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Hyperedge Prediction Using Tensor Eigenvalue 
Decomposition

1 Introduction
Link prediction is the study of predicting the 
existence of an edge between two nodes in a 
graph. This problem has found its application 
in various domains such as bioinformatics18, 22, 
social networks27, and recommender systems12. 
Most of existing heuristic approaches like com-
mon neighbours3, Jaccard index16, Adamic-
Adar35,  PageRank6 are limited to modelling 
pairwise interactions only.

Relationships among nodes can be more com-
plex than simple pairwise associations. Hyper-
graphs relax this assumption of pairwise 
interaction and provide the freedom to model the 
interaction among k nodes. Such networks com-
monly occur in social networks7,15, metabolic 
networks32, recommender systems17, 28 and multi-
actor collaboration25.

Most of the recent works on hyperedge pre-
diction13, 30, 32 utilize the approach of clique 
expansion to reduce the hypergraph to a graph1, 

Hypergraph: A generaliza-
tion of a graph in which an 
edge can join any number of 
vertices.

Super-dyadic: A group of any 
number ( > 2 ) of entities.

Dyadic: A group of exactly 
two entities.

Clique: A subset of the 
vertices in a graph, such that 
every two distinct vertices are 
adjacent.
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Abstract | Link prediction in graphs is studied by modeling the dyadic 
interactions among two nodes. The relationships can be more complex 
than simple dyadic interactions and could require the user to model 
super-dyadic associations among nodes. Such interactions can be mod-
eled using a hypergraph, which is a generalization of a graph where a 
hyperedge can connect more than two nodes. In this work, we consider 
the problem of hyperedge prediction in a k-uniform hypergraph. We uti-
lize the tensor-based representation of hypergraphs and propose a novel 
interpretation of the tensor eigenvectors. This is further used to propose 
a hyperedge prediction algorithm. The proposed algorithm utilizes the 
Fiedler eigenvector computed using tensor eigenvalue decomposition of 
hypergraph Laplacian. The Fiedler eigenvector is used to evaluate the 
construction cost of new hyperedges, which is further utilized to deter-
mine the most probable hyperedges to be constructed. The functioning 
and efficacy of the proposed method are illustrated using some example 
hypergraphs and a few real datasets. The code for the proposed method 
is available on https:// github. com/d- maurya/ hypred_ tenso rEVD.
Keywords: Hypergraphs, Spectral hypergraph theory, Hyperedge prediction, Tensor eigenvalue 
decomposition

R
EV

IE
W

 
A

R
T

IC
LE

followed by applying standard graph algorithms34 
or recently proposed approach modeling triadic 
simplicial closure4. We believe this step of hyper-
graph reduction to a graph restricts the user to 
model some weighted form of dyadic interaction 
rather than the intended super-dyadic interac-
tions among nodes. This can be argued by the fact 
that the expression for scalar Laplacian objective 
function minimized for the estimation of Fiedler 
vector (eigenvector corresponding to minimum 
positive eigenvalue) contains only bi-linear terms 
instead of higher order polynomials. This article 
emphasis on the use of higher order polynomials 
to capture the complex interactions among the 
nodes in a hypergraph.

The availability of vast literature, theoretical 
guarantees, and scalable algorithms for graphs are 
the main reasons for adopting hypergraph reduc-
tion methods9. There is significant loss of infor-
mation about the hypergraph structure caused 
by this reduction step. For example, two entirely 
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different hypergraphs can reduce to same graph 
after the reduction step. We have given example 
for such cases later. This observation clearly dem-
onstrates that the unique information about two 
different hypergraphs is lost after the hypergraph 
reduction step.

In this work, we approach the problem of 
hyperlink prediction without performing any 
reduction. For this purpose, we prefer to utilize 
the tensor-based representation of hypergraphs24 
rather than the usual matrix based notation 
widely accepted in machine learning commu-
nity33. The tensor-based representation provides 
us the freedom to model the super-dyadic inter-
actions among nodes. The proposed algorithm in 
this work is highly motivated from spectral graph 
theory with appropriate modifications.

The widely accepted framework for link pre-
diction using spectral graph theory framework 
comprises of computing the similarity metric 
between two nodes27. The similarity measure is 
defined as a function of embeddings of two 
nodes, which can be derived from the graph 
Laplacian29. We attempt to utilize the same 
approach for hypergraphs by computing the 
eigenvectors of hypergraph Laplacian tensor but 
we encountered several challenges. To name a 
few, the eigenvectors of a real symmetric tensor 
are not orthogonal, which is contrary to the case 
of real symmetric matrices. The number of eigen-
vectors for a symmetric tensor is not fixed, unlike 
the simple case of symmetric matrices. The tensor 
eigenvectors cannot be trivially interpreted.

