the
construction cost of new hyperedges, which is further utilized to deter-
mine the most probable hyperedges to be constructed. The functioning
and efficacy of the proposed method are illustrated using some example
hypergraphs and a few real datasets. The code for the proposed method
is available on https:// github. com/d- maurya/ hypred_ tenso rEVD.
Keywords: Hypergraphs, Spectral hypergraph theory, Hyperedge prediction, Tensor eigenvalue
decomposition

R
EV

IE
W

A

R
T

IC
LE

followed by applying standard graph algorithms34
or recently proposed approach modeling triadic
simplicial closure4. We believe this step of hyper-
graph reduction to a graph restricts the user to
model some weighted form of dyadic interaction
rather than the intended super-dyadic interac-
tions among nodes. This can be argued by the fact
that the expression for scalar Laplacian objective
function minimized for the estimation of Fiedler
vector (eigenvector corresponding to minimum
positive eigenvalue) contains only bi-linear terms
instead of higher order polynomials. This article
emphasis on the use of higher order polynomials
to capture the complex interactions among the
nodes in a hypergraph.

The availability of vast literature, theoretical
guarantees, and scalable algorithms for graphs are
the main reasons for adopting hypergraph reduc-
tion methods9. There is significant loss of infor-
mation about the hypergraph structure caused
by this reduction step. For example, two entirely

© Indian Institute of Science 2021.

1 Computer Science
and Engineering
Department, Robert
Bosch Centre for Data
Science and AI, Indian
Institute of Technology
Madras, Chennai, India.
*maurya@cse.iitm.ac.in

https://github.com/d-maurya/hypred_tensorEVD
http://crossmark.crossref.org/dialog/?doi=10.1007/s41745-021-00225-5&domain=pdf

444

D. Maurya, B. Ravindran

1 3 J. Indian Inst. Sci.| VOL 101:3 | 443–453 July 2021 | journal.iisc.ernet.in

different hypergraphs can reduce to same graph
after the reduction step. We have given example
for such cases later. This observation clearly dem-
onstrates that the unique information about two
different hypergraphs is lost after the hypergraph
reduction step.

In this work, we approach the problem of
hyperlink prediction without performing any
reduction. For this purpose, we prefer to utilize
the tensor-based representation of hypergraphs24
rather than the usual matrix based notation
widely accepted in machine learning commu-
nity33. The tensor-based representation provides
us the freedom to model the super-dyadic inter-
actions among nodes. The proposed algorithm in
this work is highly motivated from spectral graph
theory with appropriate modifications.

The widely accepted framework for link pre-
diction using spectral graph theory framework
comprises of computing the similarity metric
between two nodes27. The similarity measure is
defined as a function of embeddings of two
nodes, which can be derived from the graph
Laplacian29. We attempt to utilize the same
approach for hypergraphs by computing the
eigenvectors of hypergraph Laplacian tensor but
we encountered several challenges. To name a
few, the eigenvectors of a real symmetric tensor
are not orthogonal, which is contrary to the case
of real symmetric matrices. The number of eigen-
vectors for a symmetric tensor is not fixed, unlike
the simple case of symmetric matrices. The tensor
eigenvectors cannot be trivially interpreted.

Despite various existing challenges, we pur-
sue the tensor-based representation of hyper-
graphs due to the strong motivation developed
from some of the recent intriguing results found
in spectral hypergraph theory using tensor rep-
resentation. For example, Hu et al.10 proved that
the algebraic multiplicity of zero eigenvalue of a
symmetric tensor is equal to the sum of the num-
ber of even-bipartite connected components and
number of connected components, minus the
number of singletons in the corresponding hyper-
graph. This information couldn’t be revealed from
the clique reduction methods and its variants1.

In this work, we present a novel approach to
interpret the tensor eigenvectors. This helps us
to define the construction cost for new poten-
tial hyperedges in a given hypergraph. The next
step in the proposed algorithm is to prefer the
prediction of hyperedges with minimum con-
struction cost. In the perspective of spectral
hypergraph theory, the key idea of the proposed
algorithm can also be perceived as the inclusion
of new hyperedges such that there is minimal

Tensor: A multi-dimensional
array.

perturbation in the “smoothness” of the hyper-
graph. In spectral graph theory, the “smoothness”
of the graph is characterized by the Fiedler eigen-
value8. The same analogy is utilized in this work
also. The code for the proposed method can be
accessed fromA

The rest of the paper is organized as follows.
We introduce the matrix and tensor-based nota-
tion of hypergraphs in Sect. 3. We also discuss
the merits of tensor-based notation in this sec-
tion. The proposed algorithm for hyperedge pre-
diction is described in Sect. 4. The functioning
and fruitful merits of the proposed algorithm is
demonstrated in Sect. 5 using small synthetic and
real hypergraphs. Concluding remarks and future
directions of this work are discussed in Sect. 6.

Notations: A scalar is denoted by lowercase
alphabet x, a vector by bold face x , a matrix by
bold face uppercase alphabet X and a tensor by
italics uppercase alphabet X . The subscript a over
a vector such as xa indicates the dimension, and
for a tensor Xa , it denotes the mode of a tensor,
which is defined later.

2 �Preliminaries
In this section, we discuss the matrix and tensor-
based representation of hypergraphs briefly.

