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Sustainable Production of Steel–Carbon Neutrality 
and Low Life Cycle Emission

1 Introduction
Metallurgical Industries are the second largest 
contributor to global  CO2 emission only next 
to the thermal power plants.1 Among them, 
steel plants contribute to nearly half of the total 
emission of the metallurgical industries by vir-
tue of the volume of production and the tradi-
tional red-ox route.2 Production of steel involves 
higher energy consumption associated with a 
high level of  CO2 emissions. Blast furnace route 
for iron making is an energy-intensive route uti-
lizing fossil fuels and contributes to about 7% of 
the anthropogenic  CO2 emissions.3, 4 Researches 
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Abstract | Steel is most preferred and largest consumed engineering 
material. It is also the largest contributor to greenhouse gas emissions. 
Conventional steel production is highly carbon intensive and produces 
about 2.2  tCO2 per tonne of steel produced. With predicted steel pro-
duction growth of 25–30% by 2050, steel sector will be responsible for 
the largest generation of anthropogenic emissions among the process 
industries. Various steel-making process improvisations like Blast Fur-
nace top gas recycling, usage of bio-mass, replacement of coke with 
hydrogen for reduction, fuel change over to natural gas can drastically 
bring down the emission levels of  CO2. Serious thought is given towards 
the reduction of  CO2 emissions through CCS  (CO2 Capture and Stor-
age) and reutilization of caught carbon for chemical manufacturing. 
Means of carbonless steel production using hydrogen generated from 
renewable energy source are being considered to bring carbon neutral-
ity to steel production by 2050. Steelmaking through the electrical arc 
furnace using electricity from renewable sources is gaining popularity 
considering the expected increase in scrap generation from 30 to 50% 
and nearly zero carbon footprint. The further reduction of  CO2 emission 
during the lifetime of use of steel is expected through the usage of light-
weight materials in automobiles which lowers the fuel consumption and 
hence the lower  CO2 generation. Various routes being explored to bring 
 CO2 emissions to a lower level of 0.4–0.5t  CO2/t steel by enhancement of 
existing production facilities and by the deployment of innovative meth-
ods are reviewed.
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on  CO2 emissions during steel production has 
revealed an average  CO2 release of 1.8t/ton of 
crude steel.4–6 Steel will continue to be the choice 
of engineering material in the near future for 
various core sector applications such as infra-
structure development, earth moving and heavy 
commercial vehicles, rail transport and automo-
biles for the techno-economic reasons. World 
steel demand is expected to grow at the rate of 
4.3% year-on-year and Indian steel demand is 
poised to grow at the rate of 7.2%.7 With increas-
ing steel production, the  CO2 emission is only 
expected to increase and with most of the power 
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production switching to renewable sources, steel-
making could be the largest contributor to green-
house gas emission in the future.7

In the near future, it is essential to evolve the 
process of steel production to reduce  CO2 emis-
sions and bring to a carbon neutrality level. The 
steel itself should be re-invented to produce ultra-
high strength and lightweight steel which will 
contribute to the reduction of emissions during 
the life cycle of steel.8 For steel to continue to be 
the material of choice in the future in a sustain-
able manner it is important to re-engineer both 
the production process and the product.

Conventional iron making through the blast 
furnace route provides very little scope to elimi-
nate  CO2 emission completely from the steel-
making process. Production of iron from iron 
ore through the blast furnace route requires car-
bon in the form of coke both as a reductant and 
energy source.  CO2 emission can be reduced to 
some extent through the optimisation of the 
processes and effective utilisation of the energy 
by recovery.9 To bring down the net  CO2 emis-
sion the most contemplated route at present is 
to capture  CO2 and to utilise it for the produc-
tion of organic compounds or carbonated prod-
ucts. These methods may result in incremental 
improvements in the reduction of  CO2 emissions. 
However, for a sustainable future, major shift 
from carbon as a reductant and energy source 
is required.10 Unless the energy required for the 
production of steel and during its life cycle is 
met by renewable sources, carbon neutrality may 
not be achieved. Various process options for the 
production of steel without using fossil fuel as a 
reductant or source of energy shall be discussed 
further.

