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Phase‑field Modeling of Phase Transformations 
in Multicomponent Alloys: A Review

1 Introduction
Material properties are complex functions of 
their structural hierarchy which span multiple 
length scales. The most fundamental instance 
of structure in a material is the crystal struc-
ture with the associated length scales of unit cell 
dimensions, which are of the order of several ang-
stroms (Å). The crystal structure is determined 
through the interactions of constituent atoms at 
the level of their electronic clouds and hence is 
predominantly decided by the material chemis-
try. Other than optimizing the choice of chemical 
components and their relative fractions, very lit-
tle can be done to alter the crystal structure and 
the associated length scale. Material properties 
like melting point, elastic moduli, specific heat 
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Abstract | Almost all alloys of engineering importance are multicompo‑
nent in character. Multicomponent alloys are subject to complex inter‑
play of thermodynamic and kinetic parameters and display a rich variety 
of microstructural features which are not seen in binary alloys. Achieving 
microstructural control of multicomponent alloys is central to their effi‑
cacy in specific applications. Unraveling the chemistry‑thermomechan‑
ical processing‑microstructure relationships in multicomponent alloys 
only through experiments have been proven to be a resource intensive 
approach. Quantitative simulations of microstructural evolution in multi‑
component alloys using the technique of phase‑field modeling can sig‑
nificantly offset the experimental burden and provide an energy efficient 
and sustainable framework for alloy design. In this review, we focus 
on those phase‑field models which can consider the evolution of multi‑
ple phases simultaneously in a multicomponent system and attempt to 
understand the history of their emergence as tools of predictive value. 
We briefly review the studies conducted with such multiphase, multi‑
component phase‑field models and conclude with a commentary on the 
future role of phase‑field modeling towards the sustainable development 
of novel multicomponent alloys.
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capacity, etc., are determined by the underlying 
crystal structures.

In addition to the crystal structure, a mate-
rial also possesses a microstructure and as the 
name suggests it exists over length scales ranging 
from several microns ( µm ) to several hundred 
µm and is defined by the distribution of differ-
ent phases possessing distinct crystal structures 
and/or compositions. The phase morphologies, 
volume fractions, and the arrangement of phases 
relative to each other are the critical parameters 
which define the microstructures. Additionally, 
a microstructure can also be made up of grains 
of the same phase which differ from each other 
in terms of crystal orientations. In that case, 
the grain sizes and their orientation distribu-
tions become the parameters of importance. In 
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contrast to the material properties determined by 
crystal structures, properties like strength, duc-
tility, toughness, creep resistance, etc., which are 
governed by the microstructural states of mate-
rials, demonstrate a strong length scale depend-
ence. For example, a finely spaced distribution 
of second phase precipitates in an alloy usually 
provides much more effective resistance to dislo-
cation glide and concomitantly leads to a larger 
improvement in alloy strength in comparison to 
a coarser distribution. As microstructural length 
scales can be modified by thermomechanical pro-
cessing, it offers another avenue to design micro-
structures in addition to controlling the alloy 
chemistry.

Pure materials made up of a single chemical 
component possess properties which are rarely 
useful in engineering applications. Alloying offers 
the simplest route to enhance material proper-
ties leveraging the synergy of interactions of dif-
ferent atoms with each other. With an increase in 
the number of chemical components, there is a 
consequent rise in the thermodynamic complex-
ity of the system with the possibility of multiple 
phases coexisting with each other. Furthermore, 
the necessity of employing a diffusivity matrix to 
encapsulate all the kinetic parameters in a mul-
ticomponent alloy is proof of its kinetic com-
plexity. The interplay of thermodynamic and 
kinetic properties of a multicomponent system 
allows the emergence of a wide variety of micro-
structural features in them which have not been 
reported in binary alloys. Consequently, multi-
component alloys display exciting combinations 
of properties that are rarely achieved in binary 
alloys motivating extensive research into their 
design and development.

Optimization of the alloy chemistry and 
processing conditions through experiments to 
achieve the perfect microstructure is an itera-
tive process involving extensive characterization 
and mechanical testing. Computational mate-
rial science can relieve some of the experimental 
burden associated with the design novel alloys 
with specific chemistry and microstructures. Spe-
cifically, the concept of multiscale modeling23, 24, 

98 where the predictions of material behaviour 
obtained from lower length scale simulations 
are used as an input for computations at higher 
length scales appear to be rather well suited for 
this purpose. This approach has already been for-
malized into the paradigm of “Integrated Com-
putational Materials Engineering (ICME)”38, 80 
with the objective of designing novel materials 
computationally. An ICME process chain involves 
modeling techniques spanning the entire gamut 

of length scales, starting from ab-initio calcula-
tions51, 88 to bulk scale finite element method 
(FEM)44, 108 simulations assuming homogeneous 
material properties. In between the two extremes 
of atomistic and bulk macroscopic length scales, 
lies the microstructural or mesoscopic length 
scale where the heterogeneity at the level of 
atomic structure is coarse-grained to obtain a 
continuum description of the material. The het-
erogeneity that exists at the mesoscopic scale is 
due to the presence of different phases and their 
morphologies which collectively constitute the 
microstructure of the material. Modeling micro-
structures and predicting key microstructural 
length scales have driven the emergence of the 
technique of Phase-field modeling which is the 
focus of this review.

The basic idea of a phase-field (henceforth 
called PF) model is to digitize a microstruc-
ture by representing the distribution of different 
phases by their corresponding scalar fields called 
“order parameters”, usually denoted by φ(x, t) . 
Another name for the order parameter is the 
“Phase-field” which lends the technique its name. 
Order parameter fields can be derived by coarse-
graining a material property from lower length 
scales followed by an appropriate normalization 
scheme. This represents a bottom-up approach of 
constructing PF models, an example of which is 
given in Fig. 1a where the order parameter repre-
sents normalized solute mole fractions in an alloy. 
Being conserved over the system, solute mole 
fractions belong to the class of conserved order 
parameters. As indicated in Fig. 1a, usually the 
order parameters are normalized such that φ = 1 
indicates the presence while φ = 0 indicates the 
absence of the corresponding phase. The order 
parameter fields corresponding to every phase 
recreates the PF version of the microstructure 
of the system. In a two-phase microstructure, it 
is often convenient to associate the presence and 
absence of either phase with the values φ = 1, 0 
of a single order parameter field as shown in 
Fig. 1. The transition from φ = 0 to φ = 1 hap-
pens over a finite width marking a diffuse inter-
face between the phases (see Fig. 1b). It must 
be remarked that in a PF model derived from a 
bottom-up approach, the interface width is equal 
to the experimentally observed physical inter-
face width in the material. Updating the φ fields 
by solving for its governing differential equation 
results in a simulation of phase transformation.

The bottom-up approach is not the only way 
to construct a PF model. As the widths of the 
interfacial region observed experimentally are 
negligibly small compared to the spatial extent 
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of the phases they separate, it is reasonable to 
approximate the interfaces by a single plane. 
Under this approximation, all problems of phase 
transformation can be treated as “free/moving 
boundary problems” where the redistribution 
of solute or latent heat (or any other quantity 
specific to the problem) at the moving interface 
provides a boundary condition to the differential 
equation describing transformation kinetics. A 
PF model can also be viewed as a diffuse interface 
model which reduces to the corresponding free 
boundary problem at the limit of vanishing inter-
face thickness. This is the top-down approach 
where there is no physical meaning associated 
with the order parameters and they are just intro-
duced as mathematical functions indicating the 
distribution of different phases in the microstruc-
ture. An example could be the non-conserved 
order parameter φ where φ = 0 represents the liq-
uid phase and φ = 1 represents the solid phase in 
a PF model of single-phase solidification.

