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Analytic Number Theory in the Last Decade

Ritabrata Munshi*

1 Introduction
In the last decade 2011–2020, we witnessed an 
all-round spectacular progress in Analytic Num-
ber Theory. It was marked with resolutions of 
some outstanding classical problems, such as the 
ternary Goldbach problem and the Vinogradov 
mean value theorem. There was fantastic progress 
towards the twin prime conjecture. In addition, 
results were established, breaking long-standing 
barriers in the field of multiplicative arithmetic 
functions and the analytic theory of automorphic 
L-functions. Overall, it had been an exciting dec-
ade for analytic number theorists.

2 �Gaps�Between�Primes
Perhaps, the most compelling conjecture about 
prime numbers is the Twin Prime Conjecture, 
which says that there are infinitely many primes 
p such that p+ 2 is also a prime. This problem 
has fascinated generations of mathematicians 
(professionals and amateurs alike) and has led to 
developments of several important branches of 
analytic and combinatorial number theory, e.g. 
the sieve methods. It is a well-known result in 
sieve theory that there are infinitely many primes 
p, such that p+ 2 has at most two prime factors. 
A slightly different way of looking at the twin 
prime problem would be to study pairs of con-
secutive primes with small gaps. The prime num-
ber theorem (PNT) says that the average gaps 
between consecutive primes with roughly log x 
many digits is log x.

Consider

where pn denotes the n-th prime number. Then, 
PNT implies that ∆ ≤ 1 , whereas the twin 
prime conjecture implies that ∆ = 0 (and much 
more). Erdös in 1940s proved unconditionally 
that ∆ < 1 , and the bound was subsequently 
improved over the years. But ∆ = 0 remained a 

∆ = lim inf
n→∞

pn+1 − pn

log pn
,
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far cry, till the breakthrough work of Goldston, 
Pintz and Yildirim (GPY)5 in the first decade of 
this millennium. In a follow-up paper, they estab-
lished a much stronger estimate

However, the main contribution of the GPY series 
was a conditional result with far reaching conse-
quences. Consider a set of integers

and for every prime p let νp(H) be the number of 
distinct residues classes in H modulo p. We say 
that H is admissible if νp(H) < p for all primes 
p. The prime k-tuple conjecture of Hardy and Lit-
tlewood says that if H is admissible then there are 
infinitely many integers n such that all the com-
ponents of

are primes. The twin prime conjecture corre-
sponds to the special case with H = {0, 2}.

GPY approaches the problem through 
the Selberg sieve. Roughly speaking, the sieve 
removes those n’s where any component in n+H 
has a small prime factor and one is left only with 
tuples where all the components have large prime 
factors. As such, the remaining tuples have few 
prime factors distributed among the compo-
nents, and we obtain a sequence where we are 
likely to find primes with small gaps. For exam-
ple, if we had a k-tuple where the components 
together have at most 2k − 2 prime factors, this 
would force at least two components of the tuple 
to be prime. Hence, we would have produced two 
primes whose difference is at most the width of 
the tuple. Alas, sieves never work this well and 
this strategy is doomed to fail. We need to add 
some new inputs to demonstrate existence of 
primes in the sieved tuples.

lim inf
n→∞

pn+1 − pn
√

log pn(log log pn)2
< ∞.

H = {h1 < h2 < · · · < hk},

n+H = {n+ h1, n+ h2, . . . , n+ hk}
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The extra input that GPY employ is the uni-
formity of the distribution of primes in arith-
metic progressions with large moduli. We say 
that the primes have level of distribution θ if for 
any ε > 0 , one has

for any A > 0 . Of course one wants to take θ as 
large as possible. The famous Bombieri–Vino-
gradov theorem says that primes have level of 
distribution 1/2. This is also the best one can 
achieve assuming the generalised Riemann 
Hypothesis. However, one can go even beyond 
the Riemann Hypothesis, and a conjecture of 
Elliot–Halberstam predicts that the level of dis-
tribution is 1. Now, the GPY strategy is to find 
the proportion of times the Selberg sieve pro-
duces almost prime tuples with one particular 
component fixed to be prime. If this proportion 
turns out to be bigger than 1/k (when we are 
considering k-tuples), then the k events

cannot all be disjoint from each other and there 
must be some overlap where two of the compo-
nents are primes simultaneously. This produces 
two primes in the given tuple. Therefore, the 
success of the method depends on the chance of 
the event Ej for 1 ≤ j ≤ k , and the Selberg sieve 
coefficients need to be chosen optimally. The 
level of distribution of the primes now enters 
the picture, as the sieve weights are constrained 
by the level of distribution. To get better result 
in Selberg sieve, one needs to improve the level 
of distribution of the primes.