2 �Using�of Alternate�Reductant—
Hydrogen

Carbon from coke is a major source of reducing 
agent of iron oxide from iron ore.7

The kinetics of the reduction reaction are 
optimal at temperatures higher than 1000 °C. 
However, since the iron ore is associated with 
other gangue material, the temperature of the 
process is raised to more than 1300 °C to remove 
the impurities in the form of liquid slag. The 
liquid iron is saturated with about 4% carbon 
at high temperatures which is removed as  CO2 
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Fe2O3 +

3
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C → 2Fe+

3

2
CO2
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0
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during the subsequent steel-making process.11, 

12 The energy required to raise the temperature 
of the reactants above the melting point of slag 
and the carbon saturated hot metal is achieved 
through partial oxidation of carbon from coke.13

In a blast furnace, the reduction of  Fe2O3 by 
CO gas generated through partial oxidation of 
carbon from coal or coke is kinetically favoured 
over the reduction by carbon.

The Blast Furnace Process is shown as sche-
matic diagram in Fig. 1. In a blast furnace the raw 
materials—iron ore, flux and coke—are fed from 
the top. Pre-heated oxygen-enriched air blast is 
blown from the bottom through tuyeres. Pulver-
ised coal is also injected through tuyeres. More 
often Nitrogen is used as a carrier gas for the pul-
verised coal injection. Typically, about 350 kg of 
coke and 200 kg of pulverised coal is used in the 
blast furnace for the production of one ton of hot 
metal.

By virtue of the red-ox reactions, steelmak-
ing through blast furnace emits about 1.8 tons of 
carbon-dioxide per ton of liquid steel produced. 
In addition, the process also consumes electrical 
energy for various auxiliary units, nitrogen and 
oxygen generation.

Typically, a BF-BOF plant consumes about 
130 kWh/ton of crude steel.14 Assuming the 
entire electrical energy is generated from coal, 
the total  CO2 emission for the production of one 
ton of steel is about 1.92 tons.4, 15, 16 The  CO2 
intensity of electrical energy is dependent on the 
source.

Steel plants have taken various measures to 
reduce  CO2 emissions through minor process 
modifications such as hydrocarbon usage as 
reductant, injection of pulverised coal with high 
volatile matter or natural gas through tuyeres.17 
Table 1 summarises typical life cycle  CO2 inten-
sity of electricity generated from various sources.

However, the reduction of emissions is 
very small through these processes. Substan-
tial reduction in  CO2 emission intensity for 
the production of electricity could be achieved 
by changing the source from coal to renewable 

(2)

Cs + 1/2 O2(g) → CO(g)

{

�H0
= −111 kJ/mol

}

(3)

Cs + O2(g) → CO2(g)

{
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= −393.78 kJ/mol
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(4)
Fe2O3 + 3CO → 2Fe + 3CO2
{

�H0
= −35.2 kJ/mol

}

.
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energy source. However, in the blast furnace 
the proportion of  CO2 from electrical energy is 
very less compared to the  CO2 emission from 
the reduction reaction and smelting using 
coke. Apart from acting as a reductant, coke 
plays a major role as burden support in the 
blast furnace and has a very limited scope for 
replacement.

Major reduction in  CO2 emissions can be 
achieved altering the reduction process from car-
bon based to hydrogen based in DRI units.18, 19

Similar to reduction by carbon, iron oxide is 
reduced by hydrogen to yield metallic iron and 
water vapour.

The reduction reaction by hydrogen is 
 endothermic20 compared to reduction by CO 
and requires an external energy input for the 
reduction reaction to progress. And since the 

(5)
Fe2O3 + 3H2 → 2Fe + 3H2O
{

�H0
= +99.5 kJ/mol

}

.

Figure 1: Process flow chart of blast furnace iron making.
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reaction can take place in solid state, the tem-
perature of the reduction process can much 
lower than the temperature encountered in the 
blast furnace process. Typically, in a DRI unit 
the reductant and heating agent is a mixture 
of CO and  H2 derived from cracking of natural 
gas or gasification of coal using steam. The pro-
portion of CO and  H2 varies largely depending 
on the volatile matter composition of the coal 
in the coal gasification process.21 Natural gas 
on the other hand has about 95% methane and 
rest higher level hydrocarbon. The reaction of 
cracking natural  gas13 with steam is

As can be seen, the cracking reaction is 
endothermic and requires external energy for 
the reaction to proceed. In practice, part of the 
natural gas is burnt to provide the energy for 
raising the reaction temperatures to about 800 
°C. Figure 2 shows a block diagram of DRI pro-
duction process using natural gas. The natural 
gas in this case is reformed using steam.