At this stage, it is important to develop an 
appreciation of the efficacy of diffuse interfaces 
employed in the PF model. The phase topologies 
appearing in a microstructure can be quite complex 
and simulating their evolution using sharp inter-
face models which require explicit tracking of the 
interfaces is computationally infeasible. PF models 
in this regard offer an elegant solution by consid-
ering the interfaces to be diffuse. Mathematically, 
such interfaces are marked by smooth, continuous 

transitions from φ = 0 to φ = 1 . Thus, the order 
parameter fields which represent a PF version of 
the microstructure are continuous and differenti-
able throughout. This allows the governing dif-
ferential equation of order parameter evolution to 
be solved everywhere in the domain obviating the 
need for explicit interface tracking. The diffuseness 
of the interface being principal to the PF model, it 
needs to be adequately resolved, thus determining 
the maximum spacing of the numerical grid to be 
used in a computer simulation. As a wider inter-
face allows a larger domain to be simulated using 
an identical number of grid points, there is a clear 
advantage with the top-down approach as it offers 
the additional flexibility of choosing an artificially 
large interface width compared to that in a bottom-
up approach where the interface width is a physical 
quantity seen experimentally.

The PF models initially developed for study-
ing transformations in pure materials and binary 
alloys have finally evolved into a stage where it can 
tackle transformations involving an arbitrary num-
ber of phases in generic multicomponent alloys. In 
this review, our focus will be on the last category of 
models and the studies that have been conducted 
using them. Our review is structured in the follow-
ing way. First, we trace all the key developments of 
PF modeling which have empowered it to be used 
for quantitative predictions. We then follow it up 
with brief reviews of the key models of multiphase, 
multicomponent systems, and conclude.
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Figure 1: a Schematic of a two‑phase microstructure with β precipitates embedded in α matrix in a binary 
alloy. The conserved order parameter φ is related to the solute mole fraction field (c) as φ =

c − cα

cβ − cα
 , where 

cα,β denote the equilibrium compositions of the α and β phases. Consequently, α phase is identified by 
φ = 0 and the β phase by φ = 1 . b Schematic of the diffuse interface (red) having width (W) along the OO′ 
axis in (a). A sharp interface (blue) is added for reference.



42

A. Lahiri

1 3 J. Indian Inst. Sci. | VOL 102:1 | 39–57 January 2022 | journal.iisc.ernet.in

2 �Key�Developments�of the�PF�Model�
Prior�to the�Advent�of Generic�
Multiphase,�Multicomponent�Models

In view of the pre-existing excellent reviews of PF 
modeling5, 16, 71, 74, 75, 77, 89–91, our review of this 
topic is intentionally succinct and just points to 
the seminal papers of the field.

Cahn and Hilliard11, 12 developed the earli-
est diffuse interface model by treating the free 
energy of a material system as a non-local func-
tion of the solute concentration. Their formula-
tion could self consistently retrieve the interfacial 
energy and width of any diffuse interface seen 
experimentally for a particular choice of the sim-
ulation parameters. The governing differential 
equation of order parameter evolution is derived 
out of a variational energy minimization scheme 
which conserves solutes11. This model has come 
to be known as the Cahn–Hilliard (henceforth 
CH) model and has been widely used to simulate 
solid-state phase transformation in materials42, 66, 

107.
There has been an alternate line of devel-

opment of PF modeling with the objective of 
simulating solidification. In contrast to the Cahn-
Hilliard model, the order parameters in the PF 
models of solidification are just introduced for 
a digital description of the microstructure and 
are not related to any physical quantity as per 
the top-down modeling approach. The earliest 
instance of a PF model derived to model solidi-
fication in pure materials is due to Langer69, fol-
lowed by models due to Collins, Levine22 and 
Kobayashi58. Penrose, Fife81 and Wang et al.100 
presented thermodynamically consistent deriva-
tions of evolution equations of order parameters 
and temperature fields starting from an entropy 
functional of the system. Moving on to PF mod-
eling of alloys, Wheeler et al.103 developed a PF 
model for isothermal solidification in binary 
alloys where the solid and the liquid phases 
share the same composition which resulted in 
an unwanted contribution stemming from the 
bulk chemical energy to the interfacial energy56. 
This problem is mitigated by introducing sepa-
rate composition fields for both the solid and 
the liquid phases which are related to each other 
through a partition coefficient99 or through the 
condition of local equilibrium necessitating 
equalities of diffusion potentials in both phases57. 
Equalities of diffusion potentials have also been 
enforced for every two-phase equilibrium in a 
multiphase PF model of solidification in binary 
alloys30, 31.

There are other important develop-
ments which have significantly improved the 

quantitative accuracy of PF models. Parameters 
appearing in the PF model are related to physi-
cal parameters of the free boundary problem 
through matched asymptotic expansions. For the 
PF model to replicate the experimental reality of 
diffusion controlled growth at low driving forces, 
asymptotics require the PF interface mobility to 
be extremely high, which results in a numerically 
stiff differential equation governing order param-
eter evolution. Karma and Rappel49, 50 showed 
that instead of the sharp interface limit, if the PF 
model is allowed to replicate the properties of the 
free boundary problem at a thin interface limit, a 
combination of model parameters exists which 
allows complete diffusion control at the interface 
without introducing significant numerical chal-
lenges. Thus, the development of the thin inter-
face asymptotics is a crucial step towards realizing 
quantitatively accurate simulations which are 
computationally accessible at the same time.

Anomalous solute trapping at a diffuse inter-
face is another issue which limited the quantita-
tive utility of PF models. The interface width in 
a PF model derived from a top-down approach 
is an artificial parameter scaled to ensure com-
putational accessibility of large systems. This 
artificially scaled interface, when separating 
phases with large differences in solute diffusiv-
ity, lead to solute trapping for interface velocities 
far lower than those observed experimentally. In 
a PF simulation, solute trapping manifests as a 
discontinuity between the extrapolated asymp-
totes of diffusion potentials from either side of 
the interface. It is mitigated by introducing a non-
variational anti-trapping mass flux into the solute 
diffusion equation to negate the mass flux due to 
jumps in diffusion potentials at the interface27, 48.

We have now reviewed some of the key devel-
opments concerning PF modeling of phase trans-
formations in binary alloys and pure materials. 
More complete discussions can be found in the 
review papers mentioned at the beginning of the 
section. In the next section, we will describe some 
of the basic features associated with a PF model. 
This will help set up the context for the more 
complicated and generic models discussed later.