Despite various existing challenges, we pur-
sue the tensor-based representation of hyper-
graphs due to the strong motivation developed 
from some of the recent intriguing results found 
in spectral hypergraph theory using tensor rep-
resentation. For example, Hu et al.10 proved that 
the algebraic multiplicity of zero eigenvalue of a 
symmetric tensor is equal to the sum of the num-
ber of even-bipartite connected components and 
number of connected components, minus the 
number of singletons in the corresponding hyper-
graph. This information couldn’t be revealed from 
the clique reduction methods and its variants1.

In this work, we present a novel approach to 
interpret the tensor eigenvectors. This helps us 
to define the construction cost for new poten-
tial hyperedges in a given hypergraph. The next 
step in the proposed algorithm is to prefer the 
prediction of hyperedges with minimum con-
struction cost. In the perspective of spectral 
hypergraph theory, the key idea of the proposed 
algorithm can also be perceived as the inclusion 
of new hyperedges such that there is minimal 

Tensor: A multi-dimensional 
array.

perturbation in the “smoothness” of the hyper-
graph. In spectral graph theory, the “smoothness” 
of the graph is characterized by the Fiedler eigen-
value8. The same analogy is utilized in this work 
also. The code for the proposed method can be 
accessed fromA

The rest of the paper is organized as follows. 
We introduce the matrix and tensor-based nota-
tion of hypergraphs in Sect.  3. We also discuss 
the merits of tensor-based notation in this sec-
tion. The proposed algorithm for hyperedge pre-
diction is described in Sect.  4. The functioning 
and fruitful merits of the proposed algorithm is 
demonstrated in Sect. 5 using small synthetic and 
real hypergraphs. Concluding remarks and future 
directions of this work are discussed in Sect. 6.

Notations: A scalar is denoted by lowercase 
alphabet x, a vector by bold face x , a matrix by 
bold face uppercase alphabet X and a tensor by 
italics uppercase alphabet X  . The subscript a over 
a vector such as xa indicates the dimension, and 
for a tensor Xa , it denotes the mode of a tensor, 
which is defined later.

2 �Preliminaries
In this section, we discuss the matrix and tensor-
based representation of hypergraphs briefly.

A hypergraph G is formally defined as a 
pair of G = (V ,E) , where V = {v1, v2, . . . , vn} 
is the set of entities called vertices or nodes and 
E = {e1, e2, . . . , em} is a set of non-empty sub-
sets of V referred as hyperedges. In general, 
E ∈ P(V )\{φ} for a non-uniform hypergraph, 
where P(V ) is the power set of V. In this article, 
we focus on k-uniform hypergraphs, and hence 
E is restricted to a subset of all the 

(n
k

)

 combina-
tions of elements from V, where n = |V | . The 
strength of interaction among nodes in the same 
hyperedge is quantified by the positive weight 
represented by we = {we1 ,we2 , . . . ,wem} . The 
vertex-edge incidence matrix is denoted by H and 
has the dimension |V | × |E| . The entry h(i,  j) is 
defined as:

The degree of node vi is defined by 
d(vi) =

∑

ej∈E wejh(i, j) . D is a diagonal matrix 
with D(i, i) = d(vi).

(1)h(i, j) =
{

1 if vi ∈ ej
0 otherwise.

A https:// github. com/d- maurya/ hypred_ tenso rEVD.

https://github.com/d-maurya/hypred_tensorEVD
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2.1  Matrix Representation
It should be noted that there is no loss of infor-
mation about the hypergraph structure in the 
incidence matrix representation. This could also 
be perceived as the existence of unique mapping 
(up to certain reordering) between given hyper-
graph G(V, E) and its incidence matrix H.

Most of the machine learning algorithms for 
classification, partitioning of graphs, and link pre-
diction operates on the adjacency matrix rather 
than incidence matrix. The adjacency matrix for 
an undirected graph is symmetric and its entries 
A(i, j) is defined as:

where wij indicates the weight of the edge. It can 
be inferred that the entry (i, j) denotes the exist-
ence of an edge.

Agarwal et al.1 define the adjacency matrix for 
the reduced hypergraphs as follows:

It should be noticed that most of the reduction 
methods are a non-unique mapping from hyper-
graph to adjacency matrix. It means that there 
could be distinct hypergraphs which reduce to 
the same graph. For example, the clique reduction 
approach reduces the four-uniform hypergraph 
and the three-uniform hypergraph to the same 
graph as shown in Fig. 1.

