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Bayesian Modeling of Discrete‑Time 
Point‑Referenced Spatio‑Temporal Data

1 Introduction
Modeling of spatio-temporal data has received 
much attention in recent years. Particularly, the 
rise in global temperature being a major envi-
ronmental concern; scientists are now taking a 
keen interest in developing appropriate statisti-
cal models to study spatio-temporal data associ-
ated with climatic phenomena28,46,62,64,68,71. Other 
closely related events, that are also drawing much 
attention toward spatio-temporal modeling, are 
rainfall15,66 and precipitation (mist, snowfall, sul-
fate, nitrate60, etc.) across different regions. Apart 
from meteorology, challenging spatio-temporal 
data also arise from environmental and eco-
logical science. To mention a few, studies on the 
ground level concentration of ozone11,24,37,43, 
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Abstract | Discrete-time point-referenced spatio-temporal data are 
obtained by collecting observations at arbitrary but fixed spatial loca‑
tions s1, s2, . . . , sn at regular intervals of time t := 1, 2, . . . , T  . They are 
encountered routinely in meteorological and environmental studies. 
Gaussian linear dynamic spatio-temporal models (LDSTMs) are the most 
widely used models for fitting and prediction with them. While Gauss‑
ian LDSTMs demonstrate good predictive performance at a wide range 
of scenarios, discrete-time point-referenced spatio-temporal data, often 
being the end product of complex interactions among environmental 
processes, are better modeled by nonlinear dynamic spatio-temporal 
models (NLDSTMs). Several such nonlinear models have been proposed 
in the context of precipitation, deposition, and sea-surface temperature 
modeling. Some of the above-mentioned models, although are fitted 
classically, dynamic spatio-temporal models with their complex depend‑
ence structure, are more naturally accommodated within the fully Bayes‑
ian framework. In this article, we review many such linear and nonlinear 
Bayesian models for discrete-time point-referenced spatio-temporal 
data. As we go along, we also review some nonparametric spatio-tem‑
poral models as well as some recently proposed Bayesian models for 
massive spatio-temporal data.
Keywords:  Bayesian spatio-temporal modeling, Gaussian process, Space–time covariance function, 
Massive spatio-temporal data, Nonlinear spatio-temporal model, Posterior predictive distribution
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SO234,41, NO21, and PM-related air pollution57, 
species distribution over a region14, change in 
land-usage pattern over time22, etc. Predomi-
nantly, these spatio-temporal data are observed 
at discrete time points and indexed continuously 
in space. Such spatio-temporal data which are 
obtained by collecting observations at arbitrary, 
but fixed spatial locations s1, s2, . . . , sn at regu-
lar intervals of time t := 1, 2, . . . ,T  are referred 
to as discrete-time point-referenced spatio-tem-
poral data. Although in reality, data are available 
only at finitely many spatial locations (generally 
called monitoring sites), it is conceptually always 
useful to assume the existence of time-series at 
every spatial location. Pertained to that, then the 
data can be conceptually thought of as a partial 
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realization of Y (s, t) , which is a stochastic pro-
cess indexed by (s, t) and for each t, s ∈ Ds(t) , a 
continuous subset of Rd . Most often d = 2 or 3, 
although sometimes Ds(t) can even be a continu-
ous subset of some nonlinear manifold like S2 
(the ordinary sphere). This situation is encoun-
tered when the measurements are taken at a 
global scale. The problem facing the statistician is 
to develop an appropriate model, infer about the 
spatio-temporal process Y (s, t) , and possibly pre-
dict at new sites and future points of time based 
on this partial realization. Note that any model 
applicable to them can also be extended to data 
collected at non-equispaced time points. Here, 
for the sake of simplicity, we confine ourselves 
mainly to the models for equispaced time points.