The main contribution of the GPY series is 
the following. Suppose the primes have level 
of distribution θ > 1/2 , then there exists an 
explicitly computable constant c(θ) such that 
for any admissible k-tuple H with k ≥ c(θ) , the 
set n+H has at least two primes for infinitely 
many integers n. In particular, if one assumes 
the Elliot–Halberstam conjecture, then using 
the admissible 6-tuple

∑

q≤N θ−ε

max
(a,q)=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

p ≤ N
p ≡ a mod q

log p−
N

φ(q)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≪
N

(logN )A
,

Ej = {j-th component in the k-tuple n+H is prime}

j = 1, 2, . . . , k

H = {0, 4, 6, 10, 12, 16}

one can show that the difference between two 
consecutive primes is less than 16 infinitely 
often. With this GPY brought the bounded gap 
conjecture, that there exists a constant c such 
pn+1 − pn ≤ c for infinitely many n, within a 
‘hair’s breadth’. All one had to do was to break 
the Bombieri–Vinogradov barrier. But this has 
eluded the best minds for decades.

In late April of 2013, Yitang Zhang, a less 
known professor of Mathematics at the Univer-
sity of New Hampshire, submitted a paper19 to 
the Annals of Mathematics claiming to prove 
that there are infinitely many pairs of primes 
that differ by less than 70 million. The proof 
was thoroughly crosschecked and verified by 
experts, and soon the news spread like wildfire, 
rocking the world of Mathematics.

Theorem 1 19 Let pn denote the n-th prime. 
Then, for infinitely many n, we have

Zhang’s theorem is a giant leap forward 
in the direction of the twin prime conjecture. 
Therefore, how did Zhang overcome the Bom-
bieri–Vinogradov barrier? Actually, he did not, 
he found a clever way to bypass it completely. It 
has long been known that it is possible to get a 
level of distribution larger than 1/2 provided cer-
tain restrictions are placed on the residue classes. 
These were worked out by Bombieri, Friedlander 
and Iwaniec, and also by Fouvry and Iwaniec, in 
a well-known series of papers in 1980s. However, 
all these theorems require that the residue class 
a mod q be fixed. But this restriction is incom-
patible with the GPY strategy. However, in 2008, 
Motohashi and Pintz made a fundamental obser-
vation, which was the basis of Zhang’s approach. 
Let us try to make it little more precise. The main 
idea of GPY is to study the sum

where

and

where �d are the sieve weights. Motohashi–Pintz 
observed that the GPY result does not weaken 

pn+1 − pn ≤ 70,000,000.

∑

N<n≤2N

(

k
∑

i=1

θ(n+ hi)− log 3N

)

Λ(n;H)2,

θ(n) =
{

log n if n is a prime
0 otherwise,

Λ(n;H) =
∑

d|(n+h1)(n+h2)...(n+hk )

�d ,
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a bit if one restricts the sum to smooth d, i.e. d 
without large prime divisor. The fundamental 
idea of Zhang is to restrict the residue classes 
a mod q to run over the roots of the polynomial

modulo q. Now if q is prime then we only have 
bounded number of residue classes, and hence 
we have a larger level of distribution. However, 
for q composite, we may have many more. Zhang 
applies the Chinese remainder theorem to con-
trol this, and this turns out to be sufficient to 
control the error term. In other words, Zhang 
shows that in the Selberg sieve one can restrict 
the sieving to divisors with no large prime fac-
tors (i.e. smooth divisors). This though decreases 
the effectiveness of the sieve in GPY but the effect 
is small. On the other hand, Zhang increases the 
sieving range corresponding to a level of distri-
bution 1/2+ 1/584 . The gain turns out to be 
large enough to overcome the loss from smooth-
ing. To control the error terms Zhang makes the 
fundamental observation, which he himself calls 
‘the most novel part of the proof ’, that since the 
divisors in the sieving have no large prime factors 
and, therefore, may themselves be factored into 
factors of various sizes with considerable flex-
ibility. One should note here that Zhang does not 
improve the level of distribution of primes, he 
only offers a way to bypass the issue.

Zhang’s work19 generated a lot of research in 
the last decade, and still continues to do so in the 
present. Several researchers have come up with 
simplifications of Zhang’s arguments resulting 
in squeezing the gap even further. A special men-
tion should be made here of Maynard’s contribu-
tions. He has worked out a new way of proving 
bounded gap10. Maynard also uses Selberg sieve, 
but his weights are more flexible and take the 
form

Using these weights, he reduced the gap between 
primes to 600, and under the Elliot–Halberstam 
conjecture this gap further reduces to 12. In fol-
low-up papers, Maynard has applied his ideas in 
other contexts as well. In particular, he has proved 
existence of primes with large gaps settling a well-
known problem posed by Erdös11 (also see4). 
Zhang’s work also inspired a Polymath project led 
by Tao15, that came up with several refinements 
of Zhang’s work and reduced the gap to 246.

∏

h =h′∈H
(x + h− h′)

Λ(n;H) =
∑

di|(n+hi);1≤i≤k

�d1,d2,...,dk .