3 �Basic�Structure�of a�PF�Model
The popular multiphase, multicomponent PF 
models are largely based on a top-down approach 
where the order parameters serve as indicator 
functions describing the distribution of different 
phases in the microstructure. The fundamental 
structure of such a PF model involves an expres-
sion of the total free energy of the system as,
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where the integral is over the system volume 
denoted by � and an example of which can be the 
microstructure in Fig. 1a. The first term on the 
RHS indicates the bulk-free density fb(φ) which is 
a function of the local value of the phase-field ( φ ) 
at any point in the microstructure. The purpose 
of this term is to penalize the non-equilibrium 
material appearing over the diffuse interfaces, 
0 < φ < 1 (see Fig. 2). A possible choice of the 
bulk energy density function known as the dou-
ble well -potential given by fb(φ) = Hφ2(1− φ)2 
is presented in Fig. 2. The parameter H controls 
the height of the energy barrier between the equi-
librium phases φ = 0 and φ = 1 . The second 
term in Eq. 1 is the gradient energy density term 
which imposes an energy penalty on gradients in 
φ where κ controls the magnitude of the penalty. 
This term is a non-local function of φ in contrast 
to fb(φ) . The bulk energy density gets minimized 
for a sharp interface while the gradient energy 
density prefers to have the interface as diffuse as 
possible. These two terms combine to equilibrate 
a diffuse interface with a finite width (W) as high-
lighted in Fig. 1b. The final term delimited by 
curly braces in Eq. 1 is given by an interpolation 
of free energy densities of the pure phases ( f ∗φ=1 
and f ∗φ=0 ) which can be due to either of chemi-
cal, elastic, plastic, electrochemical, ferroelectric, 
ferromagnetic, origins or their combinations. 
When f ∗φ=0 �= f ∗φ=1 , the final term in Eq. 1 breaks 
the symmetry of fb(φ) (see Fig. 2) and with one 
of the phases occupying a lower minimum than 
the other, it defines the driving force for phase 

(1)

F =

∫

�

[

fb(φ)+
κ

2
(∇φ)2

+
{

(1− h(φ))f ∗φ=0
+ h(φ)f ∗φ=1

}]

d�,

transformation in a PF model. The interpolant 
should have the properties of h(φ = 0) = 0 , 
h(φ = 1) = 1 in addition to h′(φ = 0, 1) = 0 ; the 
latter ensures that phase transformation happens 
only due to the migration of diffuse interfaces.

The evolution of the order parameter field fol-
lows the classical time-dependent Ginzburg–Lan-
dau dynamics and is determined by numerically 
integrating the Allen–Cahn equation1,

which ensures that the evolution of φ(x, t) field 
leads to a minimization of the free energy of the 
entire system. It must be noted that often the 
formulation of a PF model is stated in terms of 
the entropy density (s) instead of the free energy 
density (f) and the counterpart of Eq. 2 derived 
for that case leads to a maximization of the total 
entropy of the system81. The term δF/δφ in Eq. 2 
indicates the variational derivative of the total 
free energy F with respect to the phase-field vari-
able φ which on evaluation leads to the second 
equality in Eq. 2 with M denoting the interface 
mobility. Eq. 2 should be solved in unison with 
the evolution equations for the independent vari-
ables determining the free energy densities f ∗φ=0,1 , 
e.g., the solute and temperature fields need to 
be solved for simulating a phase transformation 
driven by differences in chemical free energy 
densities of phases. This particular variety of the 
PF model is classified as Model C by Halperin, 
Hohenberg37 and its structure is replicated by 
most generic multiphase, multicomponent PF 
models.

It is important to note that the discussion 
in the previous paragraph is specific to mod-
els involving non-conserved order parameters 
derived from a top-down approach. The formu-
lation will undergo changes when we consider 
models with conserved order parameters as the 
governing equation for its evolution will be based 
on a continuity equation, e.g., in the CH model 
the evolution of order parameters is given by11,

where, J = −M∇
δF

δφ
 is the solute mass flux 

related linearly to its thermodynamic driving 

force ∇
δF

δφ
 through solute mobility denoted by 

(M). The quantity 
δF

δφ
 denotes the solute diffusion 

(2)
∂φ

∂t
= −M

δF

δφ
= −M

(

∂fb

∂φ
− κ∇2φ

)

,

(3)
∂φ

∂t
= −∇ · J = ∇ ·

(

M∇
δF

δφ

)

,

-0.04
-0.02

 0
 0.02
 0.04
 0.06
 0.08

-0.2  0  0.2  0.4  0.6  0.8  1  1.2

f to
t(�

)

�

Driving force

Figure 2: A schematic of ftot(φ) = fb(φ)+
{

(1− h(φ))f ∗φ=0
+ h(φ)f ∗φ=1

}

 . The purple curve cor‑

responds to the situation where f ∗φ=0 = f
∗
φ=1 = 0 

and the phases are in equilibrium. The green 
curve corresponds to a situation where 
f
∗
φ=1 < f

∗
φ=0 = 0 and φ = 1 is the equilibrium phase.
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potential ( ̃µ ). The Cahn–Hilliard model belongs 
to the class of Model B type PF formulations37.

We are now in a position to consider generic 
multiphase, multicomponent PF models. All the 
three models discussed next are Model C type 
PF models and follow the same structure dis-
cussed in this section. It must be mentioned that 
the models as presented are valid only for substi-
tutional solutes. Model extensions in literature 
to consider interstitial elements are referred to 
wherever applicable. With this background, we 
begin with a brief review of the Nestler, Garcke, 
Stinner model in the next section.

4 �Nestler,�Garcke,�Stinner�(NGS)�model
One of the earliest PF models of multiphase, 
multicomponent systems is the one by Nestler, 
Garcke and Stinner78, 97. The model describes 
phase transformations involving N different 
phases through evolution of their respective 
order parameter fields represented vectorially as, 
φ = {φ1(x, t),φ2(x, t), . . . ,φN (x, t)} . The values 
φα = 1 and φα = 0 indicate the presence and 
absence of the α phase at a particular point in the 
microstructure. The diffuse interface marking the 
transition from phase α to any other phase cor-
responds to the range of values, 0 < φα < 1 . The 
values of the order parameters φ also represent 
the respective phase fractions at a particular point 
in the microstructure obeying the constraint, 
∑N

α=1 φ
α = 1 . The spatio-temporal evolution of 

order parameter fields intend to maximize the 
entropy functional (S) stated as an integral over 
the entire system domain ( �)78,

In the above equation (Eq. 4), s is the entropy 
density term and is a function of the overall alloy 
composition (in terms of mole fractions) at every 
point in the microstructure denoted vectorially in 
the form, c = {c1, c2, . . . , ck} for a (k + 1) com-
ponent alloy, where the solvent mole fraction is 
given by c0 = 1−

∑k
i=1 ci . Additionally, s is also 

a function of the internal energy density (e) and 
the order parameter fields ( φ ). The last two terms 
in the integrand in Eq. 4 represent the entropy 
density terms leading to the formation of a dif-
fuse interface between the phases. The width of 
the diffuse interface is a function of the param-
eter ǫ . The gradient entropy density term is writ-
ten as78,

(4)

S(e, c,φ) =

∫

�

[s(e, c,φ)

−

(

ǫa(φ,∇φ)+
1

ǫ
w(φ)

)]

d�.