There exist two different perspectives from 
which one can develop a model for discrete-time 
point-referenced spatio-temporal data. One is 
the marginal approach, in which one develops a 
joint distribution for Y (s, t) . The other approach 
relies on specifying the conditional distribution 
of the current process given the past process reali-
zations. Although theoretically, it is equivalent 
specifying the conditional distribution or the 
marginal distribution, one being derivable from 
the other, the conditional approach being closer 
to the etiology of the phenomena under study, is 
preferred over the marginal one. For more discus-
sions on this issue, interested readers may look 
into the book by17.A

2 �Marginal Approach
In this case, one proposes a joint distribution 
for Y (s, t) . Under the assumption of Gaussian-
ity, this amounts to specifying a spatio-tempo-
ral mean and covariance function. Therefore, 
the simplest prototype for such a marginal 
model is a Gaussian process on the plane with 
mean function µ(s, t) and covariance function 
cY ((s, t), (s

′, t ′)) . Often, one makes simplifying 
assumptions regarding the covariance function 
cY ((s, t), (s

′, t ′)) like separability, stationarity, 
isotropy, etc., so that it is parametrized by fewer 
number of parameters. Similarly, the mean func-
tion is often parametrized by only a few param-
eters accommodating polynomial or periodic 
components in an additive manner. In that case, 
the model can be represented as

where the mean function is usually of the form 
µ(s, t) :=

∑k
i=1 β

(1)
i φi(s, t) , φi(s, t) usually being 

a polynomial or trigonometric function in space–
time. A broad review of spatio-temporal mean 
formulations given in50, separated models into 
two classes, depending on whether the mean 
function is viewed as deterministic or stochastic. 
Dimitrakopoulos and Luo23, on the other hand, 
classified the mean function into three alternative 
types: traditional polynomial functions, Fourier 
expressions, and combinations of the two.

In Eq. (1), η(s, t) is a centered Gaussian pro-
cess indexed by space–time with covariance func-
tion cη((s, t), (s′, t ′)) . In choosing the form of 
cη((s, t), (s

′, t ′)) , one needs to look at the spatial 
dimension and the temporal dimension from dif-
ferent perspectives. A simple generalization of a 
spatial covariance function to a covariance func-
tion on R3 needs not be realistic. This is because 
distance in time is very different from distance in 
space, and moreover, time which always unfolds 
forward is intrinsically different from space that 
does not have any preferred direction. Rein-
sel et  al.59 proposed a regional-effects marginal 
model for the analysis of stratospheric ozone data 
for which

Here, D(k)
s  denotes the k-th region, σ 2

γ  denotes the 
time-specific variability, σ 2

κ  denotes the region-
specific variability, and σ 2

δ  denotes the variance 
of the nugget process. Later, Bloomfield et  al.10 
extended it to a model accommodating spatio-
temporal random effects. More realistic specifica-
tions for cη((s, t), (s′, t ′)) emerged subsequently. 
As a natural simplifying assumption separability 
is assumed, under which cη((s, t), (s′, t ′)) fac-
tors as c(1)η (s, s′)c(2)η (t, t ′) . If we further assume 
isotropy both in terms of space and time, it 
becomes σ 2

η ρ
(1)
η (�s − s′�)ρ(2)

η (|t − t ′|) . Set-
ting ρ(2)

η (|τ |) := e−�t |τ | yields autoregressive 
dependence with respect to time and for elicit-
ing spatial dependence, the corresponding spa-
tial analogue ρ(1)

η (�h�) := e−�s�h� is often used. 
More varied spatial dependence structures can 
be elicited through a generalization of the spatial 

(1)Y (s, t) := µ(s, t)+ η(s, t),

cη((s, t), (s
′
, t

′)) :

=































σ 2
γ + σ 2

κ + σ 2
δ if s = s

′, t = t ′

σ 2
γ + σ 2

κ if s, s′ ∈ D
(k)
s , t = t ′,

k = 1, 2, . . . ,K

σ 2
γ if s ∈ D

(k)
s , s′ ∈ D

(l)
s , t = t ′, k �= l,

k = 1, 2, · · · ,K , l = 1, 2, . . . ,K

0 if t �= t ′.

A  Cressie and Wikle17 covered a wide range of materials on 
spatio-temporal modeling that serves as the main resource for 
many of the models that we cite subsequently.
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exponential covariance function to the Matérn 
covariance function.

