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Contextualized Behavior Recommendation 
from Complex Agent‑Based Simulations 
of Disasters

Nidhi Parikh1* , Madhav V. Marathe2 and Samarth Swarup3

Abstract | We present an approach for generating contextualized 
behavior recommendations from a large, data‑driven, complex agent‑
based simulation. We extend a previous method for generating a sum‑
mary description by decomposing the output of a simulation into a tree 
of causally‑relevant states, and show how behavior recommendations 
can be generated by ranking these causally relevant states in terms of 
their impact on an outcome of interest. An end‑user can provide a query 
specifying a partial state description, which is used to retrieve the appro‑
priate set of states from the summary description. The structure of the 
tree is used to generate the contexts that differentiate the behavior rec‑
ommendations. We apply our method to a very complex simulation of a 
disaster in a major urban area and present results for multiple queries.
Keywords: Behavior recommendation, Disaster preparedness, Agent-based simulation, Simulation 
analytics

1 Introduction
Disasters are complex phenomena, where out-
comes are driven by a combination of human 
behaviors, response efforts, physical circum-
stances, and preparedness and advance planning1. 
The complexity of the interactions between social 
and technical systems can lead to unforeseen con-
sequences, which makes planning for disasters 
especially difficult. Agent-based simulations are 
increasingly being used to aid in understanding 
these complexities and in developing appropri-
ate plans. In this work, we present a method for 
extracting behavioral recommendations from a 
large-scale complex agent-based simulation to 
help with planning. A behavioral recommenda-
tion is an answer to the question, what should 
people be doing in a particular situation?

In a complex disaster situation, the answer 
to this question is highly context-dependent. For 
example, the hypothetical disaster we study in 
this work is the detonation of a 10 kT improvised 
nuclear device in Washington DC (see Sect. 4.1 
for details). In this case, we might reasonably 
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expect that what people should be doing in the 
aftermath will depend on many factors, such as 
how close they are to ground zero (i.e., the point 
on the earth’s surface directly above or below an 
exploding nuclear bomb), what their health sta-
tus is, whether they are together with their house-
hold members, whether they are in the path of 
the fallout, and much more. Our approach here 
is not to try to find optimal behaviors in such a 
complex and dynamic multi-agent environment, 
but rather to try to understand if some natural 
behaviors are better than others.

By natural behaviors, we mean the behav-
iors that people are naturally likely to exhibit in 
disaster situations. To develop effective plans, 
it is important to understand when and where 
people’s behaviors are helpful or harmful, with 
the goal of channeling their natural instincts 
in beneficial directions. For instance, restoring 
communication can be a relatively passive inter-
vention which allows people to get in touch with 
their family members and can have the effect of 
making them more amenable to responding to 
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requests to shelter or evacuate2, 3. On the other 
hand, identifying behaviors that put people at 
risk is very useful for focusing the efforts of emer-
gency responders.

Our approach is to use the agent-based sim-
ulation outputs, which show the overall results 
of the various natural behaviors that are mod-
eled, and rank behaviors in terms of their effects 
on outcomes such as health. However, it may 
be the case that behaviors have different effects 
in different contexts, e.g., in the aftermath of a 
nuclear detonation scenario, seeking healthcare 
may improve an injured agent’s health, but if the 
same agent is close to the blast area and seeking 
healthcare early on, then they may be exposed to 
more radiation and this behavior can actually be 
harmful to health. Any model that does not take 
into account contextual information would have 
to take the average across all contexts. This may 
lead to an inaccurate estimation of effects and an 
inaccurate ranking of behaviors, and may even 
estimate no effect for behaviors that have contra-
dictory effects in different contexts. Therefore, we 
term this problem, contextual behavior ranking.

By contextual information, we mean any 
information (agent and environmental states) 
that may lead to different outcomes for the same 
behavior. This may include the agent state at the 
current time step as well as any previous state or 
behaviors that may lead to different trajectory of 
outcomes. Parikh et al.4 proposed an algorithm to 
summarize simulation results by extracting caus-
ally-relevant states—states that have a measurable 
effect on the final outcomes. These causally-rele-
vant states are the contextual information men-
tioned above.

The rest of this paper is organized as follows. 
We begin with an overview of simulation summa-
rization4, which forms the basis of our approach 
in this work. The summary representation that 
is constructed from the outputs of a simula-
tion consists of a tree-structured set of causally-
relevant states, as we explain in the next section. 
Then we describe how we can improve the prior 
simulation summarization method by extending 
it to extract causally-relevant states that capture 
temporal history. Then we present our method 
for contextualized behavior ranking using these 
new causally-relevant states. Then we show the 
results of applying this approach to a complex 
agent-based simulation of the nuclear disaster 
mentioned earlier. We end with a discussion of 
this and related problems in the larger context of 
simulation analytics.

2 �Simulation�Summarization
The simulation summarization approach is 
based on the computational mechanics frame-
work5, 6. Let us first consider a stochastic process 
denoted by a sequence of random variables Xt , 
drawn from a discrete alphabet, A . 

←−
X  denotes the 

“past” of the sequence, i.e., X−∞ · · ·Xt−2Xt−1Xt , 
and 

−→
X  denotes the “future” of the sequence, i.e., 

Xt+1Xt+2 · · ·X∞ , following Crutchfield et al.7, 8.
Crutchfield and Young5 came up with an 

elegant model for such a time series: they group 
all the histories that predict the same future into 
a “causal state”. They showed how to construct 
a state machine from these causal states, which 
they call an ǫ-machine8:

where ←−x  and ←−x ′ are actual past sequences. They 
showed that this construction renders 

←−
X  sta-

tistically independent of 
−→
X  given the current 

causal state, thus making the ǫ-machine process 
Markovian. They also showed that ǫ-machines 
capture all of the information 

←−
X  contains about 

−→
X  , thus making them optimally predictive.

Shalizi and Shalizi9 developed an algorithm 
known as Causal State Splitting Reconstruction 
(CSSR) for learning an ǫ-machine representation 
from a given time series. CSSR incrementally con-
structs an ǫ-machine as a Hidden Markov Model 
(HMM)10. The HMM starts with just one hidden 
state, and more hidden states are added by using 
a statistical test to determine if the current set of 
states is insufficient to determine the distribution 
over future states.