where, qαβ = φα∇φβ − φβ∇φα , represents the 
interfacial gradient vector which is oriented nor-
mal to the α − β interface, σαβ is the entropy 
density associated with the α − β interface. The 
anisotropy of the interface is determined by the 
function aαβ(qαβ) which is set to unity for iso-
tropic interfaces. The entropy density term w(φ) 
can be expressed as a multi-obstacle potential 
given by 78,

for microstructural states lying 
inside the Gibbs simplex, i.e., for 
0 ≤ φα ≤ 1, ∀α ∈ {1, 2, . . . ,N },

∑N
α=1 φ

α = 1  , 
while, w(φ) → ∞ for states lying outside, 
∑N

α=1 φ
α > 1 . The other option is to use a multi-

well potential78,

The resultant topology of the w(φ) hypersurface 
due to Eqs. 6 and 7 is such that an appearance of 
a spurious third phase across the α − β interface 
leads to a lower interfacial energy. Higher order 
polynomial terms in the order parameters can 
be added to these potentials in order to raise the 
energy of such spurious multiphase combina-
tions leading to eventual suppression of their for-
mation78. The evolution equations of the order 
parameter fields ensure a monotonic increase in 
the total entropy (S) of the system and are stated 
as78, 97,

where, � is a Lagrange parameter introduced so 
that the order parameter fields ( φ ) conform to 
the constraint 

∑N
α=1 φ

α = 1 during the course 
of their evolution and is set equal to the aver-
age of the RHS of Eq. 8 written for all the phases 
α ∈ {1, 2, . . . ,N } . The inverse of the parameter τ 
determines the mobility of the diffuse interface. 

(5)

a(φ,∇φ) =

N
∑

α=1

∑

β<α

σαβ
[

aαβ(qαβ)
]2
|qαβ |

2,

(6)w(φ) =
16

π2

N
∑

α=1

∑

β<α

σαβφ
αφβ ,

(7)w(φ) = 9

N
∑

α=1

∑

β<α

σαβ(φ
α)

2
(φβ)

2
.

(8)

τǫ
∂φα

∂t
=

δS

δφα
−�,

τǫ
∂φα

∂t
= ǫ

(

∇ ·
∂a(φ,∇φ)

∂∇φα
−

∂a

∂φα

)

−
1

ǫ

∂w

∂φα
+

∂s

∂φα
−�, ∀α ∈ {1, 2, . . . ,N },
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The knowledge of the functions a(φ,∇φ) and 
w(φ) allows us to determine the first (in paren-
thesis) and second terms in the RHS of Eq. 8. We 
can evaluate the term (∂s/∂φα) from a knowledge 
of the bulk entropy density function s(e, c,φ) by 
relating it to the Helmholtz free energy density97,

where, T is the temperature, and it can be re-
arranged to write,

and the derivative w.r.t φ can be evaluated as,

Thus, the final form of the evolution equation for 
the order parameter fields (Eq. 8) is expressed as,

The derivative ∂f /∂φα in the above equation is 
evaluated from an expression of the free energy of 
the system written as an interpolation of the indi-
vidual phase free energies78,

where, individual phases are treated as regular 
solutions,

with the interpolant function chosen such 
that 

∑N
α=1 h

α(φ) = 1 along with the proper-
ties of hα(φα = 1) = 1 , hα(φα = 0) = 0 and 
∂hα/∂φα = 0 for φα = 1, 0 . An example of such 
an interpolant is presented later in Eq. 29. The 
first term in Eq. 14 represents the interpolation 
of the free energies of the pure components in a 
particular phase α . The second term is the free 

(9)f (c,φ) = e − Ts,

(10)s(c,φ) =
1

T

(

e − f (c,φ)
)

,

(11)
∂s

∂φ
= −

1

T

∂f

∂φ
.

(12)

τǫ
∂φα

∂t
= ǫ

(

∇ ·
∂a(φ,∇φ)

∂∇φα
−

∂a

∂φα

)

−
1

ǫ

∂w

∂φα
−

1

T

∂f

∂φα
−�,

∀α ∈ {1, 2, . . . ,N }.
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(

ciL
α
i
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i
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i
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,

(14)

f α(c,T ,Tα
i , L

α
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k
∑

i=1
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ciL
α
i

T − Tα
i

Tα
i

)

+
RT

Vm
ci ln ci

]

− Cv ln

(

T

TM

)

,

energy of mixing and the third term represents 
the temperature (T) dependence of the phase 
free energy with CV  being the specific heat at 
constant volume and R being the gas constant. 
The molar volume represented by Vm is assumed 
to be a constant independent of composition 
and temperature in order to neglect the com-
plicating influence of hydrodynamic flow on 
the solidification process. The above expression 
assumes that component i melts at the tempera-
ture Tα

i  with a latent heat per unit volume indi-
cated by Lαi  ; the phase index N represents the 
liquid phase which acts as the thermodynamic 
reference with LNi = 0 . It is evident from Eq. 14 
that every participating phase in the multiphase 
mixture at a point in the microstructure shares 
the same composition ci as that of the over-
all alloy composition. Hence Eq. 13 behaves 
as the multicomponent counterpart of the PF 
model for solidification proposed by Wheeler 
et al.103 for binary alloys. Consequently, in the 
NGS model, the phases have unequal diffusion 
potentials across the regions of their coexist-
ence which in any PF model corresponds to the 
diffuse interfaces and their intersections. This 
apparent lack of local equilibrium between the 
phases leads to an extra chemical energy con-
tribution to the interfacial energy which scales 
with the size of the diffuse interface restricting 
the scalability of the interface width required to 
meet computational demands. This particular 
issue has been identified56 and redressed in later 
PF models of alloys18, 28, 57, 82. The PF evolution 
equations (Eq. 12) are solved in unison with the 
energy and mass balance equations to deter-
mine the temperature (T) and composition ( c ) 
fields, respectively. These conservation equa-
tions are derived variationally97 in a manner 
analogous to that of Eq. 8 and can be stated as,

where, the symmetric and positive semi-definite 
mobility matrix [M] linearly relates the thermo-
dynamic driving forces of ∇

δS

δe
= 1/T  and 

∇
δS

δci
= −µi/T  to heat and mass fluxes. The 
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diagonal components in the mobility matrix 
[M], relate the energy and mass fluxes to their 
corresponding driving forces, while the off-
diagonal terms give rise to cross-dependencies. 
Eqs. 12, 15and 16 are numerically integrated in 
a staggered manner to simulate phase transfor-
mations. An increased computational efficiency 
can be achieved by using the obstacle potential 
(Eq. 6) as then the PF evolution equations 
(Eq. 12) only need to be integrated over the dif-
fuse interfaces.

4.1  Studies Using the NGS Model
The NGS model has been extensively used to simu-
late phase transformations in binary alloys19, 32, 102  
while studies in multicomponent systems are 
comparatively smaller in number. Interesting 
applications of the NGS model in the domain of 
multicomponent systems include simulations of 
transition from dendritic to globular morpholo-
gies during solidification of Ni-Cr-Cu alloys25, 26 
and dendritic structures in metallic glass matrix 
composite43. Noteworthy studies of multiphase 
solidification in multicomponent alloys using 
the NGS model include simulations of two-
phase eutectic growth in the presence of a ter-
nary impurity78 and solidification of three-phase 
lamellar eutectic under stable20, 78 and oscillatory 
growth modes20. A simulation of steady-state ter-
nary eutectic growth reproduced from78 is pre-
sented in Fig. 3.