Although the separable form of 
cη((s, t), (s

′, t ′)) is convenient for computation 
and easier interpretation, it limits the nature of 
space–time interaction. Realistic nonseparable 
spatio-temporal covariance functions obtained 
through mixing broaden the scope. Another way 
to construct nonseparable spatio-temporal covar-
iance functions is through the frequency domain 
approach. Cressie and Huang16 introduced a flex-
ible class of spatio-temporal covariance functions 
that allow for interaction in space–time. Another 
flexible class of spatio-temporal covariance func-
tions was proposed by35. The covariance func-
tions proposed by35 are attractive, since they do 
not require closed-form Fourier inversion. One 
member of this class of covariance functions is

where setting the value of β to 0 yields a separable 
covariance function. Using the frequency domain 
approach, Stein69 also provided a class of nonsep-
arable covariance functions. However, unlike the 
covariance functions proposed by35, here separa-
bility does not arise as a special or limiting case.

Also, attempts have been made to relax the 
assumption of isotropy and stationarity. In what 
is regarded as a landmark paper in spatial sta-
tistics, Sampson and Guttorp63 introduced an 
approach to nonstationarity through deforma-
tion. Another approach to nonstationarity is 
obtained via kernel convolution. This approach 
is attributed to the two papers26,40. However, the 
kernel mixing form of40 is fundamentally differ-
ent from that of26. Further efforts were given to 
derive spatio-temporal covariance functions that 
are both nonstationary and nonseparable. The 
covariance function proposed by27 is both non-
stationary and nonseparable. Bruno et  al.11, on 
the other hand, proposed a deformation-based 
nonstationary and nonseparable covariance func-
tion to model tropospheric ozone data.

Spatio-temporal data are often observed 
with additional information in terms of covari-
ates. The covariate data, which are also indexed 
by space–time, are often a partial realization of 
another spatio-temporal stochastic process. How-
ever, modeling the covariates is not the prime 
goal and the statistician is interested in the con-
ditional distribution of Y (s, t) given the value of 
covariates, i.e., Z(s, t) where Z(s, t) ∈ R

l . Minor 
modification of Eq. (1) to

cη((s, t), (s
′, t ′)) :=

σ 2
η

(q|t − t ′|2α + 1)β
exp

{

−

(

p�s − s′�2γ

(q|t − t ′|2α + 1)βγ

)}

,

incorporates the covariates into the spa-
tio-temporal model for Y (s, t) (see13). 
Gelfand et  al.33 proposed a spatio-tem-
poral hedonic model for house prices as 
Y (s, t) := Z(s, t)Tβ(s, t)+ α(t)+ w(s)+ ǫ(s, t) 
where Y (s, t) is the log selling price, α(t) is the 
common time effect for all the locations, w(s) is 
the spatial effect, ǫ(s, t) is a Gaussian white noise, 
and Z(s, t) ∈ R

l contains useful covariate infor-
mation. This form allows spatio-temporally vary-
ing coefficients, which is perhaps more than what 
is required. Therefore, β(s, t) := β is frequently 
adopted. Setting β(s, t) := β(t) yields an exten-
sion of the model proposed by49.

2.1 � Bayesian Inference, Bayesian  
Kriging and Forecasting

Traditional approaches to modeling of discrete-
time point-referenced spatio-temporal data have 
their roots in geostatistics. While these methods 
use tools from classical statistics, with the advent 
of Markov Chain Monte Carlo (MCMC) and a 
plethora of other Bayesian computational algo-
rithms, Bayesian models for spatio-temporal data 
are rapidly gaining popularity among practition-
ers. While the computation associated with the 
Bayesian approach requires tuning and human 
intervention, the subsequent step on inference 
is relatively straightforward. To carry out Bayes-
ian inference, one needs to elicit prior distri-
butions associated with the parameters. Often, 
the priors for individual parameters are elicited 
independently, and then, the joint prior distribu-
tion is the product of them. For example, let us 
consider the model specified by Eq. (2). Assume 
that β := (β