The CSSR algorithm proceeds by evaluat-
ing longer and longer past sequences. In each 
case, it conducts a statistical test to compare the 
distribution over the next symbol. Let L be the 
length of the past sequences considered so far, 
and let � be the set of causal states estimated so 
far. CSSR, in the next step, looks at sequences 
of length L+ 1 . If a sequence of the form αxL , 
where xL is a sequence of length L and α ∈ A is 
a symbol, belongs to the same causal state as xL , 
then we would have9,

where Ŝ is the current estimate of the causal state 
to which xL belongs. This can be tested using a 
statistical test, such as the Kolmogorov–Smirnov 
test. If these two distributions are found to be sig-
nificantly different, then CSSR tries to match the 

(1)

ǫ
(←−
x
)

= {
←−
x ′|Pr

(−→
X |

←−
x
)

= Pr
(−→
X |

←−
x ′

)

},

(2)Pr(Xt |αx
L) = Pr(Xt |Ŝ = ǫ(xL)),
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sequence axL with all the other causal states esti-
mated so far. If Pr(Xt |αx

L) turns out to be signifi-
cantly different in all cases, CSSR creates a new 
causal state and assigns αxL to it. This process is 
repeated up to some length Lmax.

Parikh et al.4 adapted the causal state formal-
ism to large agent-based simulations. There are 
two key assumptions of CSSR, which are changed 
in this setting. Instead of relying on having a very 
long, stationary time series to be able to estimate 
the probability distributions, they rely on hav-
ing a very large number of agents. Second, since 
a simulation is not a stationary process, they 
construct the optimal set of clusters at each time 
step, with respect to a final outcome, as explained 
below.

In their approach, an agent-based simu-
lation is formalized as a set of agents. An 
agent is described by its current state, which 
is defined by a k-dimensional state vector 
x(t) = [x1(t), x2(t), . . . xk(t)]

⊺ , which evolves 
over time. Let di be the number of possible values 
xi can take. The simulation proceeds in discrete 
time steps from t = 0 to t = T  . Let the number 
of agents be denoted by N.

The term ‘state’ is used in a broad sense. It can 
include, e.g., the agent’s behavior, or functions of 
other agents in this agent’s neighborhood. It can 
also include temporal state, e.g., if the agent has 
ever received an emergency broadcast (in emer-
gency situations, the government may send out 
an emergency broadcast such as a text message 
with a recommended action for the given situa-
tion, for example in the nuclear disaster scenario, 
the emergency broadcast may suggest people to 
shelter in place to avoid radiation exposure), or 
the cumulative value of a variable (such as the 
total amount of radiation exposure).

The goal of summarization is to compress 
agents’ trajectories through state space to a small 
number of key states that have a significant 
impact on the outcomes of interest. Let the out-
come variable for agent a be denoted by ya . We 
assume that ya is an instance of a random vari-
able Y. The summarization algorithm for discov-
ering these causally-relevant states proceeds as 
follows.

The agent population is partitioned into a set 
of clusters, C(t) = {C1(t),C2(t), . . . ,Cm(t)} at 
each time step. Initially, all the agents are grouped 
into just one cluster, i.e., m = 1 at t = 0 . At each 

subsequent time step, the state of each agent 
changes because at least one of x1, . . . xk changes. 
The number of ways in which x can change is 
d = d1 × d2 × . . .× dk.

Consider an arbitrary cluster of agents, Ci(t) . 
At time step t + 1 , it can split into at most d 
groups, based on how each agent’s state changes. 
However, some of these changes may be irrel-
evant if they fail to have a significant impact on 
the outcome variable. To test this, each group 
derived from Ci(t) is treated as a candidate clus-
ter, denoted by CC i,j(t + 1) , where j ∈ 1 . . . d . 
At each step, Pr(Y |Ci(t)) is compared with 
Pr(Y | CC i,j(t + 1)) using the Kolmogorov–
Smirnov test. The null hypothesis (analogous to 
Eq. (2)) is,

If the null hypothesis is rejected (at 
a sufficient significance level) and 
DKL(Pr(Y |Ci(t))||Pr(Y | CC i,j(t + 1)) > δ

| CC i,j(t + 1)) > δ (where DKL denotes the Kull-
back–Leibler divergence), which is a parameter 
corresponding to effect size, then candidate clus-
ter CC i,j(t + 1) is accepted as a new cluster at 
time step t + 1 . If none of the candidate clusters 
at time step t + 1 are accepted, then Ci(t) is added 
to the set of clusters for time step t + 1.

The outcome of summarization is a decom-
position of the entire simulation output into a 
tree structure of agent clusters. Each cluster splits 
from its parent only when the corresponding 
state change is informative about the final out-
come of concern. In this sense, it is considered 
causally-relevant. This idea is relevant to our 
problem of contextualized behavior recommen-
dation because it will allow us to define contexts 
in a meaningful sense as well as a direct score for 
ranking each state, which is the change in the out-
come variable in this state. The trajectory of each 
agent traces a path through this tree structure. 
The trajectory is compressed compared to the 
full trajectory of the agent, since it retains only 
those time steps at which the cluster to which the 
agent belongs splits off from its parent cluster. 
The parameter δ allows control over how many 
new clusters are formed at each step, and conse-
quently, how much compression of trajectories is 
achieved. Setting δ to a high value will retain only 
the clusters which have a large difference in out-
comes from their parent clusters.

(3)Pr(Y | CC i,j(t + 1)) = Pr(Y |Ci(t)).
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3 �Approach
We first discuss the need to extend the method 
of the prior section to state sequences. Consider 
the following toy example, illustrated in Fig. 1. We 
have a large population of agents (say, 100,000) 
that start the simulation in state N1. The simula-
tion runs for just two time steps and at each time 
step, each agent must choose one of two actions, 
A or B. An agent that takes the same action twice 
in a row gets a reward of 1 at the end of the sec-
ond time step. An agent that takes two different 
actions in the two time steps gets a reward of 0. 
Figure 1 shows a tree structure of agent trajecto-
ries. An agent belongs to a node if it followed the 
trajectory (starting from the root node) leading 
upto that node. Nodes corresponding to trajecto-
ries that lead to a reward are marked red. In this 
example, exactly half the agents take each possi-
ble action in each state. In the figure, each node 
label consists of a node id, the number of agents 
belonging to that node, and the fraction of these 
agents that received reward. Labels on edges are 
actions.