This non-uniqueness property of hypergraph 
reduction method plays a very crucial role in the 
task of hyperedge prediction. The reduced hyper-
graph has lost the information about the original 
hypergraph structure. So there is no assurance 
of any analysis on reduced hypergraph to deliver 
correct results for the original hypergraph. To 

(2)A(i, j) =
{

wij if {vi, vj} ∈ E
0 otherwise,

(3)Ar = HWH
T −D.

avoid the loss of information in the reduction 
step, we utilize the tensor-based representation of 
hypergraphs discussed in the next section.

2.2  Tensor‑Based Representation
The entry A(i, j) in adjacency matrix for a graph 
denotes the strength of interaction between the 
nodes i and j. Similarly, for a hyperedge with 3 
nodes, a 3-dimensional tensor is required to rep-
resent the strength of interaction among 3 nodes. 
This idea can be further generalized to represent 
k-uniform hypergraphs.

Therefore, a natural representation of hyper-
graphs is a k-order n-dimensional tensor A24, 
which consists of nk entries

The entries of above tensor is defined as:

It should be noted that A is a “super-symmetric” 
tensor i.e., for any permutation of the indices, A 
contains the same value:

where σ(i1, i2, . . . ik) denotes any permutation of 
the elements in the set {i1, i2, . . . , ik} . The order 
or mode of tensor refer to hyperedge cardinality, 
which is k for A . The degree of a vertex vi is given 
by

The particular factor of 1/(k − 1)! is chosen while 
defining the adjacency tensor in (5) so that the 
node degree can be defined appropriately in the 
graph theoretic sense. One could also think as the 
generalization for the case of graphs ( k = 2).

The degree of all the vertices can be repre-
sented by k-order n-dimensional diagonal tensor 
D:

The Laplacian tensor L is defined as follows :

The elements of Laplacian tensor L are described 
by

(4)
A =

(

ai1i2...ik

)

, ai1i2...ik
∈ R, 1 ≤ i1, . . . , ik ≤ n

(5)
ai1i2...ik =

{

wej
1

(k−1)! if
(

i1, i2, . . . , ik
)

= {ej} ej ∈ E

0 otherwise.

ai1i2...ik = aσ(i1i2...ik ),

(6)d(vi) =
n

∑

ik=1

. . .

n
∑

i3=1

n
∑

i2=1

aii2i3...ik .

(7)di1i2...ik =
{

d(vi) if i1 = i2 · · · = ik = i
0 otherwise

(8)L = D −A.

Figure 1: Two hypergraphs reducing to same 
graph.
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Normalized hypergraph Laplacian tensor2 denoted 
by L , is defined:

One of the standard approaches in spectral graph 
theory is to perform spectral decomposition of the 
graph Laplacian for link prediction. Proceeding 
along similar lines, we evaluate the eigenvectors of 
Laplacian tensor24:

where (�, x) ∈ (R,Rn\{0}n) is called the Z-eigen-
pair and Lxk−1 ∈ R

n , whose ith component is 
defined as

The above equations arises from the following opti-
mization problem:

The eigenvector with minimum positive � satisfy-
ing (11) is termed as Fiedler eigenvector and can be 
computed using

The corresponding eigenvalue can be computed as 
�⋆ = Lvk⋆.

Illustrative Example: A simple example illus-
trating the procedure to construct the adjacency 
and Laplacian tensor for a 4-uniform hypergraph 
has been presented. Consider a 4-uniform hyper-
graph G(V, E) as shown below:

where the set of vertices and hyperedges are 
defined by

(9)

li1i2...ik =











−wej
1

(k−1)! if (i1, i2, . . . , ik ) ∈ {ej}, j ∈ [m]
d(vi) if i1 = i2 · · · = ik = i

0 otherwise.

(10)ℓi1i2...ik =











−wej
1

(k−1)!
�k

ij=1
1

k
�

dij

if (i1, i2, . . . , ik) ∈ {ej}, j ∈ [m]

1 if i1 = i2 · · · = ik = i
0 otherwise.

(11)
Lx

k−1 = �x

x
T
x = 1,

(12)

[

Lx
k−1

]

i
=

n
∑

ik=1

. . .

n
∑

i3=1

n
∑

i2=1

lii2i3...ik xi2xi3 . . . xik .

(13)

min
x

Lx
k =

n
∑

ik=1

. . .

n
∑

i2=1

n
∑

i1=1

li1i2...ik xi1xi2 . . . xik

such that x
T
x = 1.