(1)
1 , . . . ,β

(1)
k ,β

(2)
1 , . . . ,β

(2)
l ) . Then, 

an MVN (0, c2I) distribution, that is, a multi-
variate normal (MVN) distribution with mean 
vector zero and covariance matrix c2I , where 
I is the identity matrix, is taken as the prior for 
the vector-valued parameter β . The value of c2 
is set to some large number like 1000 to make 
the prior non-informative. The advantage of 
using an MVN prior is that the full conditional 
distribution of β given the remaining param-
eters and the data is again an MVN distribu-
tion, simulation from which is straightforward. 
σ 2
η ∼ IG(aη, bη) (IG stands for Inverse-gamma) 

(2)
Y (s, t) :=µ(s, t)+ β

(2)
1

Z1(s, t)+ · · ·

+ β
(2)

l
Zl(s, t)+ η(s, t),
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is a prior that leads to IG full conditional dis-
tribution of σ 2

η  given the remaining parame-
ters and the data. On the contrary, there do not 
exist such priors for the remaining parameters 
associated with cη((s, t), (s′, t ′)) that could lead 
to closed-form full conditional distributions. 
Separability is assumed and very often the form 
cη((s, t), (s

′, t ′)) := σ 2
η e

−�s�s−s′�e−�t |t−t ′| is con-
sidered. One assumes �s ∼ Gamma(as, bs) and 
�t ∼ Gamma(at , bt) . Samples from the posterior 
are then obtained by implementing a Metropolis 
Hastings within Gibbs type of algorithm where β 
and σ 2

η  are simulated by Gibbs steps and �s and 
�t are simulated by Metropolis Hastings (MH) 
steps. To facilitate the Metropolis Hastings within 
Gibbs algorithm, one transforms to θs := log(�s) 
and θt := log(�t) , and subsequently uses Gauss-
ian proposal distributions on the transformed 
parameters θs and θt . Once the posterior sam-
ples are obtained, the first few thousand samples 
are discarded as burn-in and posterior inference 
is carried out based on the post burn-in sam-
ples. Let us assume that the post burn-in poste-
rior samples associated with the parameter �s are 
given as �(B+1)

s , �
(B+2)
s , · · · . Then, based on that, 

a histogram or kernel density estimator is calcu-
lated and plotted. The median obtained from the 
histogram/kernel density estimator gives a point 
estimate �̂s of �s and the α2 th and (1− α

2 ) th quan-
tiles give a 100(1− α)% equal tail credible inter-
val. The equal tail credible interval is generally 
longer in length than the highest posterior density 
(HPD) interval but relatively easier to compute. 
If the posterior samples show high autocorrela-
tion, then thinning is used, and generally, 1 out 
of every 5 or 10 samples are retained, based on 
which then all the posterior inferences are carried 
out. Inference for the remaining parameters can 
be carried out in a similar manner. Our experi-
ence tells that among all the parameters, tuning 
the proposal variance for the smoothness param-
eters is the most difficult. Improper tuning asso-
ciated with the smoothness parameter causes 
the erratic movement of the Markov chain in 
the state-space, thereby leading to convergence 
failure.

Sometimes, a reparametrization of the origi-
nal model with respect to new parameters may 
improve the convergence of the MCMC algo-
rithm. Banerjee et  al.3 considered an alternative 
parametrization of cη((s, t), (s

′, t ′)) as 

cη((s, i), (s
′, j)) := σ 2

η e
−�s�s−s

′�
(

ψ |i−j|

1−ψ2

)

 for equis-

paced integer-valued time points t := 1, 2, · · · ,T  . 
Then, they used �s ∼ Gamma(as, bs) and 
ψ ∼ U(0, 1) as priors for the smoothness 

parameters. The choice of the uniform priors 
guaranteed that the model does not allow for 
negative correlation and no positive value for ψ is 
favoured over one another. To facilitate the 
Metropolis Hastings step, they considered the 
transformations θs := log(�s) and 
θt := log( ψ

1−ψ
) , and updated the Markov Chain 

in the transformed space using Gaussian proposal 
distributions.