The summarization approach of the previous 
section will proceed as follows on this example. 

It will first construct the final distribution over 
rewards for all agents grouped together. In this 
case, the distribution is [0.5, 0.5] as exactly half 
the agents end up with reward 1 (the proportion 
of agents who end up in states N4 and N7) and 
half with reward 0 (the proportion of agents who 
end up in states N5 and N6).

In the next round, the summarization algo-
rithm will consider all the agents who took action 
A in time step 1, moving from N1 to N2. The dis-
tribution of rewards for this subset of the agents 
is once again [0.5, 0.5] as exactly half of these 
agents end up with reward 1 (in state N4) and 
half with reward 0 (in state N5). Since the distri-
bution is exactly the same, the algorithm will not 
split the initial cluster from time step 0 into two 
clusters (causal states) in time step 1.

Now moving to time step 2, the summariza-
tion algorithm will once again consider all the 
agents who took action A. These are the agents 
who move from N2 to N4 in Fig. 1 and the ones 
who move from N3 to N7. Once again, exactly 
half end up with reward 1 and half with reward 
0, resulting in the same distribution of rewards. 
The same applies to agents who took action B in 
either time step 1 or time step 2.

Thus, the summarization algorithm of the 
previous section fails to create any causal state 
clusters beyond the initial one corresponding 
to time step 0, and fails to reveal the difference 
between taking the same action in two consecu-
tive time steps vs. taking two different actions.

For the behavior recommendation problem, 
suppose we want to rank behaviors at iteration 
2. In absence of any contextual information, the 
effect of behavior ‘A’ at iteration 2 is 0.5 as half 
of the agents who were engaged in behavior ‘A’ at 
iteration 2 received reward. Similarly the effect of 
behavior ‘B’ is also 0.5 and hence both behaviors 
are ranked the same. Instead, if we could take into 
account the context information about the previ-
ous behavior and rank them separately for each 
possible context, behavior ‘A’ would be ranked 
higher if the previous behavior was also ‘A’ and 
vice-versa.

A more physically relevant (hypothetical) 
example is, in the nuclear blast scenario, shelter-
ing at any given time step may not have any sig-
nificant effect, but sheltering for a sufficiently 
long period of time may shield from radiation 
and prevent radiation sickness. Such causally-
relevant sequences of states also provide the 

Figure 1: Tree structure of trajectories for exam‑
ple 1. Here, each node label consists of a node 
id, the number of agents belonging to that node, 
and the fraction of these agents that received 
reward. Labels on edges are actions. Nodes cor‑
responding to trajectories that lead to a reward 
are marked red. Here, neither of the actions ‘A’ or 
‘B’ at time steps 2 matter unless we had the infor‑
mation about their previous behavior and hence 
one needs to take into account this context infor‑
mation while ranking behaviors.
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required context and hence, we adapt the sum-
marization algorithm to not only capture caus-
ally-relevant states but also causally-relevant 
sequences. These causally-relevant sequences 
are organized in a tree structure, which is then 
matched against the query for contextual ranking 
of behaviors and discovering the additional con-
text required.

3.1  Finding Causally‑Relevant State 
Sequences

We now adapt the summarization algorithm to 
capture effects of a sequence of states (or actions). 
Intuitively, the only change from the algorithm 
of Sect. 2 is that we need to keep track of state 
sequences when testing if new clusters need be 
formed. This process is explained in detail below.

Extending the notation established in Sect. 2, 
let x(t, t + k) = x(t)x(t + 1) · · · x(t + k) 
denote the agent trajectory from time step 
t to t + k . As before, at each time step t, 
agents are partitioned into a set of clusters, 
C(t) = {C1(t),C2(t), . . . ,Cm(t)} . Initially, all 
the agents are grouped into just one cluster, i.e., 
m = 1 at t = 0 . As time progresses, some of these 
clusters may split into more clusters as described 
in the next paragraphs. Along with each clus-
ter Ci(t) , we now also associate the last time step 
when this cluster was split from its parent cluster, 
denoted as Ci(t).tls . For the initial cluster, C1(0) at 
time step t = 0 , C1(0).tls = 0.

Consider an arbitrary cluster of agents Ci(t) 
at time step t. At the next time step, state of an 
agent can change in d possible ways and hence 
to evaluate possible effects of each change, the 
summarization algorithm of Sect. 2 creates d 
candidate clusters. Our goal is to not only to find 
causally-relevant states but also the causally-
relevant state sequences, hence while creating 
candidate clusters at the next time step t + 1 , we 
consider increasingly longer past state sequences, 
x(t, t) , x(t − 1, t) , x(t − 2, t) , and so on. When-
ever a cluster splits from its parent cluster, any 
effects that the state variables upto that time step 
had on the final outcome have already been cap-
tured. So while creating candidate clusters for 
cluster Ci(t) , we only need to look at the past 
state sequences upto time step Ci(t).tls + 1 . The 
candidate cluster associated with state sequence 
x(t − k , t) consists of all agents from its parent 
cluster whose trajectory suffixes match the state 

sequence x(t − k , t) . The total number of states at 
any time step t is d and hence for Ci(t) , the maxi-
mum number of candidate clusters at time step 
t + 1 are dt+1−Ci(t)·tls . The state sequence, asso-
ciated with each candidate cluster CC i,j(t + 1) 
where j ∈ [1 . . . d(t+1−Ci(t)·tls)] , is denoted by 
CC i,j(t + 1).seq.