(14)

v⋆ = argmin
x

Lx
k > 0

s. t Lx
k = �x

x
T
x = 1.

The adjacency tensor for the above hypergraph is 
denoted by A and has dimensions 5× 5× 5× 5 . 
It should be noted that the cardinality (k) of all 3 
hyperedges is 4 . The elements of A are denoted 

by ai1,i2,i3,i4 , where 1 ≤ ik ≤ 5 . It should be 
noted that A contains nk = 54 elements but only 
m× k! = 3× 4! = 72 elements have non-zero 
entries. The elements corresponding to first hyper-
edge are described by

where c = 1
(k−1)! =

1
6 . The vertex degrees can be 

stored in a tensor of dimension 5× 5× 5× 5 with 
its diagonal elements being d(v) =

[

2 3 3 2 2
]

 . 
The tensor Laplacian has dimension of 
5× 5× 5× 5 and its entries can be obtained using 
(9), which are found to be

This example shows the procedure to construct 
the adjacency and Laplacian tensor for any k-uni-
form hypergraph.

3 �Proposed�Method�for Hyperedge�
Prediction

In this section, we propose the hyperedge predic-
tion algorithm using spectral decomposition for 
tensors. We have already discussed the tensor-
based representation of hypergraphs in Sect. 3.

The proposed framework derives the cost of 
each potential hyperedge and prefers to choose 
the hyperedges with minimum cost. The cost of 
creating a hyperedge is calculated from the Fie-
dler eigenvector of the Laplacian tensor defined 
in (14). Hence, we present the following theorem 
for the expression of hypergraph (tensor) Lapla-
cian objective function used for the computation 
of tensor eigenvectors.

V = {v1, v2, v3, v4, v5}
E = {{v1, v2, v3, v4}, {v2, v3, v4, v5}, {v1, v2, v3, v5}}.

a1234 =a1243 = a1324 = a1342 = a1423 = a1432

=a2134 = a2143 = a2314 = a2341 = a2413 = a2431

=a3214 = a3241 = a3124 = a3142 = a3421 = a3412

=a4231 = a4213 = a4321 = a4312 = a4123 = a4132 = c,

(15)
li1i2i3i4 =







− 1
6

if (i1, i2, i3, i4) = {ej}, j = {1, 2, 3}
d(vi) if i1 = i2 = i3 = i4 = i

0 otherwise.
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Theorem 1 The hypergraph Laplacian cost func-
tion for a k-uniform hypergraph can be expressed 
as

where ns = |{ij : xij < 0}|, A.M and G.M stand 
for the arithmetic and geometric means, respec-
tively. We refer lej as the cost for hyperedge ej in 
rest of the paper.

Proof     Please refer Theorem  8 in Maurya 
et al.20.

Using Theorem  1, the computation of Lxk 
can be done in O(|E|) steps which would have 
been O(|V |k) for any general tensor.

Illustrative Example: Through this exam-
ple, we demonstrate the use of Theorem  1 in 
the computation of tensor Laplacian. We also 
unveil the challenges involved in working with 
tensor eigenvectors—for example, the non-
orthogonality of tensor eigenvectors. Consider 
the hypergraph shown in Fig. 2. The hypergraph 
Laplacian cost function for this hypergraph can 
be derived using (16):

(16)

Lx
k =

�

ej∈E
lej (x)

lej (x) = wej





�

ik∈ej

xkik − k
�

ik∈ej

xik





= wej k



A.M
�

xkik

�

ij∈ej

− G.M
�

|xik |
k
�

ij∈ej

(−1)ns



,

(17)

Lx
k = x41 + x42 + x43 + x44 − 4x1x2x3x4

+ x41 + x42 + x43 + x45 − 4x1x2x3x5

+ x42 + x43 + x44 + x45 − 4x2x3x4x5.

The 4th order homogeneous polynomial is the 
objective function the optimization problem 
mentioned in (13). This is required for the com-
putation of the eigenvalues and eigenvectors 
of L . We further discuss the properties of zero 
eigenvalues and zero eigenvectors of Laplacian 
tensor.

Lemma 2 One of the Z-eigenpair of L is (0, v), 
where v = 1√

n
(1, 1, . . . , 1) ∈ R

n.

ProofPlease refer Banerjee et  al.2: Theo-
rem 3.13 (iv).  �

It should be noted that 
√
n is just a scaling 

factor in v to ensure vTv = 1 . One could also 
consider unity vector as eigenvector with eigen-
value 0.

Lemma 3 The number of zero eigenvalues of the 
graph Laplacian indicates the number of connected 
components8.