3 �Ternary�Goldbach�Problem
Both the ternary Goldbach conjecture and 
the binary (or strong) Goldbach conjecture 
have their origin in a famous exchange of let-
ters between Euler and Goldbach in 1742. 
While the strong form, that every even integer 
larger than 2 can be written as a sum of two 
primes, has been elusive, progress has been 
made towards the weaker conjecture that every 
odd integer larger than 5 can be written as a 
sum of three primes since 1920s. First, in 1923, 
assuming the Generalised Riemann Hypoth-
esis, Hardy and Littlewood proved that every 
sufficiently large odd integer can be written as 
a sum of three primes. Then, Vinogradov used 
his powerful techniques to make the result 
unconditional in 1937. More precisely, it fol-
lowed that for any odd integer n ≥ V  , with 
V = 33

15
 , the equation

has solutions pi in the set of prime numbers. 
Since 33

15 ≈ 106,846,168 is a huge number, veri-
fying the conjecture for smaller integers up to 
V is computationally impossible, even with our 
present day super computers. The bound V 
was improved to ee

16.038
 by Borozdkin in 1956, 

which in turn was substantially improved to 
ee

11.503
 by Chen and Wang in 1989. The best-

known bound till the recent breakthrough by 
Helfgott, stood at e3100 which was obtained 
by Liu and Wang in 2002. In his recent work, 
Helfgott (see6) reduced the bound to 1027 , i.e. 
he showed that any odd integer n > 1027 is a 
sum of three primes. In another pre-print, 
Helfgott together with Platt verified using 
computers that every odd integer smaller than 
8.845× 1030 can be written as a sum of three 
primes.A Together, they settle the ternary 
Goldbach problem completely.

Let us now briefly explain the approach of 
Vinogradov. We are interested in the function

To settle the ternary Goldbach problem, one 
seeks to prove that R(n) > 0 for any odd n > 5 . 
(For the strong Goldbach, one needs to prove that 
R(n) > 0 for all integers n > 5 . For even n, one of 

n = p1 + p2 + p3

R(n) =
∑∑∑

p1, p2, p3 prime p1 + p2 + p3 = n

(log p1)(log p2)(log p3).

A It should be noted that Helfgott’s work is yet to appear in 
print, though his pre-prints are available online since 2012.
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the primes is forced to be 2, making the problem 
many fold harder.) Given n, we define the (trun-
cated) generating function

so that

This is where the circle method kicks in. The 
main contribution to the integral comes from the 
short arcs around the points where the generat-
ing function peaks. This is the major arc contri-
bution, which we need to evaluate asymptotically 
(or at least get a good lower bound). The rest of 
the ‘circle’ is the minor arc, where one seeks to 
prove a strong upper bound. In Vinogradov’s 
approach, one fixes a positive integer B, and takes

Then, the major arc is given by

and the minor arc is given by

Using periodicity, we get

For bounding the minor arc from above, one now 
employs Vinogradov’s estimates for trigonomet-
ric sums over primes. In particular one has

where |α − a/q| ≤ q−2 . Observe that the bound 
is non-trivial only when α is badly approxima-
ble by rational numbers with small denomina-
tors. This (together with the prime number 
theorem) leads to the upper bound

f (x) =
∑

p prime
p < n

(log p)e(px),

R(n) =
∫ 1

0
f (x)3e(−nx)dx.

P = (log n)B.

M =
⋃

1 ≤ a ≤ q ≤ P
(a, q) = 1

[

a

q
−

P

n
,
a

q
+

P

n

]

,

m =
[

P

n
, 1+

P

n

]

−M.

R(n) =
∫

1+P/n

P/n

f (x)3e(−nx)dx

=
∫

M

f (x)3e(−nx)dx

+
∫

m

f (x)3e(−nx)dx.

f (α) ≪ (log n)4
(

n

q1/2
+ n4/5 + (nq)1/2

)

,

On the other hand for 
α ∈ [a/q − P/n, a/q + P/n] in the major arc, 
one uses the theory of distribution of primes in 
arithmetic progression to approximate f (α) as 
follows:

From this, one derives that

where the singular series is given by

Observe that if n is even S(n) = 0 due to the 
factor coming from the prime 2. But for n odd 
S(n) ≫ 1 , and so for n sufficiently large odd 
integer we get that R(n) > 0 . Now to find out 
what sufficiently large means, we need to work 
out the implied constants. As we noted above, 
Vinogradov’s original approach works for 
n ≥ 33

15
 , i.e. odd numbers with more than 6.8 

million digits. Helfgott reduced it to numbers 
with 28 or more digits. As one can guess such 
major advancement does not come just by fine 
tuning the existing machinery. Helfgott intro-
duces several refinements—smoothing expo-
nential sums over primes with different weight 
functions (carefully chosen at the end to opti-
mise the bounds) and interweaving the large 
sieve techniques with the circle method.