A hypergraph G is formally defined as a
pair of G = (V ,E) , where V = {v1, v2, . . . , vn}
is the set of entities called vertices or nodes and
E = {e1, e2, . . . , em} is a set of non-empty sub-
sets of V referred as hyperedges. In general,
E ∈ P(V)\{φ} for a non-uniform hypergraph,
where P(V) is the power set of V. In this article,
we focus on k-uniform hypergraphs, and hence
E is restricted to a subset of all the

(n
k

)

 combina-
tions of elements from V, where n = |V | . The
strength of interaction among nodes in the same
hyperedge is quantified by the positive weight
represented by we = {we1 ,we2 , . . . ,wem} . The
vertex-edge incidence matrix is denoted by H and
has the dimension |V | × |E| . The entry h(i, j) is
defined as:

The degree of node vi is defined by
d(vi) =

∑

ej∈E wejh(i, j) . D is a diagonal matrix
with D(i, i) = d(vi).

(1)h(i, j) =
{

1 if vi ∈ ej
0 otherwise.

A https:// github. com/d- maurya/ hypred_ tenso rEVD.

https://github.com/d-maurya/hypred_tensorEVD

445

Hyperedge Prediction Using Tensor Eigenvalue Decomposition

1 3J. Indian Inst. Sci. | VOL 101:3 | 443–453 July 2021 | journal.iisc.ernet.in

2.1 Matrix Representation
It should be noted that there is no loss of infor-
mation about the hypergraph structure in the
incidence matrix representation. This could also
be perceived as the existence of unique mapping
(up to certain reordering) between given hyper-
graph G(V, E) and its incidence matrix H.

Most of the machine learning algorithms for
classification, partitioning of graphs, and link pre-
diction operates on the adjacency matrix rather
than incidence matrix. The adjacency matrix for
an undirected graph is symmetric and its entries
A(i, j) is defined as:

where wij indicates the weight of the edge. It can
be inferred that the entry (i, j) denotes the exist-
ence of an edge.

Agarwal et al.1 define the adjacency matrix for
the reduced hypergraphs as follows:

It should be noticed that most of the reduction
methods are a non-unique mapping from hyper-
graph to adjacency matrix. It means that there
could be distinct hypergraphs which reduce to
the same graph. For example, the clique reduction
approach reduces the four-uniform hypergraph
and the three-uniform hypergraph to the same
graph as shown in Fig. 1.

This non-uniqueness property of hypergraph
reduction method plays a very crucial role in the
task of hyperedge prediction. The reduced hyper-
graph has lost the information about the original
hypergraph structure. So there is no assurance
of any analysis on reduced hypergraph to deliver
correct results for the original hypergraph. To

(2)A(i, j) =
{

wij if {vi, vj} ∈ E
0 otherwise,

(3)Ar = HWH
T −D.

avoid the loss of information in the reduction
step, we utilize the tensor-based representation of
hypergraphs discussed in the next section.

2.2 Tensor‑Based Representation
The entry A(i, j) in adjacency matrix for a graph
denotes the strength of interaction between the
nodes i and j. Similarly, for a hyperedge with 3
nodes, a 3-dimensional tensor is required to rep-
resent the strength of interaction among 3 nodes.
This idea can be further generalized to represent
k-uniform hypergraphs.

Therefore, a natural representation of hyper-
graphs is a k-order n-dimensional tensor A24,
which consists of nk entries

The entries of above tensor is defined as:

It should be noted that A is a “super-symmetric”
tensor i.e., for any permutation of the indices, A
contains the same value:

where σ(i1, i2, . . . ik) denotes any permutation of
the elements in the set {i1, i2, . . . , ik} . The order
or mode of tensor refer to hyperedge cardinality,
which is k for A . The degree of a vertex vi is given
by

The particular factor of 1/(k − 1)! is chosen while
defining the adjacency tensor in (5) so that the
node degree can be defined appropriately in the
graph theoretic sense. One could also think as the
generalization for the case of graphs (k = 2).

The degree of all the vertices can be repre-
sented by k-order n-dimensional diagonal tensor
D:

The Laplacian tensor L is defined as follows :

The elements of Laplacian tensor L are described
by

(4)
A =

(

ai1i2...ik

)

, ai1i2...ik
∈ R, 1 ≤ i1, . . . , ik ≤ n

(5)
ai1i2...ik =

{

wej
1

(k−1)! if
(

i1, i2, . . . , ik
)

= {ej} ej ∈ E

0 otherwise.

ai1i2...ik = aσ(i1i2...ik),

(6)d(vi) =
n

∑

ik=1

. . .

n
∑

i3=1

n
∑

i2=1

aii2i3...ik .

(7)di1i2...ik =
{

d(vi) if i1 = i2 · · · = ik = i
0 otherwise

(8)L = D −A.

Figure 1: Two hypergraphs reducing to same
graph.

446

D. Maurya, B. Ravindran

1 3 J. Indian Inst. Sci.| VOL 101:3 | 443–453 July 2021 | journal.iisc.ernet.in

Normalized hypergraph Laplacian tensor2 denoted
by L , is defined:

One of the standard approaches in spectral graph
theory is to perform spectral decomposition of the
graph Laplacian for link prediction. Proceeding
along similar lines, we evaluate the eigenvectors of
Laplacian tensor24:

where (�, x) ∈ (R,Rn\{0}n) is called the Z-eigen-
pair and Lxk−1 ∈ R

n , whose ith component is
defined as

The above equations arises from the following opti-
mization problem:

The eigenvector with minimum positive � satisfy-
ing (11) is termed as Fiedler eigenvector and can be
computed using

The corresponding eigenvalue can be computed as
�⋆ = Lvk⋆.

Illustrative Example: A simple example illus-
trating the procedure to construct the adjacency
and Laplacian tensor for a 4-uniform hypergraph
has been presented. Consider a 4-uniform hyper-
graph G(V, E) as shown below:

where the set of vertices and hyperedges are
defined by

(9)

li1i2...ik =











−wej
1

(k−1)! if (i1, i2, . . . , ik) ∈ {ej}, j ∈ [m]
d(vi) if i1 = i2 · · · = ik = i

0 otherwise.