5 �Eiken,�Böttger,�Steinbach�(EBS)�Model
Eiken, Böttger, and Steinbach28 proposed 
a PF model (henceforth called the ‘EBS’ 
model) of multiphase transformation in a 

multicomponent alloy where every phase par-
ticipating in a multiphase equilibrium possesses 
a distinct composition related to each other by 
the condition of local equilibrium, hence elimi-
nating the chemical energy excess associated 
with the diffuse interfaces in the NGS model78. 
The condition of local equilibrium in addi-
tion to other modeling details will be briefly 
reviewed in the following paragraphs.

A set of order-parameter fields 
φ = {φ1(x, t), . . . ,φN (x, t)} again describe 
an N-phase system in the EBS model which 
simultaneously indicate the local phase frac-
tions obeying the constraint 

∑ν
α=1 φ

α = 1 at 
every point in the microstructure. An addi-
tional parameter ν , where ν ≤ N  , is introduced 
indicating the number of phases coexistent at 
a particular point in the microstructure. For 
a multicomponent alloy with (k + 1) compo-
nents, the phase composition is described by 
k independent solute mole fractions which 
can be succinctly represented using a vectorial 
notation, e.g., for phase α , cα = {cα1 , c

α
2 , . . . , c

α
k } , 

while the solvent concentration is given by 
cα0 = 1−

∑k
i=1 c

α
i  . The order parameter fields 

and the phase compositions define the free 
energy functional of the entire system (F) as,

where fint represents the terms which lead to the 
creation of a stable diffuse interface, and fchem 
is the chemical free energy density of the alloy, 
which are integrated over the system domain � . 
The energy densities are expressed as28,

(17)

F =

∫

�

[

fint(φ, (∇φ))+ fchem(φ, c
1, . . . , cN )

]

d�,

Figure 3: A PF simulation of ternary rod eutectics. Reprinted with permission from78 DOI: https:// doi. org/ 
10. 1103/ PhysR evE. 71. 041609 Copyright (2005) by the American Physical Society.

https://doi.org/10.1103/PhysRevE.71.041609
https://doi.org/10.1103/PhysRevE.71.041609
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Two key parameters in Eq. 18 are that of the ani-
sotropic interfacial energy ( σαβ ) of the α − β 
interface and the width of the diffuse inter-
face ( η ) where the latter is treated as a constant 
regardless of the phases it separates. The expres-
sion of the total chemical free energy density 
fchem (Eq. 19) consists of two terms; the first 
is an interpolation of the chemical free energy 
densities of the individual phases denoted by 
f α(cα) , while the second penalizes any devia-
tion in the overall composition of a multi-phase 
mixture c = {c1, c2, . . . , ck} from a weighted sum 
of the individual phase concentrations, through a 
Lagrange multiplier of the alloy diffusion poten-
tials µ̃ = {µ̃1, µ̃2, . . . , µ̃k} . The PF evolution 
equations are obtained by solving for the motion 
of all possible interfaces in the system and super-
imposing them92,

∀α ∈ {1, . . . ,N } , where, Iγ = ∇2φγ +
π2

η2
φγ and 

the factor 
√

φαφβ  is introduced in an ad-hoc 
manner to concentrate the driving forces at the 
interface. The mobility of the α − β interface 
indicated by Mαβ can be an anisotropic function 
and along with the interfacial energy term σαβ 
they are set to zero for identical values of the 
phase indices. �Gαβ is the driving force for α − β 
phase transformation expressed as28,

where Gα = Vmf α are the molar free energies 
of the phases with Vm representing the constant 
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∑
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−
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(21)

�Gαβ = −

(

∂

∂φα
−

∂

∂φβ

)

fchem,

=
1

Vm

[(

Gβ(cβ)− µ̃cβ
)

−
(

Gα(cα)− µ̃cα
)]

,

molar volume. Clearly, when G represents the 
molar Gibbs free energy of a phase, �Gαβ is the 
difference in the solvent chemical potentials of 
the phases α and β which only goes to zero when 
the two phases are in total equilibrium with each 
other and not just locally (see Fig. 5). The con-
dition of local equilibrium on the other hand 
implies that solute exchange between phases 
present at a particular point in the microstruc-
ture happens instantaneously compared to the 
phenomena of interface migration and long 
range solute diffusion inside individual phases. 
As a result, the individual component diffusion 
potentials of every phase ( ˜µα ) present at a point 
are equal to each other which in turn fixes the 
individual phase compositions in a multiphase 
equilibrium. The equality of only the component 
diffusion potentials but not of the corresponding 
chemical potentials or the more general quan-
tity of grand potential densities of the phases is 
termed as the “quasiequilibrium” condition by 
Eiken et al.28  and can be mathematically stated 
for a ν phase mixture as9, 28,

with the multiphase mixture composition given 
by28,

Considering (ν − 1)k equations of local equilib-
rium between individual phases from Eq. 22 and 
k equations from Eq. 23 a system of νk equations 
at every point in the microstructure containing a 
mixture of multiple phases can be obtained, from 
which an identical number of unknowns of phase 
compositions can be determined. The evolution 
of the overall alloy composition ( c ) is obtained by 
solving the diffusion equation given as28,

where [Dα] represents the k × k solute interdif-
fusivity matrix in the α phase, while ∇c

α repre-
sents the composition gradients in the α phase. 
The crux of the EBS model is described by 
Eqs. 20, 22, 23 and 24 and staggered solutions of 
these equations lead to simulations of isother-
mal phase transformation in multi-component 
alloys. Non-isothermal transformations can be 
modeled by imposing a temperature field T as 

(22)

˜µ1 = ˜µ2 = · · · = ˜µν ,

=⇒
∂G1

∂c1
=

∂G2

∂c2
= · · · =

∂Gν

∂cν
,

(23)c =

ν
∑

α=1

φα
c
α .

(24)ċ = ∇
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∑
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φα[Dα]{∇c
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in simulations of directional solidification or by 
coupling a thermal diffusion equation to the set 
of Eqs. 20, 22, 23 and 24. The prohibitively high 
computational cost associated with the iterative 
solution of the set of nonlinear equations given 
by Eq. 22 (and Eq. 23) prompted the development 
of linear extrapolation schemes28 to approximate 
phase compositions under quasiequilibrium. 
Thus, a computationally efficient approach solves 
Eqs. 22 sparingly, while for the majority of the 
timesteps estimates phase compositions through 
appropriate extrapolation schemes. Such a hybrid 
scheme leads to a computationally efficient impo-
sition of quasiequilibrium while maintaining the 
sanctity of the thermodynamic description of the 
alloy system.

The EBS model requires thermodynamic 
inputs of the molar Gibbs free energies of the 
phases as functions of the compositions and 
temperature ( Gα(cα ,T ) ) and kinetic inputs 
of solute interdiffusivities ( Dα

ij ) which can be 
obtained from CALPHAD (CALculation of 
PHAse Diagrams)70, 87 based databases of ther-
modynamic and kinetic3 data. The software 
 MICRESS®(MICRostructure Evolution Simula-
tion Software)72, which solves the EBS model in 
conjunction with  ThermoCalc®4 for thermody-
namic and kinetic inputs, is a leading exponent 
of the concept of runtime information exchange 
between a PF model and a CALPHAD based 
database. This concludes the brief review of the 
EBS model, and we will now summarize a few 
important PF studies performed using the EBS 
model in the following subsection.