To check if the state sequence associated 
with a candidate cluster CC i,j(t + 1) affects the 
final outcome, we compare the probability dis-
tribution over the final outcomes for this can-
didate cluster to the probability distribution 
over the final outcomes for its ancestor cluster 
at time step just before the start time of the state 
sequence associated with this candidate cluster 
(i.e., at time step t + 1− l where l is the length 
of CC i,j(t + 1).seq ). Let this ancestor cluster 
be denoted by C ′

i (t + 1− l) . We use the Kol-
mogorov–Smirnov (KS) test to evaluate the null 
hypothesis that the associated state sequence does 
not affect the probability distribution over the 
final outcomes, as shown below:

where l is the length of CC i,j(t + 1).seq . As 
before, there is also a threshold δ on the “effect 
size” which is measured as the total varia-
tion distance between Pr(Y | CC i,j(t + 1)) and 
Pr(Y |C ′

i (t + 1− l)) . For each candidate cluster 
CC i,j , we associate its total variation distance 
from its ancestor cluster as CC i,j .τ . If the null 
hypothesis is rejected at a level α (say 0.001) and 
the total variation distance ( CC i,j .τ ) between 
Pr(Y | CC i,j(t + 1)) and Pr(Y |C ′

i (t + 1− l)) is 
greater than δ , then candidate cluster CC i,j(t + 1) 
is added to a set of candidate splits CS for cluster 
Ci(t).

Since we look at increasingly longer past 
sequences, the state sequence associated with 
one candidate cluster may be a suffix of the 
state sequence associated with some other clus-
ter. Hence there may be an overlap (in terms of 
agents associated with these sequences) among 
some of these candidate splits. So among the 
overlapping candidate splits, we select the can-
didate split that has the most effect (i.e., the 
candidate split that changes the probability dis-
tribution over the final outcomes the most) 
using algorithm ChooseFromCandidateSplits 
(as shown in Algorithm 2).

(4)
Pr(Y | CC i,j(t + 1)) = Pr(Y |C ′

i (t + 1− l))
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In case of a tie in the effect size, we select the 
candidate split that requires the least amount of 
information (i.e., the candidate split that has 
the shortest state sequence associated with it) to 
predict the final outcomes. Hence the algorithm 
ChooseFromCandidateSplits first sorts all 
candidate splits by their total variation distances 
in descending order and length of the associated 
sequence in ascending order. Also, two candidate 
splits can overlap if and only if the state sequence 
associated with one of them is a suffix of the 
state sequence associated with the other candi-
date split. Hence the algorithm processes each 
candidate split in sorted order (i.e., starting with 
the candidate split with the highest total varia-
tion distance) and checks if the state sequence 
associated with it is a suffix of the state sequence 
associated with any of the candidate splits already 
accepted as the clusters and vice-versa. If not, 
then the current candidate split does not overlap 
with any of the candidate splits which are already 
accepted as clusters and hence is accepted as a 
new cluster and added to the set of clusters S as 
derived from the parent cluster prevC at time t. 
We also need to track the agents from the previ-
ous cluster prevC for whom the associated state 
sequence did not affect the probability distribu-
tion over the final outcomes (i.e., agents from the 
previous cluster prevC that do not belong to any 
of the clusters (set of clusters S) derived from it) 
for future computation and hence cluster c′ is cre-
ated of such agents. Finally, both set of clusters S 
and c′ are added to the set of clusters at time t, 
C(t).

As before, the entire simulation is decom-
posed into a tree structure of agent clusters. 
Now each cluster splits only when the change 
associated with corresponding state sequence is 
informative about the final outcome of interest. 
The trajectory of each agent traces a path through 
this tree structure.A With each node (cluster) 

in the tree, in addition to the associated state 
sequence, we also associate the time step at which 
it was split from its parent cluster and expected 
change (which serves as the score of the associ-
ated behavior sequence in that context) in the 
final outcomes (as compared to the parent clus-
ter) that it lead to.

Once again, the parameter δ allows us to con-
trol how many new clusters are formed at each 
step, and consequently, how much compression 
of trajectories we achieve. Setting δ to a high value 
will retain only the clusters which have a large dif-
ference in outcomes from their parent clusters. 
We also set the minimum size of clusters be 30 so 
that the number of samples in a cluster is enough 
for performing a statistical test. This poses a limit 
on splitting and hence identifying states that 
do not appear enough number of times. The 
algorithm for extracting causally-relevant state 
sequences is presented using pseudo-code in 
Algorithm 1.

Figure 2: Causal state decomposition of the toy 
example. Each node in the tree is a causal state. 
The number in parentheses is the time step and 
the suffix is a numbering of the causal states in 
that time step. The second line in each box is 
the number of agents in that causal state, and 
the third line is the fraction of agents that end up 
with reward 1. The labels on the edges show the 
behavior sequences associated with the corre‑
sponding causal states.

A It may seem that similar to the CCSR algorithm9, we could 
potentially merge all clusters that lead to the same probability 
distribution over the final outcomes at each time step t. How-
ever, as shown by a toy example in Appendix C of11, merging 
clusters this way could potentially lead to suboptimal causal 
state sequences in the following time steps. Also, merging 
clusters would lead to nodes with multiple parents (i.e., sim-
ulation would be decompose into a graph that is not a tree) 
and the behavior recommendation algorithm described in 
Sect. 3.3, requires a tree structure to extract ancestor infor-
mation (or historical context) for the clusters matching the 
query.
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Algorithm 1: Algorithm for extracting causally-relevant state se-
quences.
input : xa(1, T ), ya, where a ∈ 1 . . . N : trajectories up to time step

t and outcome of interest for each agent a
output : C(t), t ∈ 0 . . . T : a set of clusters for each time step,

organized as a tree over time
parameters
:

α: significance level for Kolmogorov-Smirnov (KS) test

δ: “effect size” threshold on total variation distance

Initialization: C(0) ← all agents
for t ← 1 to T do

for each prevC in C(t− 1) do
maxL ← t− prevC.tls
CS ← φ
for l ← 1 to maxL do

j ← 1
for each distinct x(t− l, t) for agents ∈ prevC do

CCi,j(t) ← {a|a ∈ prevC, a matches x(t− l, t)}
CCi,j(t).seq ← x(t− l, t)
Test the null hypothesis (Eqn. 4) for candidate cluster
CCi,j(t) and its ancestor cluster C ′

i(t− l) at time step
t− l

if null hypothesis is rejected at level α then
τ ← TotalVariationDist(Pr(Y |C ′

i(t−
l)), P r(Y |CCi,j(t)))
CCi,j(t).τ ← τ
CCi,j(t).tls ← t
if τ > δ then

CS ← CS ∪ CCi,j(t)

j ← j + 1

S ← ChooseFromCandidateSplits(CS)
c′ ← {a|a ∈ prevC and �c′′ ∈ S s.t. a ∈ c′′}
c′.tls ← prevC.tls
C(t) ← C(t) ∪ S ∪ c′
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Algorithm 2: ChooseFromCandidateSplits.
input : CS: a set of candidate splits which may overlap with each

other
output : C: a set of non-overlapping clusters

Sort CS by CCi,j .τ in descending order and length of CCi,j .seq in
ascending order