Often, the spatio-temporal covariance func-
tion is specified including the nugget effect. 
Nugget effect is a phenomenon present in many 
spatio-temporal datasets and represents short-
scale randomness or noise. In that case, the covar-
iance function takes the form cY ((s, t), (s′, t ′)) :
= cη((s, t), (s

′, t ′))+ σ 2
ǫ I(s = s

′, t = t ′) and the 
model equation becomes

where ǫ(s, t) is iid in space–time and incorporates 
the nugget effect into the model. For the param-
eter σ 2

ǫ  , one usually assumes an IG(aǫ , bǫ) prior.
A critical part of any Bayesian modeling 

and more so in the Bayesian spatio-temporal 
modeling is the selection of the hyperparam-
eters associated with the prior distributions. 
The exact values of the hyperparameters are to 
be set based on prior beliefs and care should be 
taken in choosing the values so as to ensure that 
a wide range of spatio-temporal structures can 
be accommodated within the proposed Bayesian 
model. The general pragmatic solution of select-
ing proper, but weakly informative priors for each 
scaling and smoothness parameter, often start-
ing with conjugate inverse-gamma distributions 
for scale parameters such as σ 2

η  and σ 2
ǫ  , is usu-

ally effective. However, very vague priors on such 
parameters may lead to essentially improper pos-
terior distributions, thereby leading to MCMC 
convergence failure. Therefore, some care is still 
required to maintain posterior propriety without 
unduly limiting prior ranges of parameters (see 
the discussion in75). Waller75 also discussed other 
notions of non-informative priors in this context. 
Quoting from him6, Berger et  al.5 move toward 
objective Bayesian spatial analysis by considering 
reference and Jeffreys’ priors for variance–covari-
ance parameters in a Gaussian random field with 
no nugget effect. The authors illustrate that the 
Gaussian random field structure raises several 
interesting aspects not previously encountered 
in the reference prior literature. In particular, 
the model provides an example where Jeffreys’ 

(3)

Y (s, t) :=µ(s, t)+ β
(2)
1

Z1(s, t)+ · · ·

+ β
(2)

l
Zl(s, t)+ η(s, t)+ ǫ(s, t),
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prior applied independently to each component 
yields an improper posterior. In addition, a popu-
lar approximation in the derivation of reference 
priors does not hold for the multivariate Gauss-
ian data arising in a Gaussian random field. The 
results of6, Berger et al.5 provide tantalizing infor-
mation regarding assignment of prior distribu-
tions for spatial covariance parameters, but also 
point to the need for additional development”.

After we infer about the unknown parameters, 
the next step is to carry out spatio-temporal pre-
diction. If the prediction is carried out at one of 
the data locations s1, s2, . . . , sn for future time 
lags, then it is referred to as forecasting. On the 
other hand, if the prediction is done at a new 
spatial location s∗ other than the data locations, 
then it is known as Kriging. Under the Bayes-
ian framework, both Kriging and forecasting are 
done by simulating from the posterior predictive 
distributions. Often Kriging is done at multiple 
spatial locations. Now, we take a deeper look at 
the posterior predictive distribution under model 
(3). Let us assume that Y ∗ consists of Y (s, t) at the 
space–time coordinates associated with the pre-
diction problem and Y  consists of Y (s, t) at the 
space–time coordinates, from where the measure-
ments have been taken. Assume that y represents 
the observed data. Also, assume that E(Y ∗

) := µ1,

E(Y ) := µ2, Var(Y
∗
) := �11, Var(Y ) := �22 

and Cov(Y ∗,Y ) := �12 . Then, the posterior pre-
dictive density takes the following form:

Drawing samples from the posterior pre-
dictive distribution is straightforward. If 
θ (B+1), θ (B+2), · · · denote the post burn-in 
samples associated with all the unknown 
parameters from the joint posterior dis-
tribution and then simulate serially from 
p(Y ∗ | y, θ (B+1)), p(Y ∗ | y, θ (B+2)), . . . , where 
p(Y ∗ | y, θ) is an MVN distribution with mean 
vector µ1 + �12�

−1
22 (y − µ2) and covariance 

matrix �11 +�12�
−1
22 �21 . If the number of 

spatio-temporal coordinates where predic-
tion is sought is large, then sometimes instead 
of simulating from the aforesaid MVN, one 
simulates from the MVN with mean vector 
µ1 + �12�

−1
22 (y − µ2) and covariance matrix 

Diag(�11 + �12�
−1
22 �21) to reduce the computa-

tional burden. Here, Diag(A) refers to the diago-
nal matrix whose diagonal elements are the same 
as that of the matrix A . Then, the resulting sam-
ples y∗(B+1), y∗(B+2), . . . constitute draws from the 
posterior predictive distribution p(Y ∗ | Y = y) . 

p
(

Y ∗ | Y = y
)

=

∫

p
(

Y ∗ | y, θ
)

p(θ | y)dθ .