In his setup, the major arc is given by

where c and r0 are constants (even when x grows) 
and q ≤ r0 . Next one introduces smooth weight 
functions in the generating function, at the cost 
of settling only for a lower bound for R(n) instead 
of an asymptotic. Indeed the endgame in Helf-
gott’s approach consists of picking the weight 
functions optimally. The estimation of the major 
arc reduces to estimation of

∫

m

f (x)3e(−nx)dx ≪
n2

(log n)
B−10
2

.

f (α) =
µ(q)

φ(q)

n
∑

m=1

e(m(α − a/q))

+O(n exp(−C(log n)1/2)).

∫

M

f (x)3e(−nx)dx = 1
2n

2
S(n)

+ O(n2(log n)−B/2
),

S(n) =
∏

p|n
(1− (p− 1)−2)

∏

p �|n
(1+ (p− 1)−3).

M =
⋃

1 ≤ a ≤ q ≤ P
(a, q) = 1

[

a

q
−

cr0

qx
,
a

q
+

cr0

qx

]

,
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where η is a smooth weight function, χ runs over 
Dirichlet characters modulo q ≤ r0 and δ is small. 
To estimate this sum, Helfgott uses explicit com-
putations involving L-functions. For the minor 
arc, following Vinogradov, one usually uses esti-
mates for exponential sums over primes. But this 
by itself is not strong enough for the present pur-
pose, and Helfgott splits the minor arc estimation 
into two parts. In one part, he uses point-wise 
estimates for exponential sums and in the other, 
he employs large sieve for primes to get uniform 
upper bounds for the L2 norm of the exponential 
sums over segments of major arcs.

Theorem 2 (Helfgott 6)Every odd integer 
larger than 5 can be written as a sum of three 
primes.

4 �Vinogradov’s�Mean�Value�Theorem
During 1920s, Hardy and Littlewood wrote a 
series of papers, titled ‘Some problems in “Par-
titio Numerorum”’, reshaping the newly formed 
circle method to study integer solutions of poly-
nomial equations. In particular, their powerful 
analytic method ushered a new era in the study 
of the Waring problem—finding numbers g(k) 
(resp. G(k)) such that every (resp. sufficiently 
large) positive integer is a sum of at most that 
many k-th powers of integers. The circle method 
reduces the problem to estimation of the ‘minor 
arc’ contribution involving exponential sums. 
To estimate the exponential sums, Hardy–Little-
wood employed the method of Weyl, and thereby 
obtained explicit upper bounds like

Around mid-1930s, Vinogradov introduced a 
new method to estimate exponential sums of 
Weyl’s type. His method is particularly effective 
for short sums of large amplitude. With this dis-
covery, he not only substantially improved the 
known results towards the Waring’s problem, 
e.g. he established

but also established a new zero-free region 
of the Riemann zeta function which remains 
unchallenged even after 80 years. An impor-
tant ingredient of Vinogradov’s method is an 

∞
∑

n=1

Λ(n)χ(n) e

(

δn

x

)

η

(n

x

)

,

G(k) ≤ (k − 2)2k−1 + 5.

G(k) ≤ k(3 log k + 11),

estimation of the mean value of certain expo-
nential sums Jℓ,k(X) . Vinogradov proved an 
upper bound for this mean value, but it was 
weaker than the expected bound. Improving 
Vinogradov’s estimate came to be known as the 
Vinogradov’s mean value problem.

Despite significant attention paid to it by a 
large class of mathematicians, including some 
of the finest analytic number theorists, the con-
jectural bound remained elusive till 2015, when 
two different proofs were announced from two 
different frontiers. First, Wooley using ana-
lytic number theory, made significant progress 
towards the resolution of the main conjecture in 
a series of papers between 2010 and 2015, and 
resolved it in full in the first non-trivial case; 
second, Bourgain, Demeter, and Guth using 
harmonic analysis, resolved the Main Conjec-
ture in full in 2015.

The starting point of Vinogradov’s work is 
the exponential sum

where f(x) is a real valued smooth function on 
the interval [N, 2N], and N ≤ a < b ≤ 2N  . 
(Recall that e(z) = e2π iz .) Using Weyl differenc-
ing with factorisable shifts, he then reduces the 
problem to estimation of a bilinear form

where

is a polynomial of degree k with real coefficients 
αj . An application of the Hölder’s inequality 
now yields

where

and

Sf (a, b) =
∑

a<n<b

e(f (n)),

S =
∑

1≤x≤X

∑

1≤y≤X

e(F(xy)),

F(x) =
∑

0≤j≤k

αjx
j ,

|S|2ℓ
2
≪ ℓ2kX4ℓ(ℓ−1)+k(k+1) J2ℓ,k(X)∆,

∆ =
∏

1≤h≤k

1

ℓ2X2h

∑

|m|≤ℓXh

∣

∣

∣

∣

∣

∣

∑

|n|≤ℓXh

e(αhmn)

∣

∣

∣

∣

∣

∣

Jℓ,k(X) =
∫ 1

0
. . .