C ← φ
while CS �= φ do

s ← CS.first()
l1 ← len(s.seq)
included ← False
for c′in C do

if included = False then
l2 ← len(c′.seq)
if l1 < l2 then

d ← l2− l1
if c′.seq[d, d+ l1) = c.seq(0, l1) then

included ← True

else if l2 < l1 then
d ← l1− l2
if c.seq[d, d+ l2) = c′.seq(0, l2) then

included ← True

if notinlcuded then
C ← C ∪ s

significantly different from the distribution asso-
ciated with C1(0) . The distribution is [0, 1] for 
candidate clusters CC 1,1(2) and CC 1,4(2) , since 
all the agents in these clusters get a final reward of 
1, and it is [1, 0] for candidate clusters CC 1,2(2) 
and CC 1,3(2) , since all the agents in these clusters 
get a final reward of 0. Thus, all of these candidate 
clusters are accepted as causal states as shown in 
Fig. 2 ( C1(2) through C4(2)).

Note that there are no causal states at time 
step 1. This is because the action taken at time 
step 0 actually has no effect on the probability of 
getting a reward at time step 2. However, the algo-
rithm correctly identifies the four possible causal 
paths through the simulation, where the earlier 
simulation summarization algorithm fails.

3.3  Ranking Behaviors
We now present our approach for ranking 
behaviors for generating behavioral recommen-
dations. The algorithm for contextual ranking 
of behaviors is as shown in Algorithm 3. It takes 
causal tree T (tree of causally-relevant state 
sequences generated by Algorithm 1 which pro-
vides the context required for ranking behavior) 
and a query q as input. Each cluster (or node) in 

3.2  Toy Example Redux
We now revisit the toy example from Fig. 1 to 
show how it is handled by the extended summari-
zation algorithm from Sect. 3.1.

As before, the algorithm starts with all the 
agents grouped into one cluster at time step 0, 
i.e., C(0) = {C1(0)} and we calculate the distri-
bution over final outcomes, which comes out 
to be [0.5, 0.5], since exactly half the agents end 
with reward 0 and 1, respectively, as we have 
seen before. At time step 1, two candidate clus-
ters are created, corresponding to the agents 
who do actions A and B. These are denoted 
as CC 1,1(1) and CC 1,2(1) , respectively, where 
CC 1,1(1).seq = A and CC 1,2(1).seq = B . How-
ever, the distribution over final outcomes for 
each of these candidate clusters is [0.5, 0.5], since 
within each of these clusters we find that, once 
again, exactly half the agents end up with reward 
0 or 1. Since the final distribution is unchanged, 
we discard these candidate clusters.

At time step 2, since we are now tracking state 
sequences, we now create four candidate clus-
ters, CC 1,1(2) with CC 1,1(2).seq = AA , CC 1,2(2) 
with CC 1,2(2).seq = AB and so on, as illustrated 
in Fig. 2. The distribution over final reward for 
each of these clusters is evaluated and found to be 
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the causal tree contains information about the 
state sequence associated with it, the time stamp 
when it was split from the previous cluster, and 
its score (the expected change in the final out-
come that it (or associated state sequence) lead 
to). Query q specifies time step t when we want 
to rank behaviors and optionally partial con-
text (values for some of the state variables), for 
example, in a nuclear disaster simulation, the 
query may ask to rank behaviors after 1 h for 
people who are injured and are within 1 mile of 
the blast area. Let qCls denote the set of clusters 
matching the given query.

The idea behind behavior recommendation 
is simply to rank the clusters (causal states) in 
qCls by their scores. The corresponding seqs are 
the recommended behavioral partial ordering. 
We explain this in a little more detail below to 
provide some bookkeeping details.

The complete context for each of the clusters 
c ∈ qCls is the path from the root of the tree T 
to c. However, some of the clusters in qCls may 
have some common ancestors and the context 
associated with these common ancestors does 
not really differentiate these clusters. Hence, to 
get the context that differentiates these clusters 
we only need to look back up to their least com-
mon ancestor (lca) of all the clusters in qCls.

The only clusters that share the same context 
are siblings and hence they need to be ranked by 

their scores in descending order. The common 
context for siblings is the path from lca to their 
parent. Let length of the context for cluster c 
be defined as sum over length of state sequence 
associated with each node n in the path from 
lca to its parent. So higher length gives more 
detailed context information. For clusters which 
are not siblings, they may have different length 
of context and it may happen that the context 
for one is subset of the other. So while rank-
ing non-siblings, ideally we want to rank clus-
ters with more detailed context first. So let 
qClsSorted denote the set of clusters qCls sorted 
in descending order by lengths of their contexts.

The while loop in Algorithm 3 processes clus-
ters in this sorted order. It first extracts the cluster 
c with the most detailed context information (ties 
are broken arbitrarily). Let p be the parent of c. 
The context x for c is the path from lca to p and 
hence state sequence information associated with 
each node in this path is added to the context x. 
Cluster c share this context x with all of its sib-
lings sbl and hence they are ranked by their score 
in descending order and this ranking is added 
to the context x. Since clusters associated with 
all siblings are already ranked, they are removed 
from the qClsSorted and context x is added to the 
list of contextual rankings CL.