5.1  Studies using/extending the EBS 
model

There are several interesting simulations of 
microstructure formation in multicomponent 
alloys that have been performed using the EBS 
model. These include simulations of constrained 
and equiaxed dendritic growth during solidi-
fication of multicomponent alloy systems like 
Ni-base (Ni-Al-Cr-Ta-W) superalloys101, Al-
Mg-Zn8, 93, Al-Si-Cu-Mg-Ni8. Studies have also 
simulated the solidification sequence to a consid-
erable extent like the formation of interdendritic 
γ ′ phases in Ni-Al-Cr-Ta-W superalloys101 as 
reproduced in Fig. 4 and the sequence and mor-
phology of different phases in Al-Si-P and Al-Si-
P-Sr alloys29.

A few studies also led to the further devel-
opment of the EBS model. A key work in this 
regard is the formulation of an anti-trapping 
current to negate the anomalous solute trapping 

at migrating diffuse interfaces13. Although the 
linearized extrapolation schemes to approxi-
mate quasiequilibrium conditions in the EBS 
model offer a significant computational advan-
tage over solving a system of nonlinear equa-
tions (Eq. 22), they themselves involve inversions 
of k × k matrices where k indicates the number 
of solutes. So, such approximation schemes are 
bound to become computationally expensive 
as the number of solutes (k) increases. This has 
prompted the introduction of several secondary 
assumptions to speed up the calculations28 with 
a possible compromise in numerical accuracy. 
Bottger et al.9 implemented an analytically sim-
plified version of the extrapolation scheme in its 
most general form for a ternary alloy and found 
simulations to retain its accuracy even with fewer 
calls to direct imposition of quasiequilibrium 

Figure 4: Simulation of interdendritic γ ′ phase 
formation in Ni base superalloys. Reprinted 
from101, Copyright (2009), with permission from 
Elsevier.
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(Eqs. 22, Eq. 23). A Taylor Series based extrapola-
tion scheme for a generic multicomponent alloy 
providing improved accuracy is also proposed 
recently104 A recent work extends the EBS for-
mulation to include the effects of elastic strain 
energy gradients as driving forces for phase trans-
formation and solute diffusion10. In addition to 
the aforementioned studies, the EBS model has 
been modified to allow simulations of materials 
phenomena which involve deviations from equi-
librium at the diffuse interface. Such develop-
ments are taken up in the next subsection.

5.2  Extending EBS Model to Include 
Interface Dissipation

The EBS model assumes that the phases coexist-
ing at a particular point in the microstructure are 
in local equilibrium with each other given by the 
equality of component diffusion potentials in the 
participating phases (Eq. 22). Local equilibrium 
at the interface is a consequence of much faster 
solute diffusion compared to the rate of interface 
migration. But when the interface velocity (V) 
becomes of the same order as that of the rate of 
solute diffusion ( D/η ) across the interface, solute 
exchange across the moving interface is limited 
and may not lead to equilibrium compositions of 
the phases. Thus, it becomes critical to solve for 
the kinetics of solute diffusion explicitly to deter-
mine the exact extent of deviation from equilib-
rium at the interface. In summary, for interface 
velocities comparable to or greater than the rate 
of solute diffusion, phase compositions are no 
longer coupled to each other through the con-
dition of local equilibrium and the component 
diffusion potentials of the coexisting phases are 
unequal to each other, i.e., ˜µα  = ˜µβ . Steinbach 
et al.94 and Zhang, Steinbach105 extended the EBS 
model to develop a PF model capable of handling 
such deviations from local equilibrium at the 
interfaces. According to these studies, a PF model 
of rapid transformation should consider individ-
ual phase compositions as independent entities 
with their own evolution equations. Furthermore, 
the process of solute exchange between coexistent 
phases should be modeled explicitly and associ-
ated with a finite time scale. Both these features 
are incorporated into the framework of the EBS 
model to develop models with finite interface dis-
sipation specifically for two phase equilibrium in 
binary alloys94 and for multiple phases in multi-
component alloys105. In the latter, the chemical 
free energy density is given as,

where, � = {�1, �2, · · · , �k} indicates the vector 
of Lagrange multipliers which in contrast to 
the EBS model28 are in general not equal to the 
diffusion potentials µ̃ (see Eq. 19). The param-
eters � are determined from the overall compo-
sitional invariance of the multiphase mixture at 
a particular point in the microstructure consid-
ering the exchange of solutes between the par-
ticipating phases and the solute rejection due to 
phase transformation. The evolution of individ-
ual phase compositions are given by105,

The first term on the RHS indicates solute 
redistribution due to diffusion within a par-
ticular phase α . The second term considers the 
possibility that the phase diffusion potentials 

are dissimilar from each other, i.e., 
˜

µ
β
i  = ˜µα

i  , 
driving solute exchange between the coexistent 
phases whose rates are determined by the inter-
face permeabilities P = {P1,P2, . . . ,Pk} of the 
individual solutes. The interface permeabilities 
are determined from an atomistic-level consid-
eration of the phenomenon of solute diffusion 
between the phases94. The third term in Eq. 26 
represents the influence of the rejected solute 
due to phase transformation on the composi-
tion of phase α . The evolution equations for the 
phase-fields φα are derived following the same 
procedure as in the EBS model28 and are rear-
ranged to identify interface mobilities as func-
tions of the kinetic parameters P . At the limit 
of P → ∞ , the phases are in local equilibrium 
across the interface and the original EBS model 
is recovered. Conversely, in the limit of P → 0 , 
there is complete solute trapping and leads to 
frozen order parameter fields94, 105.

An alternate set of evolution equations for the 
phase compositions are derived by conserving 
solute concentrations for every two phase equi-
librium in the multiphase mixture105 in the spirit 
of the multiphase-field (MPF) model92. The new 
set of composition evolution equations allow the 
additional flexibility of choosing a distinct set of 
kinetic parameters Pαβ for every interface which 
separates a particular combination of phases ( α 
and β ) in contrast to the constant P discussed 
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in the context of Eq. 26. The model considering 
finite interface dissipation for multicomponent 
alloys105 is also coupled to CALPHAD based sub-
lattice models for thermodynamic input to simu-
late the growth of stoichiometric phases106. This 
completes our review of the EBS model and its 
extensions. In the next section, we will take up the 
Grand-Potential model.