The above property does not hold for hyper-
graphs. It means that a fully connected hyper-
graph can have multiple zero eigenvalues10. We 
also make the same observation in this example 
as explained below.

It is observed that the tensor Laplacian 
for hypergraph H4 shown in Fig.  2 has 2 zero 
eigenvalues and the distinct eigenvectors are as 
follows:

This illustrates that the eigenvalues could be zero 
even if the eigenvector is not unity vector, con-
trary to graphs. This is surprising because there is 
only one connected component, but there are two 
zero eigenvalues.

This observation can be explained by comput-
ing the cost of each hyperedge using (16) for the 
eigenvectors stated above. It is observed that the 
cost of all the three hyperedges is zero for both 
the eigenvectors. As a result of which, the eigen-
value is zero. Another distinguishable property 
is that the eigenvectors are not orthogonal unlike 
the case of graphs (having real symmetric Lapla-
cian matrix).

We have just discussed the use of hyperedge 
cost from eigenvectors corresponding to zero 
eigenvalues. We extend the similar discussion 
on hyperedge score computed from the Fiedler 
eigenvalue and eigenvector.

(18)V =
1
√
5











1 − 1
1 1
1 1
1 − 1
1 − 1











.

v2

v5

v3
v4

v1

Figure 2: H4: 4-uniform.
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Illustrative Example: In this example, we 
demonstrate a novel interpretation of tensor 
eigenvectors.

Consider the 3-uniform hypergraph shown 
in Fig. 3. The Laplacian tensor can be easily con-
structed using (9). The next step is to compute 
the Fiedler eigenvalues and eigenvectors satisfy-
ing (11). It is observed that there are four Fiedler 
vectors with the eigenvalue of 0.0569 as reported 
below:

We compute the cost of each hyperedge denoted 
by lej (x) in (16) using Fiedler vectors and tabulate 
in Table 1.

The sum of all the hyperedge cost or each col-
umn of Table  1 is 0.0569. It can be noticed that 
the hyperedges among densely connected have 
less cost as compared to others. For example, 
hyperedge {1, 2, 3} has less cost as compared to 
the hyperedge {4, 5, 6}.

Such hyperedges with relatively smaller cost 
can be termed as “smooth” hyperedge because 

(19)V =

























−0.05 0.06 0.47 0.47
0.03 0.03 0.46 0.46
0.06 −0.05 0.47 0.47
0.23 0.23 0.42 0.42
0.34 0.34 0.34 0.34
0.42 0.42 0.23 0.23
0.47 0.47 −0.05 0.06
0.46 0.46 0.03 0.03
0.47 0.47 0.06 −0.05

























.

they contain nodes which are densely connected 
by other hyperedges. For example, nodes 6 and 
8 in Fig.  3 are connected by 3 hyperedges. Ide-
ally, the new hyperedge should be constructed 
among the nodes which are densely connected 
by other hyperedges. It is observed that the cost 
for such hyperedges is smaller compared to other 
hyperedges. So, we propose a hyperedge predic-
tion algorithm which promotes the construction 
of hyperedges with minimal cost. The proposed 
algorithm is summarized in Table 2.

In this section, we proposed a novel hyperedge 
prediction algorithm using the spectral frame-
work. In the next section, the working and effi-
cacy of the proposed method are demonstrated 
using simple toy examples and real hypergraphs.

4 �Experiments
We consider simple hypergraphs with interesting 
structural properties to validate the functioning 
of the proposed algorithm in Sect.  5.1 and real 
hypergraphs later on.

4.1  Synthetic Hypergraph: Example 1
We consider a 3-uniform symmetrical hyper-
graph with nine nodes and seven hyperedges 
shown in Fig.  3. The task is to predict the best 
new set of hyperedges to be formed from all the 
potential set of hyperedges.

We construct the tensor Laplacian and com-
pute the eigenvalues and eigenvectors, as stated 
in the proposed algorithm described in Table 2. 
We arrive at four Fiedler eigenvectors men-
tioned in (19) with same eigenvalue of 0.0569.

All the above eigenvectors are then used for 
computing the cost of each potential hyper-
edges. To predict the best set of new hyperedges, 
all the potential hyperedges are considered. 
As there are 9 nodes, one could have 

(9
3

)

= 84 . 
Seven hyperedges are further removed as they 
already exist in the hypergraph, which leaves 
us with 84 − 7 = 77 potential hyperedges. The 
cost for each of these potential 77 hyperedges 
is computed using each of the 4 eigenvectors 
mentioned in (19). The next step is to rank these 
potential hyperedges based on the increasing 
order of their formation cost.