(10)ℓi1i2...ik =











−wej
1

(k−1)!
�k

ij=1
1

k
�

dij

if (i1, i2, . . . , ik) ∈ {ej}, j ∈ [m]

1 if i1 = i2 · · · = ik = i
0 otherwise.

(11)
Lx

k−1 = �x

x
T
x = 1,

(12)

[

Lx
k−1

]

i
=

n
∑

ik=1

. . .

n
∑

i3=1

n
∑

i2=1

lii2i3...ik xi2xi3 . . . xik .

(13)

min
x

Lx
k =

n
∑

ik=1

. . .

n
∑

i2=1

n
∑

i1=1

li1i2...ik xi1xi2 . . . xik

such that x
T
x = 1.

(14)

v⋆ = argmin
x

Lx
k > 0

s. t Lx
k = �x

x
T
x = 1.

The adjacency tensor for the above hypergraph is
denoted by A and has dimensions 5× 5× 5× 5 .
It should be noted that the cardinality (k) of all 3
hyperedges is 4 . The elements of A are denoted

by ai1,i2,i3,i4 , where 1 ≤ ik ≤ 5 . It should be
noted that A contains nk = 54 elements but only
m× k! = 3× 4! = 72 elements have non-zero
entries. The elements corresponding to first hyper-
edge are described by

where c = 1
(k−1)! =

1
6 . The vertex degrees can be

stored in a tensor of dimension 5× 5× 5× 5 with
its diagonal elements being d(v) =

[

2 3 3 2 2
]

 .
The tensor Laplacian has dimension of
5× 5× 5× 5 and its entries can be obtained using
(9), which are found to be

This example shows the procedure to construct
the adjacency and Laplacian tensor for any k-uni-
form hypergraph.

3 �Proposed�Method�for Hyperedge�
Prediction

In this section, we propose the hyperedge predic-
tion algorithm using spectral decomposition for
tensors. We have already discussed the tensor-
based representation of hypergraphs in Sect. 3.

The proposed framework derives the cost of
each potential hyperedge and prefers to choose
the hyperedges with minimum cost. The cost of
creating a hyperedge is calculated from the Fie-
dler eigenvector of the Laplacian tensor defined
in (14). Hence, we present the following theorem
for the expression of hypergraph (tensor) Lapla-
cian objective function used for the computation
of tensor eigenvectors.

V = {v1, v2, v3, v4, v5}
E = {{v1, v2, v3, v4}, {v2, v3, v4, v5}, {v1, v2, v3, v5}}.

a1234 =a1243 = a1324 = a1342 = a1423 = a1432

=a2134 = a2143 = a2314 = a2341 = a2413 = a2431

=a3214 = a3241 = a3124 = a3142 = a3421 = a3412

=a4231 = a4213 = a4321 = a4312 = a4123 = a4132 = c,

(15)
li1i2i3i4 =







− 1
6

if (i1, i2, i3, i4) = {ej}, j = {1, 2, 3}
d(vi) if i1 = i2 = i3 = i4 = i

0 otherwise.

447

Hyperedge Prediction Using Tensor Eigenvalue Decomposition

1 3J. Indian Inst. Sci. | VOL 101:3 | 443–453 July 2021 | journal.iisc.ernet.in

Theorem 1 The hypergraph Laplacian cost func-
tion for a k-uniform hypergraph can be expressed
as

where ns = |{ij : xij < 0}|, A.M and G.M stand
for the arithmetic and geometric means, respec-
tively. We refer lej as the cost for hyperedge ej in
rest of the paper.

Proof Please refer Theorem 8 in Maurya
et al.20.

Using Theorem 1, the computation of Lxk
can be done in O(|E|) steps which would have
been O(|V |k) for any general tensor.

Illustrative Example: Through this exam-
ple, we demonstrate the use of Theorem 1 in
the computation of tensor Laplacian. We also
unveil the challenges involved in working with
tensor eigenvectors—for example, the non-
orthogonality of tensor eigenvectors. Consider
the hypergraph shown in Fig. 2. The hypergraph
Laplacian cost function for this hypergraph can
be derived using (16):

(16)

Lx
k =

�

ej∈E
lej (x)

lej (x) = wej





�

ik∈ej

xkik − k
�

ik∈ej

xik





= wej k



A.M
�

xkik

�

ij∈ej

− G.M
�

|xik |
k
�

ij∈ej

(−1)ns



,

(17)

Lx
k = x41 + x42 + x43 + x44 − 4x1x2x3x4

+ x41 + x42 + x43 + x45 − 4x1x2x3x5

+ x42 + x43 + x44 + x45 − 4x2x3x4x5.

The 4th order homogeneous polynomial is the
objective function the optimization problem
mentioned in (13). This is required for the com-
putation of the eigenvalues and eigenvectors
of L . We further discuss the properties of zero
eigenvalues and zero eigenvectors of Laplacian
tensor.

Lemma 2 One of the Z-eigenpair of L is (0, v),
where v = 1√

n
(1, 1, . . . , 1) ∈ R

n.

ProofPlease refer Banerjee et al.2: Theo-
rem 3.13 (iv). �

It should be noted that
√
n is just a scaling

factor in v to ensure vTv = 1 . One could also
consider unity vector as eigenvector with eigen-
value 0.

Lemma 3 The number of zero eigenvalues of the
graph Laplacian indicates the number of connected
components8.

The above property does not hold for hyper-
graphs. It means that a fully connected hyper-
graph can have multiple zero eigenvalues10. We
also make the same observation in this example
as explained below.