The specific gas emission for iron produced 
from DRI unit is about 0.5 tons per ton of DRI. 
The emission further can be reduced by increas-
ing the proportion of hydrogen through exter-
nal injection of Hydrogen generated from the 
electrolysis of water.22 DRI units can also be 
modified to use only hydrogen as a reductant 
and the external energy required for sustaining 
high temperature could be provided by electri-
cal energy from a renewable source. This is a 
promising technology that can produce iron 
from iron ore with no  CO2 emissions. How-
ever, the challenge is to meet the entire energy 

(6)
CH4(g) +H2O(l) → CO(g) + H2(g)
{

�H0
= 206.3 kJ/mol of CH4

}

.

requirement for electrolysis for the produc-
tion of Hydrogen and reduction process from a 
renewable energy source.20

Considering a process temperature of 1000 °C, 
the energy requirement will be about 4000 kWh 
per tonne of DRI. Figure 3 is a block diagram of 
iron production by direct reduction using hydro-
gen generated by electrolysis of water.

DRI is further to be melted to remove the 
gangue from the iron ore as slag and to convert 
molten iron to the steel of required composition 
with alloy additions. Considering an electric arc 
furnace for the melting and refining process, the 
energy required for the production of one ton of 
crude steel is about 560 kWh/tonne. Depending 
upon the route of DRI production the  CO2 emis-
sion intensity of DRI- EAF route of steel produc-
tion could vary from 1.61 ton  CO2/ton of crude 
steel to 3.77 ton  CO2/ton of crude steel.

Table 2 gives the comparison of  CO2 emis-
sion intensity for various routes of steel produc-
tion from iron ore, considering electrical energy 
production from coal. DRI production using 
hydrogen generated by electrolysis is higher than 
hydrogen produced by steam reforming of natu-
ral gas due to the fact that the electrical energy 
required for electrolysis is very high and elec-
tricity generation from coal has the highest  CO2 
emission intensity at 0.95 kg  CO2/kWh.18

If the electrical energy required for electrolysis 
and EAF is produced from renewable energy such 
as wind power the  CO2 emission intensity can be 
as low as 0.508  tCO2/tcs. Hypothetically if all the 
energy requirement is met by renewable power 
the  CO2 emission intensity will be about 0.056 
 tCO2/tcs.

3 �Steel�Production�from Scrap
Flat steel rolling mills, in general, are of larger 
capacities—in the range of 2 million tons per 
annum to 5 million tons per annum. To feed the 
mills balancing steel-making capacities of similar 
size is required. This would require multiple units 
of DRI and electric arc furnace combinations, 
which in turn is capital intensive.

However, rolling mills producing long prod-
ucts such as reinforcement bars, structural steel 
sections, plain carbon and alloy steel bars for 
engineering application, rails can be of varied 
capacities ranging from as low as 0.10 million 
tons per annum to 1.0 million tons per annum. A 

(7)
2H2O(l) → 2H2(g) + O2(g)
{

�H0
= +242 kJ/mol of H2O

}

.

Table 1: CO2 intensity of various modes of elec-
tricity generation.

Sl. No Source

CO2 inten-
sity (g/
kWh)

1 Coal 950

2 Natural Gas 475

3 Hydro-electric 24

4 Nuclear 12

5 Solar 48

6 Wind 12

7 Geothermal 38
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micro or mini steel mill could be established near 
consumer point with a combination of DRI and/
or scrap as input and electric arc furnace/induc-
tion furnace as a primary steel refining unit.23 
Micro units could utilise scrap which completely 
eliminates the requirement of iron ore and 
reductants and reduces the emissions to a greater 
extent.24

Melting of one ton of scrap requires about 930 
kWh of energy which is equivalent to 0.88 tons 
 CO2 emissions considering coal as energy source 
or 0.44  tCO2/tcs considering the natural gas 
source of electrical energy. Compared with 1.8 
tons of  CO2 emission through BF-BOF route,15, 

16  CO2 footprint of steel production from scrap 
is about 25% only. If the entire electrical energy 
requirement is met through a renewable energy 

source, the carbon footprint is close to  zero25–27 
for steel production from scrap.