It is observed that the cost computed from 
the first two eigenvectors [first two columns of 
V in (19)] are the same. The same holds for the 
other two eigenvectors. So, the preferential rank 
of new hyperedge formation from these two 
sets of eigenvectors is also same. Due to space 

v1 v2

v3

v4

v5

v6

v7 v8

v9

Figure 3: H5: 3-uniform hypergraph.

Table 1: Hyperedge cost for Fig. 3.

Hyperedges v1 v2 v3 v4

{1, 2, 3} 0.0004 0.0004 0 0

{1, 2, 4} 0.0127 0.0111 0.0025 0.0025

{2, 3, 4} 0.0111 0.0127 0.0025 0.0025

{4, 5, 6} 0.0278 0.0278 0.0278 0.0278

{6, 7, 8} 0.0025 0.0025 0.0127 0.0111

{7, 8, 9} 0 0 0.0004 0.0004

{6, 8, 9} 0.0025 0.0025 0.0111 0.0127
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constraints, only 10 hyperedges with minimal 
formation cost are mentioned in Table 3.

The cost of new hyperedges can also be cal-
culated from the eigenvectors of normalized 
tensor Laplacian defined in (10). The same 
analysis can be performed using the normalized 
tensor Laplacian defined in to favor all nodes 
equally with respect to their degree distribution. 
The construction cost of new hyperedges using 
the eigenvectors of normalized tensor Laplacian 
is reported in Table 4.

Following observations can be made from 
Tables 3 and 4: 

1. The most obvious hyperedge to be formed 
for this hypergraph is {1, 3, 4} and {6, 7, 9} . 
This can also be seen as nodes 1, 2, 3, 4 are 
densely connected with other hyperedges. 
So, the only remaining hyperedge among 
the four possible hyperedges is {1, 3, 4} . The 
same study holds for the hyperedge {6, 7, 9}.

 The most probable hyperedges are predicted 
by the proposed algorithm as it has mini-
mum construction cost mentioned in first 
row of Tables 3 and 4.

 This trivial task of predicting the most prob-
able hyperedge helps to validate the func-
tioning of the proposed algorithm.

2. It can be observed that the most prob-
able hyperedge is {1, 3, 4} and {6, 7, 9} using 
unnormalized and normalized Laplacian. 
However, the second best hyperedge is dif-
ferent. The probable hyperedge for unnor-
malized Laplacian is {2, 4, 5} while it is 
{2, 3, 5} for the normalized case. In both 
cases, nodes 2 and 5 are present. Note that, 
node three is given more preference in the 
normalized case as compared to node 4. This 
behavior is expected because the significance 
of nodes with a smaller degree will enhance 
after normalization compared to the unnor-
malized case. Thus, this observation encour-
ages the use of normalized Laplacian for 
hypergraphs having high variance in the 
degree distribution.29 also establishes a 
similar preference for using normalized or 
unnormalized Laplacian in case of graphs.

Table 2: Hyperedge prediction algorithm.

1. Construct the unnormalized or normalized tensor Laplacian as shown in (9) or (10) respectively.

2. Compute the Fiedler eigenpair (�⋆ , v⋆) using (14).

3. For a given set of potential hyperedges Ep , compute the construction cost using (16) and the Fiedler 
eigenvector computed in previous step. The same can be stated as cl = {lej (v⋆)|ej ∈ Ep}.

4. Prefer the construction of hyperedges with minimal construction cost.

Table 3: Cost of new hyperedges using unnor-
malized Laplacian.

Hyperedges1 Hyperedges2 Cost

{6, 7, 9} {1, 3, 4} 0.0028

{5, 6, 8} {2, 4, 5} 0.0139

{1, 3, 4} {6, 7, 9} 0.0142

{5, 6, 7} {1, 4, 5} 0.0152

{5, 6, 9} {3, 4, 5} 0.0152

{5, 8, 9} {1, 2, 5} 0.0195

{5, 7, 8} {2, 3, 5} 0.0195

{5, 7, 9} {1, 3, 5} 0.0205

{3, 4, 5} {5, 6, 9} 0.0365

{1, 4, 5} {3, 5, 6} 0.0379

Table 4: Cost of new hyperedges using normal-
ized Laplacian.