It is observed that the tensor Laplacian
for hypergraph H4 shown in Fig. 2 has 2 zero
eigenvalues and the distinct eigenvectors are as
follows:

This illustrates that the eigenvalues could be zero
even if the eigenvector is not unity vector, con-
trary to graphs. This is surprising because there is
only one connected component, but there are two
zero eigenvalues.

This observation can be explained by comput-
ing the cost of each hyperedge using (16) for the
eigenvectors stated above. It is observed that the
cost of all the three hyperedges is zero for both
the eigenvectors. As a result of which, the eigen-
value is zero. Another distinguishable property
is that the eigenvectors are not orthogonal unlike
the case of graphs (having real symmetric Lapla-
cian matrix).

We have just discussed the use of hyperedge
cost from eigenvectors corresponding to zero
eigenvalues. We extend the similar discussion
on hyperedge score computed from the Fiedler
eigenvalue and eigenvector.

(18)V =
1
√
5











1 − 1
1 1
1 1
1 − 1
1 − 1











.

v2

v5

v3
v4

v1

Figure 2: H4: 4-uniform.

448

D. Maurya, B. Ravindran

1 3 J. Indian Inst. Sci.| VOL 101:3 | 443–453 July 2021 | journal.iisc.ernet.in

Illustrative Example: In this example, we
demonstrate a novel interpretation of tensor
eigenvectors.

Consider the 3-uniform hypergraph shown
in Fig. 3. The Laplacian tensor can be easily con-
structed using (9). The next step is to compute
the Fiedler eigenvalues and eigenvectors satisfy-
ing (11). It is observed that there are four Fiedler
vectors with the eigenvalue of 0.0569 as reported
below:

We compute the cost of each hyperedge denoted
by lej (x) in (16) using Fiedler vectors and tabulate
in Table 1.

The sum of all the hyperedge cost or each col-
umn of Table 1 is 0.0569. It can be noticed that
the hyperedges among densely connected have
less cost as compared to others. For example,
hyperedge {1, 2, 3} has less cost as compared to
the hyperedge {4, 5, 6}.

Such hyperedges with relatively smaller cost
can be termed as “smooth” hyperedge because

(19)V =

























−0.05 0.06 0.47 0.47
0.03 0.03 0.46 0.46
0.06 −0.05 0.47 0.47
0.23 0.23 0.42 0.42
0.34 0.34 0.34 0.34
0.42 0.42 0.23 0.23
0.47 0.47 −0.05 0.06
0.46 0.46 0.03 0.03
0.47 0.47 0.06 −0.05

























.

they contain nodes which are densely connected
by other hyperedges. For example, nodes 6 and
8 in Fig. 3 are connected by 3 hyperedges. Ide-
ally, the new hyperedge should be constructed
among the nodes which are densely connected
by other hyperedges. It is observed that the cost
for such hyperedges is smaller compared to other
hyperedges. So, we propose a hyperedge predic-
tion algorithm which promotes the construction
of hyperedges with minimal cost. The proposed
algorithm is summarized in Table 2.

In this section, we proposed a novel hyperedge
prediction algorithm using the spectral frame-
work. In the next section, the working and effi-
cacy of the proposed method are demonstrated
using simple toy examples and real hypergraphs.

4 �Experiments
We consider simple hypergraphs with interesting
structural properties to validate the functioning
of the proposed algorithm in Sect. 5.1 and real
hypergraphs later on.

4.1 Synthetic Hypergraph: Example 1
We consider a 3-uniform symmetrical hyper-
graph with nine nodes and seven hyperedges
shown in Fig. 3. The task is to predict the best
new set of hyperedges to be formed from all the
potential set of hyperedges.

We construct the tensor Laplacian and com-
pute the eigenvalues and eigenvectors, as stated
in the proposed algorithm described in Table 2.
We arrive at four Fiedler eigenvectors men-
tioned in (19) with same eigenvalue of 0.0569.

All the above eigenvectors are then used for
computing the cost of each potential hyper-
edges. To predict the best set of new hyperedges,
all the potential hyperedges are considered.
As there are 9 nodes, one could have

(9
3

)

= 84 .
Seven hyperedges are further removed as they
already exist in the hypergraph, which leaves
us with 84 − 7 = 77 potential hyperedges. The
cost for each of these potential 77 hyperedges
is computed using each of the 4 eigenvectors
mentioned in (19). The next step is to rank these
potential hyperedges based on the increasing
order of their formation cost.

It is observed that the cost computed from
the first two eigenvectors [first two columns of
V in (19)] are the same. The same holds for the
other two eigenvectors. So, the preferential rank
of new hyperedge formation from these two
sets of eigenvectors is also same. Due to space

v1 v2

v3

v4

v5

v6

v7 v8

v9

Figure 3: H5: 3-uniform hypergraph.

Table 1: Hyperedge cost for Fig. 3.

Hyperedges v1 v2 v3 v4

{1, 2, 3} 0.0004 0.0004 0 0

{1, 2, 4} 0.0127 0.0111 0.0025 0.0025

{2, 3, 4} 0.0111 0.0127 0.0025 0.0025

{4, 5, 6} 0.0278 0.0278 0.0278 0.0278

{6, 7, 8} 0.0025 0.0025 0.0127 0.0111

{7, 8, 9} 0 0 0.0004 0.0004

{6, 8, 9} 0.0025 0.0025 0.0111 0.0127

449

Hyperedge Prediction Using Tensor Eigenvalue Decomposition

1 3J. Indian Inst. Sci. | VOL 101:3 | 443–453 July 2021 | journal.iisc.ernet.in

constraints, only 10 hyperedges with minimal
formation cost are mentioned in Table 3.