Figure 3: The detailed study area (DSA).
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Algorithm 3: Algorithm for ranking behaviors.
input : Causal tree T where each node is labeled with causal

state, iteration when this causal state was split, and score
(expected change in the expected outcome that the
associated causal state lead to)
Query q

output : list CL of contexts and associated ranking for context
matching query in descending order of the length of
context

qCls ← {c|c matches q}
lca ←leastCommonAncestor(qCls)
qClsSorted ← sort qCls by length of their context in descending
order, where length of the context of
cls =

∑

n∈shortestPath(lca,parent(cls)) length of causal state of n
CL ← φ
while qClsSorted is not empty do

c ← qClsSorted.first()
p ← c.parent
path ←shortestPath(lca, p)
x ← φ
for n in path do

x ← x ∪ n
sbl ← p.children()
sblR ← sort sbl in descending order by their scores
x.ranking ← sblR
CL ← CL+ x
for n in sbl do

qClsSorted.remove(n)

return CL

3.4  Behavior Recommendation in the Toy 
Example

Returning to our toy example, the tree T is given 
by Fig. 2. Suppose the query q :=‘t = 2 ’, i.e., 
it asks for a ranking of behaviors at time t = 2 . 
There are four nodes in Fig. 2 matching t = 2 : 
qCls = {C1(2),C2(2),C3(2),C4(2)} . The least 
common ancestor of these four nodes is the initial 
node, C1(0) . The length of the context for each of 
the four nodes in qCls is 2, so we can process them 
in any order. The context x for each of these nodes 
is the path from the lca to their parent (which is 
also C1(0) ). Thus x = ε (the empty string). Rank-
ing the four nodes by their score gives a par-
tial order: [{C1(2),C4(2)}, {C2(2),C3(2)}] . The 
corresponding behavioral recommendation is 
[{AA,BB}, {AB,BA}] , i.e., that starting from the 
beginning of the simulation, it is better to do AA 
or BB than to do AB or BA.

Note that if the query were q :=‘t = 1 ’, i.e., to 
rank behaviors at time t = 1 , the output of the 
algorithm would be to express no preference over 
behaviors (i.e., the output would be the empty 
set), since there are no causal states at t = 1 . This 
is the expected output also, since both behaviors 

are equally good at this time step (they are equally 
likely to lead to a reward of 1).

4 �Large‑Scale�Disaster�Simulation
Next, we apply our contextual behavioral rank-
ing algorithm to a very complex multiagent sim-
ulation of the aftermath of a disaster in a major 
urban area, developed by Barrett et al.12. We 
briefly describe the simulation below before dis-
cussing our experiments with ranking behaviors.

4.1  Scenario
The scenario is a hypothetical detonation of a low 
yield (10 kT) improvised nuclear device at ground 
level on a weekday morning in Washington DC at 
the corner of 16th and K street. The blast causes 
thermal fluence as well as radioactive fallout cloud 
which spreads mostly eastward and east-by-north-
eastward. The simulation focuses on a region 
called the detailed study area (DSA) as shown 
in Fig. 3. It is the area under the largest thermal 
effect polygon (circle) and the area under the wid-
est boundary of the fallout contours within DC 
region county boundaries (which includes the 
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District of Columbia and surrounding counties 
from neighboring states Virginia and Maryland).

In addition to the human casualties, the blast 
also causes significant damage to the infrastruc-
ture including roads, buildings, cellphone com-
munication towers, the transportation network, 
and the power system. The simulation uses 
detailed data about these infrastructures to model 
blocked roads and injuries due rubble and debris, 
amount of radiation protection due to building 

construction material, reduction in radiation 
protection due to building damage, altered move-
ments due to road damage and traffic jams, and 
cellphone call and text message capacity.

4.2  Agent Design and Behavior
Initial health and behavior of an agent depends 
upon its demographics as well as its location in 
the immediate aftermath of the disaster. For 

Table 1: Simulation variables used in the experiments below.

Variable name Values Variable full name

HS 0: dead Agent health status

1-4: severe to moderate injury

5-7: mild injury to full health

B 1: household reconstitution Agent behavior

2: evacuation

3: shelter-seeking

4: healthcare-seeking

5: worry

6: aid & assist

EBR 0: no Emergency broadcast 
received?

1: yes

E 0: low Cumulative radiation expo-
sure

1: medium

2: high

3: very high

TR 0: no Treatment received?

1: yes

D 0: within 0.6 miles Distance from ground zero

1: between 0.6 and 1 mile

2: more than 1 mile

All people with HS=4 at t=6

Expanded Context:
If HS=5, EBR=0, B=4, 
E=0, Tr=0, and D=2 at t=1
In context ranking of 
behaviors:
1. All other behaviors.
2. HS=4, EBR=0, B=5, 

E=0, Tr=0, D=2 at t=6.

Expanded Context:
If HS=5, EBR=0, B=5, 
E=0, Tr=0, and D=1 at t=1
In context ranking of 
behaviors:
1. All other behaviors.
2. HS=4, EBR=0, B=5, 

E=0, Tr=0, D=1 at t=6.

Expanded Context:
If HS=5, EBR=0, B=5, 
E=2, Tr=0, and D=0 at t=1
In context ranking of 
behaviors:
1. HS=4, EBR=0, B=5, 

E=2, Tr=0, D=1 at t=6.
2. All other behaviors.

Expanded Context:
If HS=5, EBR=0, B=4, 
E=2, Tr=0, and D=0 at t=1
In context ranking of 
behaviors:
1. HS=54444, 

EBR=00000,    
B=44444, E=22222, 
Tr=00000,D=11122
from t=2 to 6.

2. All other behaviors.

Given context

Figure 4: Results for behavioral ranking for query 1. Please refer to Table 1 for state variable abbrevia‑
tions and values. The ranking shown are from best to worst.
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example, agents close to the blast area likely to 
have low health as compared to the agents away 
from the blast area. Similarly, if an agent knows 
about one of its family members being injured, 
it may try to go towards that family member’s 
location. Initial location and demographics 

information are obtained from a synthetic popu-
lation, which is a high fidelity, individual-based 
representation of the population of a region 
along with their demographic (e.g, age, income, 
family structure) and daily activity-related infor-
mation (e.g. type of activity, location, start time). 
A detailed description about creating synthetic 
populations can be found in13.

Apart from the demographics and location, 
agents are defined by a number of other vari-
ables like health (modeled on a 0–7 range where 
0 is dead and 7 corresponds to full health), behav-
ior (described in the next paragaph), whether 
the agent is out of the affected area, whether the 
agent is the group leader, whether the agent has 
received an emergency broadcast (EBR), whether 
the agent is at a healthcare location, whether the 
agent has received treatment, time of the last call, 
if the last call was successful, the agent’s exposure 
to radiation, agent’s distance from ground zero, 
etc.