Table 3 lists the various combinations of 
steel production using DRI and scrap in elec-
tric furnaces. Both the routes of DRI produc-
tion have been considered: from natural gas (Sl. 
No. 1 in Table 3) and with Hydrogen from elec-
trolysis (Sl. No. 2 in Table 3) and natural gas is 
considered for heat input. As can be seen, if the 
electrical energy requirement is met through 
renewable energy sources, the carbon footprint 
of steel production can be as low as 0.508  tCO2/
tcs for iron input to EAF from DRI and 0.098t 
 CO2/tcs for producing from scrap.

The  CO2 emission of steel from scrap using 
EAF with renewable power source is negligible 
compared to 1.94  tCO2/tcs resulting from BF-
BOF route. The life cycle carbon footprint for 

Figure 2: DRI Production using steam reformed Natural Gas.
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the scrap as input has been considered zero in 
this case, assuming the LCA footprint of the 
scrap has been accounted fully during it previ-
ous usage cycle.

4 �Advanced�High�Strength�Steel�(AHSS)�
and Ultra�High�Strength�Steel�(UHSS)

4.1  Automobiles
Life Cycle Assessment (LCA) of  CO2 emission is 
a normalised method of evaluating the carbon 
footprint of any product from the production 

Figure 3: Process flow diagram for dri using hydrogen from  electrolysis20.

Table 2: Comparison of  CO2 emission intensity 
of primary steel production by various routes.

Sl. No Route of steel production
CO2 emission 
(t/tcs)

1 Blast furnace—basic oxygen 
furnace

1.94

2 DRI using natural gas—EAF 1.61

3 DRI using hydrogen from Elec-
trolysis and thermal energy 
from Natural Gas – EAF

3.77



123

Sustainable Production of Steel–Carbon Neutrality and Low Life Cycle Emission

1 3J. Indian Inst. Sci.| VOL 102:1 | 117–126 January 2022 | journal.iisc.ernet.in

till the end of life of application of the product.28 
In general, LCA is widely used in the automo-
tive industry to assess the carbon footprint of the 
vehicle till its service life. Typically, for a mid-size 
passenger vehicle running on gasoline, the carbon 
footprint during manufacturing is about 25% 
and 75% is from the tail end emissions. The shift 
towards electric vehicles for passenger commute 
is gaining momentum leading to the elimina-
tion of tail-end emissions in the electric vehicle.29 
However, the source of electricity is the major 
deciding factor for the LCA carbon footprint. As 
mentioned in the previous section, if the electric-
ity is produced from coal, the tail end emission is 
replaced by  CO2 emission from the power plant 
and the LCA carbon dioxide emission in fact 
increases. On the other hand, if the electricity is 
produced from renewable energy sources, the 
life-time  CO2 emissions are nearly zero. The  CO2 
emission intensity of an electric vehicle is more 
than the conventional gasoline engine vehicle due 
to the addition of  CO2 emission during the pro-
duction of the storage batteries.30 To increase the 
range of electric vehicles, the weight of the vehi-
cle itself is being reduced through the selection of 
material with a higher strength to weight ratio.

In a midsize vehicle of about 1500 kg,31 pro-
portion of steel is about 40%. Of these about 
180–240 kg is the body-in-weight (BIW) and the 
rest of application is in chassis, suspension and 
safety parts and other components.31 The weight 
of the steel used in the vehicle can be reduced 
using higher-strength steel. Currently, advance 
high strength steel (AHSS) with strength levels 
up to 980 MPa are used in the chassis and crash 
components. Small percentage of hot-formed 
steel with strength level up to 1500 MPa is used 
in some of the passenger vehicles. The steel 
weight can further be reduced by application of 
Advanced High Strength Steels with strength lev-
els more than 1200 MPa and Ultra High Strength 