∫ 1

0

∣

∣

∣

∣

∣

∣

∑

1≤x≤X

e(α1x + · · · + αkx
k)

∣

∣

∣

∣

∣

∣

2ℓ

dα1 . . . dαk .
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The source of cancellation in ∆ is exponential 
sums of linear polynomials which was also the 
main input in Weyl’s method. But Vinogradov’s 
method reaches this step much faster than Weyl’s-
roughly speaking Vinogradov takes k4 steps 
whereas Weyl takes 2k−1 steps. But the major 
problem now lies in the estimation of the mean 
value Jℓ,k(X) . This mean value can also be rein-
terpreted as the number of solutions to the sys-
tem of homogeneous equations

in integers 1 ≤ yj ≤ X . By applying simple heu-
ristics, one can come to the following prediction:

Conjecture 1 For all integers ℓ, k ≥ 1 , we have

for all X ≥ 1 and any ε > 0.
Vinogradov proved a slightly weaker bound, 

namely for any positive integer m, ℓ ≥ k(k +m) 
and any X ≥ kk(1−1/k)−m

with

Vinogradov’s work was extended by Linnik, and 
later by Karatsuba and Stechkin, who managed to 
reduce the exponent to

Their works also give an explicit constant (in 
place of 24ℓm ). Since ηℓ,k ≤ k2e−ℓ/k2 , decays as ℓ 
becomes sufficiently larger than the degree k, one 
get the conjectural bound for

In fact, one obtains an asymptotic

with an explicit positive constant C(ℓ, k).
In 1990s, Wooley took the next giant leap, 

and introducing efficient differencing tech-
nique, proved the main conjecture for

y1 + y2 + · · · + yℓ = yℓ+1 + yℓ+2 + · · · + y2ℓ

y21 + y22 + · · · + y2ℓ = y2ℓ+1 + y2ℓ+2 + · · · + y22ℓ
. . . . . .

yk1 + yk2 + · · · + ykℓ = ykℓ+1 + ykℓ+2 + · · · + yk2ℓ

Jℓ,k(X) ≪ℓ,k ,ε X
ε
(

Xℓ + X2ℓ− k(k+1)
2

)

Jℓ,k(X) ≤ 24ℓmX2ℓ− k(k+1)
2 +ηℓ,k

ηℓ,k = 1
2k(k + 1)(1− 1/k)m.

ηℓ,k = 1
2k

2(1− 1/k)[ℓ/k].

ℓ ≥ 3k2(log k + O(log log k)).

Jℓ,k(X) ∼ C(ℓ, k)X2ℓ− k(k+1)
2

ℓ ≥ k2(log k + 2 log log k + O(1)).

This remained the record till the beginning of 
the last decade. In a major breakthrough in 
2012, Wooley16, 17 extended the range to

removing for the first time the extra logarith-
mic factor, and bringing the range just a factor 
of 2 away from the conjecture (the critical index 
being ℓ = k(k + 1)/2 ). His proof is based on a 
new technique ‘efficient congruencing’, which he 
extended and generalised in a series of papers in 
the first half of the last decade. This culminated 
in his proof of the main conjecture in full (for 
all ℓ ) for the first non-trivial degree, i.e. k = 318. 
(The main conjecture is a triviality for degrees 
one and two.)

Theorem 3 18 For k = 3 and any integer ℓ ≥ 1 , 
we have

for all X ≥ 1 and any ε > 0.
In December 2015, Bourgain, Demeter and 

Guth3 announced the resolution of the remain-
ing cases of the mean value theorem.

Theorem 4 3 For k ≥ 4 and any integer ℓ ≥ 1 , 
we have

for all X ≥ 1 and any ε > 0.
The proof of this theorem is rooted in har-

monic analysis. Of course, results from Fourier 
analysis have been used in the analytic theory 
of numbers since its conception. But BDG takes 
this synergy to a new height, employing the 
recently developed ℓ2 decoupling techniques in 
their proof. As we will note in the last section, 
Bourgain2 goes on to apply ℓ2 decoupling to 
give new bounds for the Riemann zeta function.

5 �Multiplicative�Functions
Multiplicative functions are ubiquitous in ana-
lytic theory of numbers. One may say that arith-
metic is just a study of the interactions of the 
additive and multiplicative structure of the inte-
gers, and as such the study of the averages of mul-
tiplicative functions is one of the main aims of 
number theory. For example, the randomness of 
the Möbius function µ(n) (or its closely related 
cousin—the Liouville function �(n) ) holds the 
key to the mystery of the distribution of the 

ℓ ≥ k(k + 1),

Jℓ,k(X) ≪ℓ,ε X
ε
(

Xℓ + X2ℓ− k(k+1)
2

)