Each agent also keeps track of knowledge 
about family members’ health states which is 
updated whenever it makes a successful call to a 
family member or meets him/her in person. Fol-
low-the-leader behavior is also modeled, i.e., once 

All people with HS=7 and D<2 at t=6

Expanded Context:
If HS=7, EBR=0, B=1, 
E=1, Tr=0, and D=1 at t=1
In context ranking of 
behaviors:
1. All other behaviors.
2. HS=7, EBR=0, B=1, 

E=2, Tr=0, D=1 at t=6.

In context ranking of 
behaviors:
1. All other behaviors.
2. HS=7777, EBR=0000, 

B=1111, E=0000, 
Tr=0000, D=1110 from 
t=3 to 6.

3. HS=777, EBR=000, 
B=111, E=000, Tr=000, 
D=100 from t=4 to 6.

4. Hs=777, EBR=000, 
B=111, E=001, Tr=000, 
D=221 from t=4 to 6.

5. HS=77, EBR=00, 
B=11, E=01, Tr=00, 
D=11 from t=5 to 6.

Given context All people with HS=7 and D<2 at t=6

Expanded Context:
If HS=7, EBR=0, B=1, 
E=1, Tr=0, and D=1 at t=1
In context ranking of 
behaviors:
1. All other behaviors.
2. HS=7, EBR=0, B=1, 

E=2, Tr=0, D=1 at t=6.

In context ranking of 
behaviors:
1. All other behaviors.
2. HS=7777, EBR=0000, 

B=1111, E=0000, 
Tr=0000, D=1110 from 
t=3 to 6.

3. HS=777, EBR=000, 
B=111, E=000, Tr=000, 
D=100 from t=4 to 6.

4. Hs=777, EBR=000, 
B=111, E=001, Tr=000, 
D=221 from t=4 to 6.

5. HS=77, EBR=00, 
B=11, E=01, Tr=00, 
D=11 from t=5 to 6.

Given context

Figure 5: Results for behavioral ranking for query 
2. Please refer to Table 1 for state variable abbre‑
viations and values. The ranking shown are from 
best to worst.

All people with HS=7, E=1 or 
E=2, and D=2 at t=6

Expanded Context:
If HS=777, EBR=000, 
B=111, E=001, Tr=000, 
and D=222 from t=2 to 4
In context ranking of 
behaviors:
1. All other behaviors.
2. HS=7, EBR=0, B=1, 

E=2, Tr=0, D=2 at t=6.

Expanded Context:
If HS=777, EBR=000, 
B=551, E=001, Tr=000, 
and D=222 from t=2 to 4
In context ranking of 
behaviors:
1. All other behaviors.
2. HS=7, EBR=0, B=1, 

E=2, Tr=0, D=2 at t=6

Expanded Context:
If HS=7, EBR=0, B=5, 
E=1, Tr=0, and D=1 at t=1
In context ranking of 
behaviors:
1. All other behaviors.
2. HS=7, EBR=0, B=1, 

E=2, Tr=0, D=2 at t=6.

Expanded Context:
If HS=7, EBR=0, B=5,
E=1, Tr=0, and D=2 at t=3
In context ranking of 
behaviors:
1. HS=7, EBR=0, B=3,

E=1, Tr=0, D=2 at t=6.
2. All other behaviors.

Expanded Context:
If HS=7, EBR=0, B=1, 
E=1, Tr=0, and D=2 at t=3
In context ranking of 
behaviors:
1. HS=7, EBR=0, B=3, 

E=1, Tr=0, D=2 at t=6.
2. HS=777, EBR=000, 

B=115, E=111, Tr=000, 
D=222 from t=4 to 6.

3. All other behaviors.

Expanded Context:
If HS=7, EBR=0, B=1, 
E=1, Tr=0, and D=1 at t=1
In context ranking of 
behaviors:
1. All other behaviors.
2. HS=7, EBR=0, B=1, 

E=2, Tr=0, D=2 at t=6.

In context ranking of 
behaviors:
1. All other behaviors.
2. HS=777, EBR=000, 

B=533, E=001, 
Tr=000, D=222 from 
t=4 to 6.

3. HS=777, EBR=100, 
B=133, E=001, 
Tr=000, D=222 from 
t=4 to 6.

4. Hs=777, EBR=100, 
B=533, E=001, 
Tr=000, D=222 from 
t=4 to 6.

5. HS=77, EBR=00, 
B=33, E=11, Tr=00, 
D=22 from t=5 to 6.

Expanded Context:
If HS=7, EBR=0, B=1, 
E=1, Tr=0, and D=2 at t=2
In context ranking of 
behaviors:
1. HS=7777, EBR=0000, 

B=1115, E=1111, 
Tr=0000, D=2222 from 
t=3 tp 6.

2. Hs=777, EBR=000, 
B=113, E=111, Tr=000, 
D=222 from t=4 to 6.

3. HS=777, EBR=100, 
B=533, E=111, Tr=000, 
D=222 from t=4 to 6.

4. All other behaviors.

Given context

Figure 6: Results for behavioral ranking for query 3. Please refer to Table 1 for state variable abbrevia‑
tions and values. The ranking shown are from best to worst.
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family members encounter each other, they move 
together from there on. One of them becomes the 
leader and others follow him. This kind of behav-
ior is well-documented in emergency situations. 
Also when a person is rescued by someone he 
travels with that person until he reaches a hospi-
tal or meets his family members.

Agent behavior is conceptually based on the 
formalism of decentralized semi-Markov deci-
sion process (Dec-SMDP) with communication14 
using the framework of options15. In this frame-
work, high level behaviors are modeled as options, 
which are policies with initiation and termination 
conditions. These high level options correspond 
to low level action plans. Six behavioral options 
are modeled: household reconstitution, evacua-
tion, shelter-seeking, healthcare-seeking, worry, 
and aid and assist. Low level actions are: call, text 
or move. Whom to call or text and where to move 
depends upon the current behavior option, e.g., 
in household reconstitution option, a person 
tries to move towards a family member and/or 
call family members while in healthcare-seeking 
option, a person tries call 911 or move towards a 
hospital. These mappings from high level behav-
iors to low level actions model dependancies of 
behaviors with infrastructural models. Detailed 
descriptions of the behavior model can be found 
in3, 16.