Once samples from p(Y ∗ | Y = y) are available, 
we can perform point prediction, interval predic-
tion, and density prediction in a straightforward 
manner.

While considering estimation and predic-
tion under the Bayesian framework, we have not 
discussed missing data. In reality, however, miss-
ing data are quite common in spatio-temporal 
datasets. Mechanical disturbances and electronic 
malfunctions in measuring devices may lead to 
situations where a large proportion of data may 
be missing at some specific site. Missing data 
problems, however, can be handled straightfor-
wardly in the aforesaid Bayesian spatio-temporal 
models, by the data augmentation technique. The 
underlying idea is to treat the missing data prob-
lem as a problem in prediction.

2.2 � Non‑Gaussian Response
So far, we have only considered the Gaussian 
process as the model for discrete-time point-ref-
erenced spatio-temporal data. Indeed, MVN dis-
tribution being mathematically more amenable 
than other multivariate distributions, and having 
many interesting theoretical properties, is the first 
choice to statisticians. However, sometimes, the 
very nature of the spatio-temporal dataset com-
pels one to work with a non-Gaussian stochastic 
process. For example, pollutant measurements 
are positive numbers and are often transformed 
by a logarithmic function before modeling by a 
Gaussian process38. However, the transforma-
tion of the originally measured data accounts 
for estimated parameters that are less interpret-
able and so, in this case working directly with a 
non-Gaussian process is a better alternative. In 
the analysis of most spatio-temporal processes 
in environmental studies, observations present 
skewed distributions, with a heavy right or left 
tail. Pertained to that, Schmidt et  al.67 proposed 
a skew-Gaussian spatio-temporal process for fit-
ting monthly average temperature data observed 
during 2001–2011 at different monitoring sites 
in the south of Brazil, under the Bayesian frame-
work. Skew-t spatio-temporal process, which 
recently gained interest, can be used to model 
spatio-temporal data that are not only skewed but 
also contains outlying observations. More gen-
eral non-Gaussian spatio-temporal processes can 
be constructed using a scale mixture of Gaussian 
processes and log-Gaussian processes as outlined 
in25. This model was later extended in12 where the 
scale process is allowed to vary as a function of 
spatio-temporal covariates.
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Another class of non-Gaussian spatio-tem-
poral processes/models arises from the need for 
modeling extremes of spatio-temporally depend-
ent data. At the heart of these spatio-temporal 
models lies the theory of the max-stable process. 
Max-stable spatio-temporal processes capture 
the local behavior of spatio-temporal extremes 
accurately. Davis et al.21 and Huser and Davison45 
outlined classical fitting of these max-stable spa-
tio-temporal process-based models in environ-
mental applications. While these processes arise 
as asymptotically justified extensions of the gen-
eralized extreme value distribution for modeling 
univariate extremes when pointwise maxima are 
taken over spatio-temporal domains, a drawback 
of max-stable spatio-temporal process-based 
models is that they are computationally intensive 
to fit, limiting the number of space–time loca-
tions one can feasibly handle. Moreover, this class 
of processes can only capture asymptotic depend-
ence, thereby limiting its scope. On the other 
hand, conditional models fitted under a fully 
Bayesian framework offer a very flexible tool due 
to the ease with which random effects are incor-
porated in them. The application of such a Bayes-
ian spatio-temporal extreme value model was 
discussed in74.

2.3 � Categorical Spatio‑temporal Data
When the spatio-temporal observation is cat-
egorical, none of the aforesaid models work. For 
example, Y (s, t) can be a binary or count variable 
for observed spatio-temporal locations or species 
data providing presence/absence or abundance, 
respectively. In that case, the model specified by 
Eq. (1) can be generalized to

to accommodate distributions that belongs to the 
exponential family. Here, ζ(·) is a known, twice 
differentiable function, h(·, ·) is a known function 
and γ is a scalar dispersion parameter. Prior elici-
tation and posterior inference can be done simi-
larly as outlined in Sect. 2.1.