The cost of new hyperedges can also be cal-
culated from the eigenvectors of normalized
tensor Laplacian defined in (10). The same
analysis can be performed using the normalized
tensor Laplacian defined in to favor all nodes
equally with respect to their degree distribution.
The construction cost of new hyperedges using
the eigenvectors of normalized tensor Laplacian
is reported in Table 4.

Following observations can be made from
Tables 3 and 4:

1. The most obvious hyperedge to be formed
for this hypergraph is {1, 3, 4} and {6, 7, 9} .
This can also be seen as nodes 1, 2, 3, 4 are
densely connected with other hyperedges.
So, the only remaining hyperedge among
the four possible hyperedges is {1, 3, 4} . The
same study holds for the hyperedge {6, 7, 9}.

 The most probable hyperedges are predicted
by the proposed algorithm as it has mini-
mum construction cost mentioned in first
row of Tables 3 and 4.

 This trivial task of predicting the most prob-
able hyperedge helps to validate the func-
tioning of the proposed algorithm.

2. It can be observed that the most prob-
able hyperedge is {1, 3, 4} and {6, 7, 9} using
unnormalized and normalized Laplacian.
However, the second best hyperedge is dif-
ferent. The probable hyperedge for unnor-
malized Laplacian is {2, 4, 5} while it is
{2, 3, 5} for the normalized case. In both
cases, nodes 2 and 5 are present. Note that,
node three is given more preference in the
normalized case as compared to node 4. This
behavior is expected because the significance
of nodes with a smaller degree will enhance
after normalization compared to the unnor-
malized case. Thus, this observation encour-
ages the use of normalized Laplacian for
hypergraphs having high variance in the
degree distribution.29 also establishes a
similar preference for using normalized or
unnormalized Laplacian in case of graphs.

Table 2: Hyperedge prediction algorithm.

1. Construct the unnormalized or normalized tensor Laplacian as shown in (9) or (10) respectively.

2. Compute the Fiedler eigenpair (�⋆ , v⋆) using (14).

3. For a given set of potential hyperedges Ep , compute the construction cost using (16) and the Fiedler
eigenvector computed in previous step. The same can be stated as cl = {lej (v⋆)|ej ∈ Ep}.

4. Prefer the construction of hyperedges with minimal construction cost.

Table 3: Cost of new hyperedges using unnor-
malized Laplacian.

Hyperedges1 Hyperedges2 Cost

{6, 7, 9} {1, 3, 4} 0.0028

{5, 6, 8} {2, 4, 5} 0.0139

{1, 3, 4} {6, 7, 9} 0.0142

{5, 6, 7} {1, 4, 5} 0.0152

{5, 6, 9} {3, 4, 5} 0.0152

{5, 8, 9} {1, 2, 5} 0.0195

{5, 7, 8} {2, 3, 5} 0.0195

{5, 7, 9} {1, 3, 5} 0.0205

{3, 4, 5} {5, 6, 9} 0.0365

{1, 4, 5} {3, 5, 6} 0.0379

Table 4: Cost of new hyperedges using normal-
ized Laplacian.

Hyperedges1 Hyperedges2 Cost

{6, 7, 9} {1, 3, 4} 3.3× 10−4

{2, 3, 5} {5, 8, 9} 0.0142

{1, 2, 5} {5, 7, 8} 0.0160

{1, 3, 5} {5, 7, 9} 0.0172

{1, 3, 4} {6, 7, 9} 0.0173

{3, 4, 5} {5, 6, 9} 0.0197

{2, 4, 5} {5, 6, 8} 0.0254

{4, 5, 7} {1, 5, 6} 0.0375

{4, 5, 9} {3, 5, 6} 0.0375

{1, 4, 5} {5, 6, 7} 0.0386

450

D. Maurya, B. Ravindran

1 3 J. Indian Inst. Sci.| VOL 101:3 | 443–453 July 2021 | journal.iisc.ernet.in

4.1.1  Eigenvectors of Tensor vs. Matrix
Representation

Most of the existing methods using matrix rep-
resentation model the dyadic interaction among
nodes only and further predict the hyperedges of
cardinality greater than 2. To manifest the effec-
tiveness of tensor eigenvectors, we propose a
slight variation of the proposed algorithm.

One of the crucial steps of the proposed algo-
rithm (in Table 2) is the computation of tensor
eigenvectors which captures super-dyadic inter-
actions. To demonstrate the importance of this
step, we replace it with the computation of eigen-
vectors of graph Laplacian (matrix) derived from
hypergraph reduction using (3). All the other
steps in the algorithm remain the same.

The construction cost of new hyperedges
derived from the Fiedler eigenvector of reduced
hypergraph is shown in Table 5.

It can be easily stated that the above results
are not as expected and do not capture the
interaction among three nodes. This can be jus-
tified theoretically as the Laplacian cost func-
tion is a second order homogeneous polynomial
modeling dyadic interaction only whereas the
tensor-based Laplacian cost function is a third
order homogeneous polynomial capturing the
super-dyadic interactions.

In this example, we investigated various fea-
tures of the proposed algorithm such as

1. Deriving preferential order of new hyper-
edges.

2. Behaviour of normalized and unnormalized
Laplacian.

3. Effectiveness of the tensor eigenvectors in
capturing the super-dyadic interactions.

4.2 Real Hypergraphs
In this subsection, we analyze the performance
of the proposed algorithm on real hypergraphs.
We first describe the datasets, baselines, and then
the experimental settings used to evaluate these
hyperedge prediction baselines.