4.3  Experiments
Next, we present results of applying our contex-
tual ranking algorithm to the disaster simulation. 
Agents and locations that they visit are repre-
sented by about 40 variables which could take 
binary, categorical or continuous values, leading 
to a very large state space. Here, we focus on six of 
these variables as context as described in Table 1. 
We use a threshold on effect size, δ = 0.5 , for 
extracting causally-relevant states and to create 
a causal tree. Finally, we apply our ranking algo-
rithm to rank behaviors in multiple contexts and 
show that it can identify meaningful rankings as 
well as any additional context that may affect the 
rankings as shown in the queries below.

Query 1 Rank behaviors after 1 h (time step 
6) for all people who are moderately injured (i.e., 
with health state 4).

As shown in Fig. 4, the results show that for 
people who started close to ground zero (within 
0.6 miles of the blast area) and with high expo-
sure to radiation early on, if they have man-
aged to get farther from ground zero (farther 
than 1 mile) then healthcare-seeking is the best 
behavior but if they are still within 1 mile of 

ground zero, then worry is the best behavior. In 
the worry behavior people run outside looking 
for information, call 911 or go to the nearest 
healthcare location. If the 911 call is successful, 
some of them may be transported to the nearest 
healthcare location. Since the radiation expo-
sure is already high, reaching healthcare loca-
tion and receiving treatment is the best thing 
for them to do.

On the other hand, for people who started 
farther than 0.6 miles from ground zero and 
have low radiation exposure after 1 h, all behav-
iors are better than worrying. This is because 
the worry behavior may make them run outside 
looking for information or move towards near-
est healthcare location which would then expose 
them to more radiation.

Query 2 Rank behaviors after 1 h (time step 
6) for all people who are close to ground zero 
(within 1 mile) but in full health (health state 
7).

The results (Fig. 5) show that for people who 
are in full health and close to ground zero, house-
hold reconstitution is ranked lower than all other 
behaviors, irrespective of their radiation expo-
sure. This is because in household reconstitution 
behavior, people call or move towards their fam-
ily members. This may lead them to be exposed 
to more radiation, which may still be quite high 
early on.

Query 3 Rank behaviors after 1 h (time step 6) 
for all people who are far from ground zero (i.e., 
further than 1 mile from ground zero) and in full 
health (health state 7) though with medium or 
high radiation exposure (E = 1 or 2).

As shown in Fig.  6, the results show that for 
people who are far from ground zero and in full 
health, though with high radiation exposure, 
household reconstitution behavior is ranked the 
worst among all behaviors as it makes them go 
outside and exposed to more radiation. For peo-
ple with medium exposure and who were worry-
ing early on, shelter-seeking (which also includes 
sheltering in place) is better than all other behav-
iors. For people with medium exposure and 
who were engaged in household reconstitution 
behavior previously, shelter-seeking and worry 
behaviors are ranked better than all other behav-
iors. This is because these behaviors shield them 
from radiation exposure or lead to a healthcare 
location.

Results also show that for people who were 
engaged in shelter-seeking behavior (which 
includes sheltering in place) in the previous time 
step and whose radiation exposure has increased 
from low to medium in the current time step, 
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all other behaviors are better than sheltering in 
place. Here, increase in radiation exposure while 
engaged in shelter-seeking behavior suggests 
that these people are either sheltering in place at 
a location that does not provide enough protec-
tion against radiation (due to the damage to the 
building or type of construction material) or they 
are still searching for shelter and hence exposed 
to radiation.

As seen from above query results, our algo-
rithm finds meaningful ranking of behaviors as 
well as any additional context that may affect the 
behavioral ranking. Here, we have applied the 
contextualized behavior ranking algorithm to the 
output of one simulation run. However, the algo-
rithm can be easily applied to the output of mul-
tiple simulation runs. Parikh et al.11 compared the 
results of simulation summarization from their 
previous paper4 for single and multiple simulation 
runs and the results were quite similar. We believe 
similar results will hold for behavior ranking as it 
uses the output of the simulation summarization 
algorithm (i.e., the causal tree) for ranking.

5 �Conclusion
Large-scale complex data-driven agent-based 
simulations are becoming increasingly common 
for studying complex social phenomena such 
as disasters. A clear benefit of this approach is 
that the simulations can be very realistic, incor-
porating many sources of data, including proce-
dural data. Agent-based simulations also yield 
a natural and human-comprehensible perspec-
tive of the complex dynamic social interactions. 
However, their very complexity also makes 
them harder to understand, since they produce 
very large, richly-structured data sets as output. 
Managing this double-edged challenge in mod-
eling requires careful design and analysis17. One 
approach to addressing this issue is to develop 
new methods for extracting useful information 
from such simulation-generated data sets. The 
earlier work of Parikh et al.4 and our current 
work are both in this spirit.

In this work, we described an approach 
to generating contextualized behavioral rec-
ommendations from a complex agent-based 
simulation. This is really a question from the 
perspective of an end-user such as an emer-
gency planner. Faced with a complex simula-
tion, which purports to model a hypothetical 
disaster, they may well wish to query the results 
both as a means of developing response and 
preparedness plans, and also as a means of 
developing trust in the model itself. In this 

sense, the behavioral recommendations also 
serve as a kind of explanation that shows the 
user the situations in which the same behavior 
can have different outcomes.

There are many possibilities for future work 
along these lines. The stochasticity that is built 
into the simulation will naturally result in some 
variability from one run to another, so an open 
question is, are these behavioral recommen-
dations robust to this variability? How can we 
ensure that? There may also be variability of out-
comes from agent to agent even though they have 
the same context (i.e., agents that end up in the 
same cluster). Some of this variability may be 
due to the selection of a subset of variables for 
extracting causally-relevant state sequences which 
may be necessary due to a large state space of a 
simulation. Could we use this variability to refine 
the set of variables selected? Similarly, robust-
ness to parameter choices, such as the effect size 
parameter, also need to be studied.

Another useful direction of research is to 
work with actual response planners and see which 
aspects of the disaster they find the most useful to 
focus on and how behavioral recommendations 
shape their planning efforts. This requires devel-
oping appropriate user interfaces that would allow 
exploration of the simulation results, the corre-
sponding causal states, as well as the behavioral 
recommendations in an intuitive and useful way.

Given the proliferation of agent-based simula-
tion applications, we believe that questions such 
as the one addressed here will become increas-
ingly important in ensuring that simulations are 
built with recognition of their use by non-com-
puter scientists.
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