6 �The�Grand‑Potential�(GP)�Model
The latest entrant in the domain of multiphase 
field models for multicomponent alloys is the 
Grand-Potential model (henceforth called 
the GP model) developed independently by 
Plapp82 and Choudhury, Nestler18, and as its 
name suggests it is based on a grand potential 
density rather than free energy28 or entropy 
densities78. The advancement made by the GP 
model can be appreciated in the context of the 
EBS and the NGS models. Both the NGS78 and 
the EBS28 models involve respectively the over-
all alloy composition and the individual phase 
compositions as independent model variables in 
addition to the order parameter fields. The NGS 
model assumes that all coexisting phases at a 
particular point in the microstructure have the 
same composition and hence the phases partici-
pating in a multiphase mixture cannot assume 
disparate compositions corresponding to com-
mon diffusion potentials. As a result, the phases 
coexist with non-equilibrium compositions and 
contribute spurious chemical free energy to the 
energy of the diffuse interfacial regions in a PF 
microstructure, thus lowering the quantita-
tive accuracy of PF simulations with artificially 
large interface widths. The EBS model corrects 
this anomaly by introducing individual phase 
solute concentrations as independent variables 
instead of the overall alloy composition, which 
in a multiphase mixture are related to each 
other through the condition of local equilib-
rium, i.e., through equality of phase diffusion 
potentials. As discussed in Sect. 5, the only dif-
ficulty with this approach is the high compu-
tational cost associated with the imposition of 
local equilibrium requiring iterative solution of 
a system of nonlinear equations (Eq. 22). The 
Grand-potential model18, 82 (or the GP model) 
obviates this necessity of explicitly imposing 
the condition of local equilibrium by replacing 
the phase compositions with their correspond-
ing conjugate intensive variables of diffusion 
potentials ( ̃µ ) as independent variables. It is 
important to note that the diffusion potentials 

are equal to each other in any N-phase equi-
librium, i.e., ˜µ1 = ˜µ2 = · · · = ˜µN  . In other 
words, the composition vectors of c1, c2, . . . , cN 
for each of the N phases in the microstruc-
ture are now determined as functions of 
a single vector of diffusion potentials µ̃ 
( = ˜µ1 = ˜µ2 = · · · = ˜µN  for an N-phase equi-
librium), i.e., cα ≡ c

α(µ̃),∀α ∈ {1, 2, . . . ,N } . It 
is important to note that phase-specific ther-
modynamic information is usually available 
in the form of functions G(c) , from which the 
functional relationship µ̃ = ∂G/∂c ≡ µ̃(c) , fol-
lows naturally. As such a relationship has to be 
inverted to get the required function c ≡ c(µ̃) , 
it becomes necessary for the function G(c) to be 
convex (see Fig. 5 for an example) to ensure a 
unique mapping between µ̃ and c . As the driv-
ing forces for solute diffusion are determined 
by gradients in diffusion potentials, the choice 
of diffusion potentials µ̃ as independent vari-
ables is conceptually equivalent to the choice 
of temperature (T) as the independent variable 
for determining energy redistribution in a PF 
model of non-isothermal transformation. Thus, 
unlike the EBS model, the condition of local 
equilibrium is implicit in the formulation of the 
GP model and its imposition does not require 
any additional computational effort. With this 
understanding of the key advancement made 
by the GP model, let us briefly review the model 
details in the following paragraph.

Our review of the GP model largely follows 
the work of Choudhury, Nestler18 beginning 
with an expression of the Grand potential func-
tional ( � ) of the system written as,

Figure 5: Schematic of a free energy versus 
composition diagram highlighting the driving 
force for phase transformation as difference in 
grand potential densities. Reprinted figure with 
permission from18 DOI:https:// doi. org/ 10. 1103/ 
PhysR evE. 85. 021602 Copyright (2012) by the 
American Physical Society.

https://doi.org/10.1103/PhysRevE.85.021602
https://doi.org/10.1103/PhysRevE.85.021602
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where, � is the interpolated phase grand poten-
tial densities ( �α),

where, the interpolant functions are given by17,

and the phase grand potential density ( �α ) is 
defined by a Legendre transform of the phase 
Helmholtz free energies given by,

using a vectorial notation. The rest of the terms in 
Eq. 27 lead to the creation of the diffuse interface 
and are notationally identical to their counterparts 
defined in the context of the entropy functional in 
Eq. 4. The definitions of the terms a(φ,∇φ) and 
w(φ) are also the same as given by Eqs. 5, 6 and 7, 
except that they indicate grand potential densities 
instead of entropy densities. The phase composi-
tions can be determined from Eq. 30 as,

which, can be interpolated to get the overall alloy 
composition as,

The PF evolution equation for the GP model 
minimizes the grand-potential functional18 and 
can be written as,

where the purpose of parameter � is the same 
as in Eq. 12. The term ∂�/∂φα encapsulates the 
driving force for phase transformation and is 
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determined from the deviation of diffusion poten-
tials from their equilibrium values µ̃ . Inspecting a 
two phase α − β system, the total grand-potential 
density is given by, � = �αhα +�β(1− hα(φ)) 
and the derivative evaluates to 
∂�/∂φα = (�α −�β)(∂hα(φ)/∂φα) . The driv-
ing force of phase transformation is given by 
the difference in grand-potential densities of the 
phases ( �α −�β ) and is illustrated using the 
schematic in Fig. 5. The derivative of the interpo-
lant (∂hα(φ)/∂φα) concentrates the driving force 
at the diffuse interfaces. In comparison to the dif-
ference in grand-potential densities driving phase 
transformation in the GP model, the EBS model 
describes the driving force as a difference between 
the solvent chemical potentials of the phases. The 
difference between these two definitions of driv-
ing forces is negligibly small when we consider a 
transformation between phases sharing similar 
molar volumes while there can be non-trivial dif-
ferences when we model phase transformations 
involving large changes in molar volumes.

The evolution of µ̃ is obtained by solving the 
diffusion equation17,

where, jat is the solute antitrapping current intro-
duced to negate anomalous solute trapping across 
the diffuse interface. The mobility matrix Mij(φ) 
is given by an interpolation of the individual 
phase mobility matrices Mα

ij,

where, the individual phase mobilities can be 
obtained from phase interdiffusivities as,

and a possible choice for the interpolants can be 
given by gα(φ) = φα . The derivatives ∂hα(φ)/∂t 
in Eq. 34 can be evaluated from a knowledge of 
∂φ/∂t obtained from Eq. 33 establishing a clear 
bi-directional coupling between the the µ and φ 

(34)

∂µ̃i

∂t
=

[

N
∑

α=1

hα(φ)
∂cαi (µ̃,T )

∂µ̃k

]−1

ik
{

∇ ·
(

[Mkj(φ)]{∇µ̃j} − jatk
)

−

N
∑

α=1

cαk (µ̃,T )
∂hα(φ)

∂t

−
∂T

∂t

N
∑

α=1

(

∂cαk (µ̃,T )

∂T

)

µ̃

hα(φ)

}

,

(35)Mij(φ) =

N
∑

α=1

gα(φ)Mα
ij .

(36)Mα
ij = [Dα

ik ]

[

∂cαk (µ̃,T )

∂µ̃j

]

,
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evolution equations. For non-isothermal simu-
lations, the T (x, t) field in combination with the 
µ̃ field determines the grand potential density 
( � ) in Eq. 33. The T and µ̃ fields are coupled to 
each other through the term containing the time 
derivative of T field in Eq. 34.