Hyperedges1 Hyperedges2 Cost

{6, 7, 9} {1, 3, 4} 3.3× 10−4

{2, 3, 5} {5, 8, 9} 0.0142

{1, 2, 5} {5, 7, 8} 0.0160

{1, 3, 5} {5, 7, 9} 0.0172

{1, 3, 4} {6, 7, 9} 0.0173

{3, 4, 5} {5, 6, 9} 0.0197

{2, 4, 5} {5, 6, 8} 0.0254

{4, 5, 7} {1, 5, 6} 0.0375

{4, 5, 9} {3, 5, 6} 0.0375

{1, 4, 5} {5, 6, 7} 0.0386
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4.1.1  Eigenvectors of Tensor vs. Matrix 
Representation

Most of the existing methods using matrix rep-
resentation model the dyadic interaction among 
nodes only and further predict the hyperedges of 
cardinality greater than 2. To manifest the effec-
tiveness of tensor eigenvectors, we propose a 
slight variation of the proposed algorithm.

One of the crucial steps of the proposed algo-
rithm (in Table  2) is the computation of tensor 
eigenvectors which captures super-dyadic inter-
actions. To demonstrate the importance of this 
step, we replace it with the computation of eigen-
vectors of graph Laplacian (matrix) derived from 
hypergraph reduction using (3). All the other 
steps in the algorithm remain the same.

The construction cost of new hyperedges 
derived from the Fiedler eigenvector of reduced 
hypergraph is shown in Table 5.

It can be easily stated that the above results 
are not as expected and do not capture the 
interaction among three nodes. This can be jus-
tified theoretically as the Laplacian cost func-
tion is a second order homogeneous polynomial 
modeling dyadic interaction only whereas the 
tensor-based Laplacian cost function is a third 
order homogeneous polynomial capturing the 
super-dyadic interactions.

In this example, we investigated various fea-
tures of the proposed algorithm such as 

1. Deriving preferential order of new hyper-
edges.

2. Behaviour of normalized and unnormalized 
Laplacian.

3. Effectiveness of the tensor eigenvectors in 
capturing the super-dyadic interactions.

4.2  Real Hypergraphs
In this subsection, we analyze the performance 
of the proposed algorithm on real hypergraphs. 
We first describe the datasets, baselines, and then 
the experimental settings used to evaluate these 
hyperedge prediction baselines.

4.2.1  Datasets
We consider five datasets with varying number 
of nodes and hyperedges from different domain. 
We have mentioned the size of largest of con-
nected component consisting hyperedges of car-
dinality 3 in Table  6. Please note that we have 
performed the experiments and shown results 

for 3-uniform hypergraphs for simplicity but 
the proposed approach can be applied to any k 
hypergraph.

These datasets were constructed in following 
manner: 

1. uchoice Bakery: Nodes represent the items 
in bakery and hyperedges are constructed 
among the items bought together.

2. uchoice Walmart Dept: Nodes represent the 
“department” of an item in the shop and a 
hyperedge is constructed among the depart-
ment whose items were co-bought.

3. Contact-primary school and contact-high 
school: Nodes are people in the correspond-
ing school and hyperedges are constructed 
among the people if they interacted with 
each other in interval of 20 s. The interaction 
was recorded by a wearable sensor.

4. NDC-substances: The data is taken from US 
National Drug Code (NDC), where a hyper-
edge denotes a drug and the nodes represent 
the substances used in that drug.

We further briefly discuss the existing hyperedge 
prediction approaches.

4.2.2  Baselines
We consider some of the most widely used 
hyperedge prediction baselines in this subsec-
tion. Every method tries to construct a “similar-
ity score” of the potential hyperedge by its model. 
A large similarity score of a potential hyperedge 
indicates that it is more likely to be formed as 
compared to potential hyperedges with low sim-
ilarity score. This similarity score is used to as a 

Table 5: Cost of new hyperedges using normal-
ized Laplacian of reduced hypergraph.

Hyperedges1 Cost

{1, 5, 7} 0

{1, 5, 9} 0

{2, 5, 8} 0

{3, 5, 7} 0

{3, 5, 9} 0

{2, 5, 9} 0.0038

{2, 5, 7} 0.0038

{1, 5, 8} 0.0038

{3, 5, 8} 0.0038

{6, 7, 9} 0.0217
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proxy to predict the new hyperedges. Hence, we 
discuss the approach in which each of the follow-
ing baselines construct that similarity score: 

1. Common neighbours (CN)21: For a potential 
hyperedge, the similarity score is the sum 
of number of common neighbours of two 
nodes taken at a time in the given hyper-
graph. It should be noted that similarity 
score is computed using the local informa-
tion in this approach.

2. Katz11: The similarity score is computed 
based on the global information using 
the paths connecting the two nodes. For a 
hyperedge with m nodes, we consider all the 
possible k(k − 1)/2 pairs of nodes.