Steels (UHSS) with strength level in the range 
of 2000–2400 MPa. For instance, a typical sus-
pension coil spring is made of steel with about 
1800 MPa tensile strength and if steel with tensile 
strength more than 2200 MPa could be used the 
weight reduction is about 20%. Similarly, by using 
higher strength steels, the component weight can 
be reduced by 20–40%. According to World Auto 
Steel, weight reduction in a compact passenger 
car with an average kerb weight of 1249 kg can be 
as high as 80 kg per vehicle. This will amount to 
reduction of about 1500 kg  CO2eq during a ser-
vice run of 250,000 km.28 Reduction during pro-
duction of the vehicle due to lesser material use 
will be about 260 kg. In effect the reduction in life 
cycle  CO2 emission by using AHSS and UHSS in 
future passenger cars is more than that achievable 
by using alternate material.32 Electrical mobility 
coupled with AHSS usage will has greater poten-
tial for reducing the total  CO2 emission intensity. 
Again the extent of reduction will largely depend 
on the source of electricity and the grid mix.33, 34

4.2  Structural Applications
In the Indian context of steel consumption, only 
about 10% is used in automobiles whereas about 
40% is used in building and construction. Of this 
40%, substantial quantity is used as steel bars in 
RCC structures. Steel structural buildings and 
Pre-engineered buildings are gaining momen-
tum in India. In structural buildings like indus-
trial sheds and warehouses, steel forms more than 
90% of construction materials used.35 Typically 
for an industrial shed of 1000 sq. m. about 150 
tons of steel in the form of columns, I-beams, 
angles and purlins. The yield strength of the steel 
varies from 250 to 350 MPa and the correspond-
ing tensile strength from 410 to 520 MPa.35

The smaller sections are as rolled angles and 
beams and the columns generally are fabricated 
or hot rolled depending on the size. The carbon 

Table 3: CO2 emission intensity of EAF with various sources of iron and electricity.

Sl. No Process route

Energy requirement  
GJ/tcs

Total  CO2 emission intensity  (tCO2/tcs)
Thermal energy + 

Thermal  +  
Chemical

Electrical Electrical energy 
from coal

Electrical energy 
from natural gas

Electrical energy 
from wind

1 DRI + EAF 15.73 2.57 1.61 1.27 0.940

2 H2-DRI + EAF 7.42 12.54 3.77 2.59 0.508

3 (50%  H2-DRI +  
50% scrap)- EAF

4.32 7.32 2.21 1.24 0.302

4 100% scrap − EAF 1.23 2.11 0.648 0.369 0.098
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footprint attributed to the use of steel in the con-
struction of a warehouse or industrial shed is 
about 286 kg  CO2/sq.m of warehouse/shed. Of 
the 150 Tons of steel nearly 40 is the superstruc-
tures such as roof trusses and purlins. Similar to 
the use of AHSS in automobiles, if high strength 
roll-formed steel sections with YS > 600 MPa and 
UTS > 900 MPa is used in place of conventional 
hot rolled sections, the cross-section of the elements 
in the super structure can be reduced by nearly half 
and in turn about 50% in weight saving.

The weight of the superstructure can be reduced 
from 60 kg/sq.m to about 30 kg/sq. m of warehouse/
shed. Similarly, using high-strength steel for the col-
umns and beams, the weight reduction could be in 
the range of about 30%, keeping structural integrity 
in consideration. The total reduction in steel will be 
about 57 kg/sq. m of warehouse/shed. The reduc-
tion on the carbon footprint will be about 108 kg 
 CO2/sq.m of warehouse/shed. Further reduction 
in carbon footprint could be achieved by carrying 
out similar weight reduction exercise for the roof-
ing material. Table 4 gives the comparison between 
the conventional rolled steel and high strength roll-
formed steel.

5 �Conclusions
1. Steel can be produced with zero  CO2 emis-

sion or minimum possible carbon footprint 
by re-engineering the process of reduction 
of iron using hydrogen.

2. Higher proportion of steel production 
from scrap using electricity from renewable 
energy sources can reduce the carbon foot-
print of steel products.

3. The extent of carbon neutrality achievable 
depends on the source of electrical energy.

4. Life Cycle  CO2 emissions can be reduced by 
replacing conventional steel with Advanced 
High Strength Steel and Ultra High Strength 
Steel in steel constructions and automobiles.

5. With a combination of low  CO2 steel pro-
duction and the use of higher strength steel, 

steel will continue to be a choice of material 
for engineering application.
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