Jℓ,k(X) ≪ℓ,ε X
ε
(

Xℓ + X2ℓ− k(k+1)
2

)
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prime numbers. It is well known that the prime 
number theorem

is equivalent to the assertion that

which in turn is equivalent to

The Riemann hypothesis on the other hand is 
equivalent to assertions that the above summa-
tory functions have square-root cancellations. 
One way to study this problem is to look at 
shorter averages

with H < x . Trivially, this sum is bounded by 1, 
as �(n) = (−1)Ω(n) (where Ω(n) is the number of 
prime factors of n counted with multiplicity) is 
bounded by 1. From the prime number theorem, 
we can show that the average is o(1) as long as H 
grows linearly with x, i.e. H > εx for some ε > 0 . 
But proving cancellation in the average when H 
grows much slowly compared with x is an incred-
ibly difficult problem. Maier and Montgomery 
showed that, under the Riemann Hypothesis, 
cancellation kicks in as soon as H grows faster 
than x1/2(log x)c for some absolute constant c. 
Probabilistic models suggest that one can take H 
much smaller, e.g. H > xε for any ε > 0 , going far 
beyond the scope of the Riemann Hypothesis. On 
the other hand, Chowla has conjectured that H 
cannot be taken to be ‘too small’, as one expects 
long strings of consecutive integers without sign 
changes in the Liouville function.

The problem becomes more tractable if one 
introduces an extra averaging—instead of look-
ing for cancellation in each short intervals, one 
now seeks cancellation in almost all short inter-
vals. More precisely, we may consider the second 
moment

and try to show that this goes to 0 as X → ∞ . 
Using the zero density estimates, Ramachandra 
proved that for any ε > 0 , and A > 0 one has

lim
x→∞

#{p < x : p prime}
x/(log x)

= 1

∑

n<x

µ(n) = o(x),

∑

n<x

�(n) = o(x).

1

H

∑

x<n<x+H

�(n),

1

X

∫ 2X

X

∣

∣

∣

∣

∣

1

H

∑

x<n<x+H

�(n)

∣

∣

∣

∣

∣

2

dx,

if

In some sense, this is still the best result known 
in this direction, as the bound saves an arbitrary 
power of logX . Of course, the major drawback 
is that one still needs to take H ‘quite big’. The 
recent breakthrough result of Matomaki and 
Radziwill8 overcomes this barrier at the cost of 
getting a much smaller saving.

Theorem 5 8 For any 2 ≤ H < X , one has

for some absolute constant c > 0.
As a consequence, one now has

as X → ∞ , as long as H grows to infinity with 
x no matter how slowly. All previous works in 
this direction, including that of Ramachandra, 
were based on complex analytic techniques using 
the meromorphic continuation of 1/ζ(s) and 
ζ(2s)/ζ(s) inside the critical strip. Matomaki–
Radziwill approach is different and does not 
depend on meromorphic continuation. Instead, 
they approach the problem from the ‘preten-
tious multiplicative number theory’ viewpoint of 
Granville and Soundararajan.

To make this more precise, let us introduce 
the pretentious distance

of two multiplicative functions f and g (with 
|f (n)|, |g(n)| ≤ 1 for all n) at threshold X. Let Et 
denote the multiplicative function Et(n) = nit . 
Then, a classical theorem of Halasz states that 
for X sufficiently large, there is a constant c such 
that

1

X

∫ 2X

X

∣

∣

∣

∣

∣

1

H

∑

x<n<x+H

�(n)

∣

∣

∣

∣

∣

2

dx ≪ε,A (logX)−A

X1/6+ε < H < X .

1

X

∫ 2X

X

∣

∣

∣

∣

∣

1

H

∑

x<n<x+H

�(n)

∣

∣

∣

∣

∣

2

dx ≪ (logH)−c

1

X

∫ 2X

X

∣

∣

∣

∣

∣

1

H

∑

x<n<x+H

�(n)

∣

∣

∣

∣

∣

2

dx = o(1)

D(f , g;X) =

√

√

√

√

√

√

√

∑

p < X
p prime

(

1− Re(f (p)g(p))

p

)

1

x

∑

n<x

f (n) ≪ e−cmint<T D(f ,Et ;x)2 +
1

T
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for any T > 0 . This inequality implies that if 
there is no cancellation in the left hand side 
then the pretentious distance between the mul-
tiplicative function from some Et should be 
small. As such, we can formulate a weaker ver-
sion of the Matomaki–Radziwill theorem in the 
following manner. Given ε > 0 , and 1 < H < X 
sufficiently large depending on ε , if

then

for some t ≪ε X/H . This qualitative result is not 
strong enough to recover the original theorem, 
as stated above. But there is a quantitative refor-
mulation of the above statement which is strong 
enough to recover the decay rate of (logH)−c.