4.2.1  Datasets
We consider five datasets with varying number
of nodes and hyperedges from different domain.
We have mentioned the size of largest of con-
nected component consisting hyperedges of car-
dinality 3 in Table 6. Please note that we have
performed the experiments and shown results

for 3-uniform hypergraphs for simplicity but
the proposed approach can be applied to any k
hypergraph.

These datasets were constructed in following
manner:

1. uchoice Bakery: Nodes represent the items
in bakery and hyperedges are constructed
among the items bought together.

2. uchoice Walmart Dept: Nodes represent the
“department” of an item in the shop and a
hyperedge is constructed among the depart-
ment whose items were co-bought.

3. Contact-primary school and contact-high
school: Nodes are people in the correspond-
ing school and hyperedges are constructed
among the people if they interacted with
each other in interval of 20 s. The interaction
was recorded by a wearable sensor.

4. NDC-substances: The data is taken from US
National Drug Code (NDC), where a hyper-
edge denotes a drug and the nodes represent
the substances used in that drug.

We further briefly discuss the existing hyperedge
prediction approaches.

4.2.2  Baselines
We consider some of the most widely used
hyperedge prediction baselines in this subsec-
tion. Every method tries to construct a “similar-
ity score” of the potential hyperedge by its model.
A large similarity score of a potential hyperedge
indicates that it is more likely to be formed as
compared to potential hyperedges with low sim-
ilarity score. This similarity score is used to as a

Table 5: Cost of new hyperedges using normal-
ized Laplacian of reduced hypergraph.

Hyperedges1 Cost

{1, 5, 7} 0

{1, 5, 9} 0

{2, 5, 8} 0

{3, 5, 7} 0

{3, 5, 9} 0

{2, 5, 9} 0.0038

{2, 5, 7} 0.0038

{1, 5, 8} 0.0038

{3, 5, 8} 0.0038

{6, 7, 9} 0.0217

451

Hyperedge Prediction Using Tensor Eigenvalue Decomposition

1 3J. Indian Inst. Sci. | VOL 101:3 | 443–453 July 2021 | journal.iisc.ernet.in

proxy to predict the new hyperedges. Hence, we
discuss the approach in which each of the follow-
ing baselines construct that similarity score:

1. Common neighbours (CN)21: For a potential
hyperedge, the similarity score is the sum
of number of common neighbours of two
nodes taken at a time in the given hyper-
graph. It should be noted that similarity
score is computed using the local informa-
tion in this approach.

2. Katz11: The similarity score is computed
based on the global information using
the paths connecting the two nodes. For a
hyperedge with m nodes, we consider all the
possible k(k − 1)/2 pairs of nodes.

3. HPRA13: This is a recently proposed algo-
rithm which computes the similarity score
by extending the use of resource allocation
approach18,35 from graphs to hypergraphs.
This method also proposes a modified
hypergraph reduction method which pre-
serves the node degrees of original hyper-
graph in the resulting graph14.

We further describe the experimental settings
used in the evaluation of these methods.

4.2.3  Experimental Settings
The first step before applying any of the above
methods is to construct a potential set of hyper-
edges. The naive approach of considering all pos-
sible hyperedges can not be used due to the large
number of potential hyperedges unlike the case
of small synthetic hypergraphs. We used that
approach in Sect. 5.1 to show the functioning of
the proposed method.

The first step is to remove a few existing
hyperedges from the given hypergraph. A hyper-
edge prediction algorithm is then evaluated on
the basis of predicting the removed hyperedges.
A good algorithm should also not predict the
non-existing hyperedges in original hypergraph.
So, we construct our test set (or potential set) of

hyperedges by considering both the removed and
non-existing hyperedges. The number of removed
hyperedges in our experiments is maintained as
10% of the existing number of hyperedges. The
rest 90% of the hyperedges are used for training.

As the non-existing hyperedges are con-
sidered in test set, the choice of non-existing
hyperedges plays a vital role in the evaluation
of hyperedge prediction algorithms. We utilize
recently proposed negative sampling approach23
to construct the set non-existing hyperedges. The
first step of this negative sampling approach is to
reduce the hypergraph to a graph and then con-
nect the neighbors of nodes in a randomly sam-
pled edge to the chosen edge in order to construct
the hyperedge. This process is repeated until the
desired number of non-existing hyperedges are
sampled, which we choose to be 3 times the num-
ber of existing hyperedges in the given hyper-
graph for training. Please note that this approach
can finally provide a hyperedge that is already
existing in the hypergraph, whereas our motive
was to sample non-existing hyperedges. So in
this work, we remove those hyperedges from this
“non-existing set” of hyperedges which already
existed in the original hypergraph in order to
have a proper evaluation of hyperedge prediction
algorithms.

4.2.4  Results
We run the experiments on each dataset at least
20 times, removing 10% of hyperedges randomly
in each run. The quality of predicted hyperedges
by any algorithm is compared by using average F1
score31. A higher average score indicates that the
performance of the corresponding algorithm is
better. The mean of average F1 scores computed
from the 20 runs on each dataset are presented in
Table 7.

In order to compare the performance of all
algorithms, we also define the relative perfor-
mance improvement (PI) as:

where Avg-F1prop denotes the average F1 score by
proposed algorithm and Avg-F1base denotes the
average F1 scores of the best baseline algorithm
for the corresponding dataset. We compute PI
score for each of the 20 runs separately and pre-
sent the mean of those 20 runs in last column
of Table 7. A positive PI score indicates that the
proposed algorithm has performed better and its
magnitude signifies the improvement.

(20)PI =
Avg-F1prop − Avg-F1base

Avg-F1base
× 100,

Table 6: Datasets.