2.4 � Multivariate Spatio‑temporal 
Modeling

Examples of multivariate point-referenced spa-
tial data arise in environmental monitoring sta-
tions, where one might take measurements on 
multiple pollutants together, for example, ozone, 
NO, CO, PM2.5, etc. With such data dependence 
among measurements at a particular location as 

Y (s, t)
ind
∼ exp

[

γ
{

y(s, t)(µ(s, t)+ η(s, t))

−ζ(µ(s, t)+ η(s, t))} + h(y(s, t), γ )],

well as across locations is natural. Gelfand et al.31 
considered a univariate spatio-temporal data on 
monthly maximum temperature measurements 
where monthly (maximum) precipitation meas-
urement is an important covariate. They argued 
that the multivariate spatio-temporal model that 
attempts to explain precipitation and tempera-
ture jointly gives better inference about all types 
of variability and association. Both of the above-
mentioned problems require multivariate spatio-
temporal modeling. Marginal specification of 
multivariate spatio-temporal model requires a 
multivariate stochastic process. Suppose we have 
p-variate observations at each spatio-temporal 
coordinate. Then, a simple multivariate spatio-
temporal model for this data can be expressed by 
the following equation:

where µ(s, t) now denotes a p-variate func-
tion indexed by space–time and η(s, t) denotes 
a p-variate centered Gaussian process with 
cross-covariance function cη((s, t), (s

′, t ′)) . As 
it is with the univariate Gaussian process, the 
construction of valid cross-covariance function 
cη((s, t), (s

′, t ′)) , which is a p× p matrix-valued 
function, now poses a challenge. There is sub-
stantial theoretical literature regarding the crea-
tion of valid specifications for cη((s, t), (s′, t ′)) . 
A valid cross-covariance function can be for-
mulated starting with p independent spatio-
temporal Gaussian processes as follows. If the 
p independent centered Gaussian processes 
are denoted by w1(s, t),w2(s, t), · · · ,wp(s, t) , 
the associated covariance func-
tions are denoted by c1((s, t), (s

′, t ′)),

c2((s, t), (s
′, t ′)), · · · , cp((s, t), (s

′, t ′)) , respectively, 
and w(s, t) :=

(

w1(s, t),w2(s, t), . . . ,wp(s, t)
)T

 
denotes the associated p-variate Gaussian process 
on space–time, then η(s, t) := Aw(s, t) yields a 
p-variate Gaussian process with cross-covariance 
function

ai denoting the ith column vector of the p× p 
nonsingular matrix A . Another approach to the 
creation of valid spatio-temporal cross-covari-
ance function is through kernel convolution. As 
outlined in30, if w(s, t) denotes a centered 
Gaussian process with covariance function 

cw((s, t), (s
′, t ′)) , k1

(

h
τ

)

, k2

(

h
τ

)

, . . . , kp

(

h
τ

)

 

denote p square-integrable kernel functions on 

Y (s, t) := µ(s, t)+ η(s, t),

cη
(

(s, t), (s′, t ′)
)

=

p
∑

i=1

ci
(

(s, t), (s′, t ′)
)

aia
T
i ,
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R
2 × Z with ki

(

0

0

)

= 1 and the p-variate spa-

tio-temporal process η(s, t) is defined compo-
nent-wise by the relation 

ηi(s, t) :=
∫

ki

(

s − u
t − v

)

w(u, v)dudv for 

i := 1, 2, . . . , p , then that yields a p-variate cen-
tered Gaussian process η(s, t) , with spatio-tem-
poral cross-covariance function

Here, cη((s, t), (s′, t ′))i,j denotes the (i,  j)th entry 
of the cross-covariance matrix cη((s, t), (s′, t ′)) . 
Finally, the multivariate spatio-temporal model 
will be complete after the addition of the nug-
get effect as Y (s, t) := µ(s, t)+ η(s, t)+ ǫ(s, t) 
where ǫ(s, t) now denotes a p-variate centered 
Gaussian process that is independent with respect 
to space and time and Var(ǫ(s, t)) is a p× p diag-
onal matrix �ǫ with positive diagonal entries.