The key ingredient in the proof is Fourier 
analytic in nature, where one studies various 
norms of the corresponding Dirichlet series

at the edge of the critical strip s = 1+ it . Since 
one does not need to penetrate inside the critical 
strip, meromorphic continuation is not required, 
and as such the method applies to a broader class 
of multiplicative functions. Now, the theorem 
of Halasz, as stated above, gives a good control 
over the L∞ norm of these functions. However, 
one needs to get good estimates for the L1 and L2 
norms. The key idea here is to use convolution of 
two functions, as we have inequalities of the type

The problem now is to find out a way to factorise 
general multiplicative functions (in particular the 
Liouville’s function) into factors for which we will 
have some control. Matomaki and Radziwill use 
the Turán–Kubilius phenomenon, that for certain 
moderately wide ranges of primes [p, q], almost 
all n ∈ [p, q] has close to log log q − log log p 
many prime factors. Therefore, if one introduces 
the arithmetic function

one roughly has

1

X

∫ 2X

X

∣

∣

∣

∣

∣

1

H

∑

x<n<x+H

�(n)

∣

∣

∣

∣

∣

2

dx > ε2,

D(�,Et;X) ≪ε 1,

∞
∑

n=1

�(n)

ns
=

ζ(2s)

ζ(s)

�f ⋆ g�FL1 ≤ �f �FL2�g�FL2 ,
�f ⋆ g�FL2 ≤ �f �FL2�g�FL∞ .

wp,q(n) =

{

1
log log q−log log p

if n is a prime in the range [p, q]
0 otherwise,

f ≈ f ⋆ fwp,q .

This key factorisation is then used to derive 
bounds for L1 and L2 norms. More details can 
be be found in the joint work of Matomaki and 
Radziwill with Tao9.

6 �Subconvexity�Problem
Bounding the size of automorphic L-functions 
inside the critical strip is a problem of utmost 
importance in analytic number theory. The main 
guiding conjecture in this field is the General-
ised Lindelöf Hypothesis (GLH), a consequence 
of the Grand Riemann Hypothesis (GRH), that 
predicts that the L-function grows only mildly 
with respect to its conductor. More precisely, if 
π is an automorphic form of level q for GLd(AQ) 
with Langlands parameters (µ1, . . . ,µd) , then the 
(analytic) conductor is defined by

and GLH predicts that

for any ε > 0 . From the basic theory of L-func-
tions (i.e. analytic continuation and functional 
equation), one can deduce, using the Phragmen–
Lindelöf convexity principle from complex analy-
sis, that

Proving a bound with a smaller exponent is 
called the subconvexity problem. Such a bound is 
not only a progress towards the GLH, but often 
comes with deep applications especially in certain 
equidistribution problems.

The subconevxity problem has a long history 
which goes back to a little over 100 years, to the 
works of Weyl and Hardy–Littlewood. Though 
Littlewood had announced his work with Hardy 
in a meeting of the London Mathematical Society, 
their paper never appeared in print. It was only 
much latter, around 1926 that Landau first pub-
lished a proof of what now is famously called the 
Weyl bound for the Riemann zeta function

for t > 2 . (One can even replace tε by a power of 
log t .) The convexity bound in this case is given 
by t1/4+ε . Therefore, in one stroke, Weyl and 
Hardy–Littlewood reduced the exponent by a fac-
tor of 2/3. The same analysis also works for the 
Dirichlet L-functions as well and yields the bound

C(π , t) = q

d
∏

j=1

(3+ |t + µj|),

L(1/2+ it,π) ≪ε C(π , t)
ε

L(1/2+ it,π) ≪ε C(π , t)
1/4+ε .

ζ(1/2+ it) ≪ t1/6+ε
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Here, the implied constant depends on the modu-
lus of the Dirichlet character χ , and so the bound 
is only subconvex in the t-aspect. Later Burgess in 
1960s introduced his ingenious technique of esti-
mating (short) character sums of the form

and thus established the first subconvex bound in 
the level aspect

Here, χ is a primitive Dirichlet character modulo 
q. In late 1970s, Heath–Brown combined Burgess 
and Weyl, and established

for t > 2 . In one sense, this settles the subcon-
vexity problem for degree one L-functions, up 
to the strength of the exponent. Though the 
Weyl bound in the t-aspect has been improved 
gradually in the last hundred years, the Burgess 
bound remained untouched for about 60 years. 
In a breakthrough paper in 2020, Petrow–Young14 
improved Burgess and established an exponent of 
Weyl strength.

Theorem 6 (Petrow–Young 14) Let χ be a primi-
tive Dirichlet character of modulus q, then we 
have

The t-aspect subconvexity problem for the 
Riemann zeta function can be easily reduced to 
bounding exponential sums. Such sums have 
been the focus of research in analytic number 
theory for more than 100 years. The techniques 
developed by Weyl, van der Corput and Vino-
gradov still are the most fundamental in this 
branch. The search is always on for new expo-
nent pairs. Hence, the bound for the zeta func-
tion has seen steady improvements over the 
years, albeit only gradually. Bourgain’s work on 
ℓ2 decoupling gave rise to a new exponent pair, 
and using this he improved the existing record 
to

for t > 3.
As we mentioned above, the level aspect 

problem for L(1/2,χ) is more delicate. Petrow 
and Young approach the problem through the 

L(1/2+ it,χ) ≪ε,χ t1/6+ε .