Name |V| |E3| References

uchoice Bakery 50 24,674 5

uchoice Walmart Dept 66 24,365 5

Contact-primary school 242 9262 26

Contact-high school 317 7475 19

NDC-substances 570 6327 4

452

D. Maurya, B. Ravindran

1 3 J. Indian Inst. Sci.| VOL 101:3 | 443–453 July 2021 | journal.iisc.ernet.in

It is clearly evident that the proposed algo-
rithm has outperformed the existing baselines by
a considerable margin from Table 7. In this sec-
tion, we discussed the performance of proposed
method on real datasets. We make concluding
remarks and provide directions for future work in
the next section.

5 �Conclusion�and Future�Work
In this article, we proposed a novel framework for
hyperedge prediction for k-uniform hypergraphs.
The critical challenge for this task was modeling
complex interactions among multiple nodes. We
utilized the tensor-based representation of hyper-
graphs, which helps to model the super-dyadic
interactions among the nodes. The proposed
algorithm prefers to construct the hyperedges
with minimal construction cost. In the perspec-
tive of spectral hypergraph theory, this can also
be perceived as the inclusion of new hyperedges
such that there is minimal perturbation in the
“smoothness” of the hypergraph. The function-
ing and fruitful merits of the proposed algorithm
were demonstrated using synthetic and real
hypergraphs. The future directions of this work
are along the lines of performing a similar analy-
sis for non-uniform and directed hypergraphs.

Publisher’s�Note 
Springer Nature remains neutral with regard to
jurisdictional claims in published maps and insti-
tutional affiliations.

Acknowledgements
This work was partially supported by Intel
research Grant RB/18-19/CSE/002/INTI/BRAV
to BR.

Received: 15 February 2021 Accepted: 18 February 2021

Published online: 21 July 2021

References
 1. Agarwal S, Branson K, Belongie S (2006) Higher order

learning with graphs. In: Proceedings of the 23rd interna-
tional conference on machine learning, pp 17–24. ACM

 2. Banerjee A, Char A, Mondal B (2017) Spectra of general
hypergraphs. Linear Algebra Appl 518:14–30

 3. Barabási AL, Albert R (1999) Emergence of scaling in
random networks. Science 286(5439):509–512

 4. Benson AR, Abebe R, Schaub MT, Jadbabaie A, Kleinberg
J (2018) Simplicial closure and higher-order link predic-
tion. Proc Natl Acad Sci 115(48):E11221–E11230

 5. Benson AR, Kumar R, Tomkins A (2018) A discrete
choice model for subset selection. In: Proceedings of the
eleventh ACM international conference on web search
and data mining, pp 37–45

 6. Brin S, Page L (1998) The anatomy of a large-scale hyper-
textual web search engine. Comput Netw ISDN Syst
30(1–7):107–117

 7. Chodrow PS, Veldt N, Benson AR (2021) Hypergraph
clustering: from blockmodels to modularity. arXiv pre-
print arXiv: 2101. 09611

 8. Chung FR, Graham FC (1997) Spectral graph theory, vol
92. American Mathematical Society, Washington, DC

 9. Ghoshdastidar D, Dukkipati A (2017) Uniform hyper-
graph partitioning: provable tensor methods and sam-
pling techniques. J Mach Learn Res 18(1):1638–1678

 10. Hu S, Qi L (2014) The eigenvectors associated with the
zero eigenvalues of the Laplacian and signless Laplacian
tensors of a uniform hypergraph. Discrete Appl Math
169:140–151

 11. Katz L (1953) A new status index derived from sociomet-
ric analysis. Psychometrika 18(1):39–43

 12. Koren Y, Bell R, Volinsky C (2009) Matrix factorization
techniques for recommender systems. Computer 8:30–37

 13. Kumar T, Darwin K, Parthasarathy S, Ravindran B (2020)
Hpra: Hyperedge prediction using resource allocation. In:
12th ACM conference on web science, pp 135–143

 14. Kumar T, Vaidyanathan S, Ananthapadmanabhan H, Par-
thasarathy S, Ravindran B (2020) Hypergraph clustering
by iteratively reweighted modularity maximization. Appl
Netw Sci 5(1):1–22

 15. Li D, Xu Z, Li S, Sun X (2013) Link prediction in social
networks based on hypergraph. In: Proceedings of the

Table 7: Results.

Dataset CN Katz HPRA Proposed PI

uchoice Bakery 0.3445 0.3457 0.3459 0.3658 5.53

uchoice Walmart Dept 0.2592 0.2671 0.2623 0.3322 23.4

Contact-primary school 0.2150 0.2164 0.2242 0.2738 21.51

Contact-high school 0.2140 0.2163 0.2226 0.2794 24.19

NDC-substances 0.1743 0.1779 0.1808 0.2343 24.42

http://arxiv.org/abs/2101.09611

453

Hyperedge Prediction Using Tensor Eigenvalue Decomposition

1 3J. Indian Inst. Sci. | VOL 101:3 | 443–453 July 2021 | journal.iisc.ernet.in

22nd international conference on world wide web, pp
41–42. ACM

 16. Liben-Nowell D, Kleinberg J (2007) The link-prediction
problem for social networks. J Am Soc Inf Sci Technol
58(7):1019–1031

 17. Liu M, Veldt N, Song H, Li P, Gleich DF (2020) Strongly
local hypergraph diffusions for clustering and semi-
supervised learning. arXiv preprint arXiv: 2011. 07752

 18. Lü L, Zhou T (2011) Link prediction in complex net-
works: a survey. Phys A Stat Mech Appl 390(6):1150–1170

 19. Mastrandrea R, Fournet J, Barrat A (2015) Contact pat-
terns in a high school: a comparison between data col-
lected using wearable sensors, contact diaries and friend-
ship surveys. PLoS One 10(9):e0136497