6.1  Studies Using the GP Model
The GP model has been used extensively to sim-
ulate solidification in multicomponent alloys. 
These studies can be broadly classified into two 
categories: those reporting simulations of solidifi-
cation of a single solid phase from the melt and 
those studying simultaneous solidification of mul-
tiple phases from the melt. An interesting series 
of studies in the former category investigates the 
influence of solute interdiffusivity matrices on the 
entire solidification sequence leading to dendritic 
growth64, 65, 67. The first study in the sequence 
investigated the dependence of equilibrium com-
positions of the phases and characteristic scaling 
constants of isothermal growth on solute interdif-
fusivities during the stable growth regime in ter-
nary alloys67. The understanding derived from this 
study is extended to an investigation of the behav-
iour of an infinitesimally perturbed solidification 
front of a model quaternary alloy. The effect of 
alloy thermodynamics and kinetics in determin-
ing the dominant wavelength of perturbation is 
calculated analytically from a linear stability anal-
ysis and the predictions are found to be in good 
agreement with simulations using the GP model64. 
The instabilities of the solidification front amplify 
with time and lead to complete breakdown of the 
interface forming dendrites. Free dendritic growth 
in a ternary melt under isothermal conditions is 
studied using the GP model to identify the nature 
of dependence of the dendrite tip-radius ( Rtip ) on 
kinetic and thermodynamic parameters of model 
ternary alloys and the predictions are compared 
against theoretical analyses65.

Moving on to multiphase solidification in 
multicomponent alloys where there are several 
interesting studies using the GP model. Appli-
cations of the GP model include investigations 
of the morphologies of three-phase eutectics as 
functions of the volume fractions of the solid 
phases and the solid-liquid interfacial energies 
in ternary alloys like Ag-Al-Cu17, 21, 39. Simulated 
microstructures of three-phase ternary eutec-
tics are found to be increasingly sensitive to the 
simulation set-up as the simulation box-sizes are 
made smaller. This underlines the importance of 
large scale simulations to gain an accurate under-
standing of phase morphologies95. Simulations 

have identified the spiral-like arrangement of 
two different solid-phase lamellae embedded in 
a third solid phase during directional solidifica-
tion of ternary Ag-Al-Cu eutectics to be a con-
sequence of the tilted growth modes of eutectic 
solidification40. The functional dependence of 
tilted growth modes on the relative magnitudes 
of the solid-liquid, solid-solid interfacial energies, 
and solute diffusivities, have also been studied by 
simulations using the GP model79. The effect of 
dynamic variations of pulling velocities on the 
solidification microstructures for the Ag-Al-Cu 
ternary eutectic is also reported41. Similar stud-
ies have also been performed for the two-phase 
eutectic in the NiAl-34Cr system52, 53 culminating 
in simulations of eutectic colonies by coupling a 
nucleation scheme to the GP model54. Quantita-
tive simulations from the GP model have also 
been used as a benchmark to compare the predic-
tions from a generalized Jackson-Hunt45 theory 
of steady-state eutectic growth involving an arbi-
trary number of solid phases growing in a generic 
multi-component alloy63. Similar comparisons 
have also been reported by Steinmetz et al.96.

Other than solidification, the GP model has 
also been used to study precipitate growth and 
coarsening in multicomponent alloys6, 7, 76.

On the model development side, there are 
continuous ongoing attempts to add more fea-
tures to the GP model. An important study in this 
respect expands the ambit of the GP model to 
consider both substituitional and interstitial sol-
utes2. Another development specifically includes 
interfacial diffusion in the GP model36.

Like in the EBS28 model, the GP model can 
also be coupled to thermodynamic databases. The 
coefficients in a Taylor series expansion of the free 
energy as a function of composition can be deter-
mined from thermodynamic databases which can 
then be used in the GP model to simulate trans-
formations in real materials17. This manner of 
coupling is applicable to deviations from equilib-
rium small enough to be accurately described by 
a truncated Taylor series up to the second order 
term. Recently, an alternate mechanism of cou-
pling has been reported. Here, the convex func-
tions Gα(c) from databases are converted into 
�α(µ) numerically, which are then directly uti-
lized in simulations15.

7 �Other�Models�of Phase�Transformations�
in Multicomponent�Alloys

In the previous sections, we have briefly discussed 
those PF models of multiphase, multicomponent 
transformation which are completely generic and 
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can model  arbitrary number of phases in an alloy 
with arbitrary number of solute components. 
Besides these models, the PF modeling literature 
contains many other interesting approaches to 
simulate phenomena in multi-component alloys, 
but which have not been posed in a general-
ized form. In this section, we briefly review such 
models.

Kim proposed a model of single-phase solidi-
fication in multicomponent alloys55 as an exten-
sion of the binary alloy model presented earlier57. 
Another model of single phase solidification in 
multicomponent alloys is proposed by Emmerich 
et al.60, 61. Cha et al.14 developed a model of sin-
gle-phase solidification in multicomponent alloys 
considering both substitutional and interstitial 
solutes.

The Cahn–Hilliard (CH) model11, 12 has also 
been used with success to simulate solid-state 
transformations in multicomponent alloys. The 
ability of the CH model to simulate systems with 
concavities in its free energy makes it an appro-
priate choice for simulating microstructures in 
phase separating systems in metallic59 as well as 
polymeric/organic systems33, 34, 46, 47. Additionally, 
it has also been used to simulate precipitate coars-
ening in ternary alloys7. It is important to note 
that just like in the NGS model, there is a chemi-
cal energy contribution to the interfacial energy 
in the CH model which scales with the width of 
the interface. Thus, it is important to restrict the 
usage of CH models to experimentally verifiable 
interface widths.

A unique modeling approach coupling Allen–
Cahn1 and Cahn-Hilliard equations11 is proposed 
to simulate colony formation during directional 
solidification of two-phase eutectics in the pres-
ence of a ternary impurity83. The overall motion 
of the solidification front is obtained from a 
solution of the Allen–Cahn equation while the 

Cahn–Hilliard equation controls the generation 
of new eutectic lamellae. This model has been 
extended by including the effects of kinetic84, 86 
and interfacial anisotropy62, 68 to study the forma-
tion and scaling properties of spiral dendrites (see 
Fig. 6).

8 �Conclusions�and Outlook
We have traced the evolution of quantitative 
PF models which can tackle any number of 
components and phases. Coupling such a PF 
machinery with thermodynamic and kinetic 
databases results in predictive simulations of 
microstructure evolution in multicomponent 
alloys. Such simulations can be used to scan 
through the compositional and process vari-
able spaces to decide the right combinations 
of alloy chemistry and processing routes for 
achieving the desired microstructure and prop-
erties. Although the true potential of phase-
field modeling lies in providing guidelines for 
experimental design of alloys and their micro-
structures, such an approach is yet to be fully 
harnessed by the scientific community. Phase-
field modeling is still primarily viewed as a tool 
to gain a deeper understanding of the process 
of genesis of microstructural features observed 
experimentally. However, an appreciation of its 
predictive power is bound to grow with time as 
the material science community confronts the 
impending challenge presented by the design of 
multicomponent alloys like “high entropy alloys 
(HEA)”, and “complex concentrated alloys 
(CCA)” which offer exciting property profiles35, 

73, 85.
A purely experimental approach to design 

novel multicomponent alloys is a resource-inten-
sive route. Using computational predictions to 
streamline experiments can drastically reduce 
costs and energy consumption and such a hybrid 
approach offers the most sustainable way to 
design novel alloys. In view of the versatility and 
quantitative accuracy of the PF models discussed 
in this review, it can be anticipated that simula-
tions of microstructure evolution using such 
quantitative PF models will continue to accelerate 
the design and development of novel multicom-
ponent alloys in the future.
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