∑

a<n<b

χ(n),

L(1/2,χ) ≪ε q
3/16+ε .

L(1/2+ it,χ) ≪ε (qt)
3/16+ε ,

L(1/2,χ) ≪ε q
1/6+ε .

ζ(1/2+ it) ≪ t1/6−1/84

Conrey–Iwaniec technique, which is a cubic 
moment computation. In this approach non-
negativity of the L-values plays a crucial role. 
Conrey–Iwaniec used their method and the 
non-negativity of L(1/2, f ⊗ χ) for χ quadratic 
and SL(2,Z) form f, to get Weyl bound for quad-
ratic characters. That the same method can be 
extended to non-quadratic characters came as a 
surprise. Petrow–Young used a clever trick to get 
non-negativity of the L-value even for non-quad-
ratic characters χ.

In their first paper, they restrict to cube-free 
modulus q. Let χ be a primitive Dirichlet char-
acter modulo q, and let Hitj (m, χ̄2) be the set 
of Hecke–Maass cusp form of level m|q, central 
character χ̄2 and spectral parameter tj . The fun-
damental observation of Petrow–Young is that for 
f ∈ Hitj (m, χ̄2) the twisted form f ⊗ χ is a self-
dual new form of level q2 and trivial central char-
acter. As such, one has the non-negativity

and hence one can apply the Conrey–Iwaniec 
method to derive subconvexity from the cubic 
moment. The key bound in Petrow–Young is the 
following:

for some B > 0 . The most important aspect of 
this bound is its strength in the q-aspect, which 
is ‘Lindelöf on average’. Now using non-negativity 
of L(1/2, f ⊗ χ) we can drop the discrete sum on 
the left hand side, and conclude that

The main ingredients in the proof are the Kuznet-
sov trace formula and the Riemann hypothesis 
for varieties over finite fields (Deligne’s theorem).

The subconvexity problem for degree three 
L-functions remained wide open for a long time. 
At the beginning of the last decade, Li7 published 
a breakthrough paper on subconvexity for GL(3) 
and GL(3)× GL(2) L-functions. Li’s approach 
was based on the Conrey–Iwaniec technique, and 
as such non-negativity of the L-values played a 
crucial role. Consequently, she had to restrict her-
self to only self-dual representations of GL(3), 
or the symmetric square lifts of GL(2) forms. In 
the first half of the last decade, I developed a new 
approach for subconvexity based on separation of 
oscillation using the circle/delta method. This led 

L(1/2, f ⊗ χ) ≥ 0,

∑

m|q

∑

|tj |≤T

∑

f ∈Hitj
(m,χ̄2)

L(1/2, f ⊗ χ)3

+
∫ T

−T
|L(1/2+ it,χ)|6dt ≪ TBq1+ε

L(1/2,χ) ≪ q1/6+ε .
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to the first subconvex bound for generic degree 
three L-functions12.

Theorem 7 (M. 2015) Let π be an Hecke–Maass 
cusp form for SL(3,Z) . Then, we have

for t > 3.
First, by approximate functional equation, we 

get that

where S(N) are smooth sums of the form

where A(m, n) are the Whittaker–Fourier coef-
ficients of the form π . The subconvexity prob-
lem now boils down to showing cancellation in 
the sums S(N) for N ≈ t3/2 . Applying the delta 
method one gets that S(N) is approximately given 
by

where g(q, x) are some ‘well-behaved’ weights. 
As one can see, the delta symbol has separated 
the Fourier coefficients A(1, n) from the analytic 
oscillatory factor mit . The separation, of course, 
comes at a huge cost as now we need to recover 
the whole length N. But now we have a lot of flex-
ibility, as we can freely apply the Poisson and the 
Voronoi summation formulas. One crucial idea 
here is that the modulus of the delta method Q 
should be taken smaller than square-root of the 
length of the equation, thereby pushing some 
part of the harmonics of the delta method into 
the analytic side. This works like a conductor low-
ering mechanism, which helps to recover the ini-
tial loss and gives something more.

Various forms of the delta method have now 
been applied in several other subconvexity prob-
lems. The above bound in the t-aspect has been 
improved substantially, see, e.g. Aggarwal1. The 
method also works for twists of degree three 
L-functions, L(1/2,π ⊗ χ) (see13). Recently, the 

L(1/2+ it,π) ≪ t3/4−1/16+ε

L(1/2+ it,π) ≪ tε sup
N≪t3/2

|S(N )|
√
N

+ t−2021,

S(N ) =
∑

n∼N

A(1, n)nit ,

1

Q2

∫

|x|≪1

∑

q∼Q

g(q, x) ⋆
∑

a mod q

∑

n∼N

A(1, n)e

(

an

q
−

xn

qQ

)

×
∑

m∼N

mite

(

−
am

q
+

xm

qQ

)

dx,

method has been extended to cover degree six 
L-functions given by Rankin–Selberg convolu-
tions of the form GL(2)× GL(3).
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