3. HPRA13: This is a recently proposed algo-
rithm which computes the similarity score 
by extending the use of resource allocation 
approach18,35 from graphs to hypergraphs. 
This method also proposes a modified 
hypergraph reduction method which pre-
serves the node degrees of original hyper-
graph in the resulting graph14.

We further describe the experimental settings 
used in the evaluation of these methods.

4.2.3  Experimental Settings
The first step before applying any of the above 
methods is to construct a potential set of hyper-
edges. The naive approach of considering all pos-
sible hyperedges can not be used due to the large 
number of potential hyperedges unlike the case 
of small synthetic hypergraphs. We used that 
approach in Sect. 5.1 to show the functioning of 
the proposed method.

The first step is to remove a few existing 
hyperedges from the given hypergraph. A hyper-
edge prediction algorithm is then evaluated on 
the basis of predicting the removed hyperedges. 
A good algorithm should also not predict the 
non-existing hyperedges in original hypergraph. 
So, we construct our test set (or potential set) of 

hyperedges by considering both the removed and 
non-existing hyperedges. The number of removed 
hyperedges in our experiments is maintained as 
10% of the existing number of hyperedges. The 
rest 90% of the hyperedges are used for training.

As the non-existing hyperedges are con-
sidered in test set, the choice of non-existing 
hyperedges plays a vital role in the evaluation 
of hyperedge prediction algorithms. We utilize 
recently proposed negative sampling approach23 
to construct the set non-existing hyperedges. The 
first step of this negative sampling approach is to 
reduce the hypergraph to a graph and then con-
nect the neighbors of nodes in a randomly sam-
pled edge to the chosen edge in order to construct 
the hyperedge. This process is repeated until the 
desired number of non-existing hyperedges are 
sampled, which we choose to be 3 times the num-
ber of existing hyperedges in the given hyper-
graph for training. Please note that this approach 
can finally provide a hyperedge that is already 
existing in the hypergraph, whereas our motive 
was to sample non-existing hyperedges. So in 
this work, we remove those hyperedges from this 
“non-existing set” of hyperedges which already 
existed in the original hypergraph in order to 
have a proper evaluation of hyperedge prediction 
algorithms.

4.2.4  Results
We run the experiments on each dataset at least 
20 times, removing 10% of hyperedges randomly 
in each run. The quality of predicted hyperedges 
by any algorithm is compared by using average F1 
score31. A higher average score indicates that the 
performance of the corresponding algorithm is 
better. The mean of average F1 scores computed 
from the 20 runs on each dataset are presented in 
Table 7.

In order to compare the performance of all 
algorithms, we also define the relative perfor-
mance improvement (PI) as:

where Avg-F1prop denotes the average F1 score by 
proposed algorithm and Avg-F1base denotes the 
average F1 scores of the best baseline algorithm 
for the corresponding dataset. We compute PI 
score for each of the 20 runs separately and pre-
sent the mean of those 20 runs in last column 
of Table 7. A positive PI score indicates that the 
proposed algorithm has performed better and its 
magnitude signifies the improvement.

(20)PI =
Avg-F1prop − Avg-F1base

Avg-F1base
× 100,

Table 6: Datasets.

Name |V| |E3| References

uchoice Bakery 50 24,674 5

uchoice Walmart Dept 66 24,365 5

Contact-primary school 242 9262 26

Contact-high school 317 7475 19

NDC-substances 570 6327 4
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It is clearly evident that the proposed algo-
rithm has outperformed the existing baselines by 
a considerable margin from Table 7. In this sec-
tion, we discussed the performance of proposed 
method on real datasets. We make concluding 
remarks and provide directions for future work in 
the next section.

5 �Conclusion�and Future�Work
In this article, we proposed a novel framework for 
hyperedge prediction for k-uniform hypergraphs. 
The critical challenge for this task was modeling 
complex interactions among multiple nodes. We 
utilized the tensor-based representation of hyper-
graphs, which helps to model the super-dyadic 
interactions among the nodes. The proposed 
algorithm prefers to construct the hyperedges 
with minimal construction cost. In the perspec-
tive of spectral hypergraph theory, this can also 
be perceived as the inclusion of new hyperedges 
such that there is minimal perturbation in the 
“smoothness” of the hypergraph. The function-
ing and fruitful merits of the proposed algorithm 
were demonstrated using synthetic and real 
hypergraphs. The future directions of this work 
are along the lines of performing a similar analy-
sis for non-uniform and directed hypergraphs.
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