 20. Maurya D, Ravindran B (2020) Hypergraph partitioning
using tensor eigenvalue decomposition. arXiv preprint
arXiv: 2011. 07683

 21. Newman ME (2001) Clustering and preferential attach-
ment in growing networks. Phys Rev E 64(2):025102

 22. Oyetunde T, Zhang M, Chen Y, Tang Y, Lo C (2016)
Boostgapfill: improving the fidelity of metabolic network
reconstructions through integrated constraint and pat-
tern-based methods. Bioinformatics 33(4):608–611

 23. Patil P, Sharma G, Murty MN (2020) Negative sampling
for hyperlink prediction in networks. In: Pacific-Asia
conference on knowledge discovery and data mining, pp
607–619. Springer

 24. Qi L, Luo Z (2017) Tensor analysis: spectral theory and
special tensors, vol 151. SIAM, Philadelphia

 25. Sharma A, Srivastava J, Chandra A (2014) Predicting
multi-actor collaborations using hypergraphs. arXiv pre-
print arXiv: 1401. 6404

 26. Stehlé J, Voirin N, Barrat A, Cattuto C, Isella L, Pinton
JF, Quaggiotto M, Van den Broeck W, Régis C, Lina B
et al (2011) High-resolution measurements of face-to-
face contact patterns in a primary school. PLoS One
6(8):e23176

 27. Symeonidis P, Mantas N (2013) Spectral clustering for
link prediction in social networks with positive and nega-
tive links. Soc Netw Anal Min 3(4):1433–1447

 28. Tarakci H, Kesim Cicekli N (2014) Using hypergraph-
based user profile in a recommendation system. In: Pro-
ceedings of the international joint conference on knowl-
edge discovery, knowledge engineering and knowledge
management-vol 2, pp 27–35. SCITEPRESS-Science and
Technology Publications, Lda

 29. Von Luxburg U (2007) A tutorial on spectral clustering.
Stat Comput 17(4):395–416

 30. Yadati N, Nitin V, Nimishakavi M, Yadav P, Louis A,
Talukdar PP (2018) Link prediction in hypergraphs using

graph convolutional networks. https:// openr eview. net/
forum? id= ryeaZ hRqFm

 31. Yang J, Leskovec J (2013) Overlapping community
detection at scale: a nonnegative matrix factorization
approach. In: Proceedings of the sixth ACM international
conference on Web search and data mining 587–596

 32. Zhang M, Cui Z, Jiang S, Chen Y (2018) Beyond link
prediction: predicting hyperlinks in adjacency space. In:
Thirty-second AAAI conference on artificial intelligence
(2018)

 33. Zhou D, Bousquet O, Lal TN, Weston J, Schölkopf B
(2004) Learning with local and global consistency. In:
Advances in neural information processing systems
321–328

 34. Zhou D, Huang, J, Schölkopf B (2007) Learning with
hypergraphs: clustering, classification, and embedding.
In: Advances in neural information processing systems
1601–1608

 35. Zhou T, Lü L, Zhang YC (2009) Predicting missing links
via local information. Eur Phys J B 71(4):623–630

Deepak Maurya is an MS scholar at the
Department of Computer Science and Engi-
neering, Indian Institute of Technology
Madras, where he is jointly advised by Prof.
Balaraman Ravindran and Prof. Shankar Nar-
asimhan. His Master’s work is focused on

applications of spectral hypergraph theory. Before starting his
Master’s, he finished his Dual Degree (B.Tech + M.Tech) in
Electrical Engineering, Indian Institute of Technology
Madras. He has also worked on system identification.

Professor B. Ravindran heads the Robert
Bosch Centre for Data Science & Artificial
Intelligence (RBCDSAI) at IIT Madras, the
leading interdisciplinary AI research centre in
India. He is the Mindtree Faculty Fellow and
Professor in the Department of Computer

Science and Engineering at IIT Madras. Currently, his
research interests are centred on learning from and through
interactions and span the areas of geometric deep learning
and reinforcement learning. He is currently serving on the
editorial boards of Journal of AI Research, PLOS One, and
Frontiers in Big Data and AI. He has published nearly 100
papers in premier journals and conferences such as ICML,
AAAI, IJCAI, ICDM, ICLR, NeurIPS, UAI, ISMB, and
AAMAS. He has also co-authored the chapter on reinforce-
ment learning in the Handbook of Neural Computation pub-
lished by Oxford University Press. He has been on the pro-
gram and organizing committees of several premier
conferences. His work with students have won multiple best
paper awards, the most recent being a best-paper runner-up at
AAMAS 2020.He received his PhD from the University of
Massachusetts, Amherst and his Master’s degree from Indian
Institute of Science, Bangalore. He is a senior member of
AAAI.

http://arxiv.org/abs/2011.07752
http://arxiv.org/abs/2011.07683
http://arxiv.org/abs/1401.6404
https://openreview.net/forum?id=ryeaZhRqFm
https://openreview.net/forum?id=ryeaZhRqFm

	Hyperedge Prediction Using Tensor Eigenvalue Decomposition
	Abstract |
	1 Introduction
	2 Preliminaries
	2.1 Matrix Representation
	2.2 Tensor-Based Representation

	3 Proposed Method for Hyperedge Prediction
	4 Experiments
	4.1 Synthetic Hypergraph: Example 1
	4.1.1 Eigenvectors of Tensor vs. Matrix Representation

	4.2 Real Hypergraphs
	4.2.1 Datasets
	4.2.2 Baselines
	4.2.3 Experimental Settings
	4.2.4 Results

	5 Conclusion and Future Work
	Acknowledgements
	References