3 �Conditional Approach
Akin to the marginal approach, several models 
for the conditional distribution of Y (s, t) given 
the past process realizations have been proposed 
and most of them are based on the idea of linear 
Gaussian state-space models in time-series. These 
models are generally referred to as Gaussian lin-
ear dynamic spatio-temporal models (LDSTMs). 
Berliner7 advocated a hierarchical representation 
for general conditional models of similar kinds as 
follows:

When these conditional models are fitted under 
the Bayesian framework, a third hierarchy is 
introduced

Following this hierarchical representation, a 
Gaussian LDSTM can be expressed as:

where Y t is an n-dimensional random vector 
representing Y (s, t) observed on time t at spatial 
locations s1, s2, · · · , sn . Also, ǫt ∼ MVN(0,�ǫ) 
is a random noise process associated with the 

cη

(

(s, t), (s′, t ′)
)

i,j
=

∫

ki

(

s − u

t − v

)

kj

(

s
′ − u

′

t ′ − v′

)

cw((u, v), (u
′
, v′))dudvdu′

dv′; i, j := 1, 2, . . . , p.

Data Model:[Y (s, t) | X(s, t), θD];

Process Model :[X(s, t) | θP].

Parameter Model:[θD, θP].

(4)

Data Model :Y t := F tX t + ǫt;

Process Model :X t := GtX t−1 + ηt;

X0 ∼ N (µ0,�0),

observation equation and is iid with respect 
to time. The random vector X t denotes a 
multivariate state process indexed by time t, 
ηt ∼ MVN(0,�η) is a random noise process 
associated with the evolutionary equation and is 
iid with respect to time and X0 denotes the initial 
state process at time 0. Typically, one assumes that 
ǫt , ηt and the initial state process X0 are jointly 
independent. The matrices F t of order n× s and 
Gt of order s × s are unknown and time-varying. 
One also assumes that µ0 and �0 are unknown 
parameters that are to be estimated from the data.

Gaussian LDSTM as specified above is too 
general and suffers from the non-identifiability 
problem. It can, however, be made identifiable 
by imposing suitable restrictions on the param-
eters. If one assumes that the propagator matrix 
is time-invariant, i.e., Gt := G , the matrix F t 
is known and of full column rank, then the 
parameters ǫt , ηt and G are rendered identifi-
able. For more discussion on non-identifiability 
issues associated with Gaussian LDSTMs, see73. 
Often, the matrix F t consists of known spatial 
basis functions giving rise to what is referred to 
as the spatio-temporal random effects model 
(STRE). The random effects are incorporated in 
the model through the state process X t.

Gaussian LDSTMs, with their complex 
dependence structure, can be more naturally 
accommodated within the fully Bayesian frame-
work (see43,56,61,65,70,72). In a fully Bayesian 
approach, priors are assigned to the parameters 
governing the state and the observation equa-
tions, thereby producing a rich dependence 
structure across space and time. However, the 
drawback is high computational overhead, which 
may prove to be insurmountable if the number 
of spatial locations is large. To address this prob-
lem,  dimension-reduced state-space models have 
been proposed. Dimension reduction problem 
can be overcome through parametrization of the 
propagator matrix. When the dimension of the 
state process is s, the propagator matrix, if fully 
unspecified, contains a whopping s2 unknown 
parameters causing calculation of the posterior 
distribution difficult. Parametrizations based on a 
propagator matrix that is identity (which corre-
sponds to a random walk) or diagonal matrix sig-
nificantly reduce the computational load. Sparse, 
yet less-restrictive parametrizations are obtained 
by considering a propagator matrix based on 
discretization of partial differential equations or 
integro-difference equations80 or lagged nearest-
neighbors77. The noise covariance matrix �η is 
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also parametrized using exponential or Matérn 
covariance function on space. Alternatively, 
dimension reduction can be relative to the state/
latent process itself, for example, through spectral 
representation/basis-function expansion. In that 
case, we can decompose the s-dimensional state 
process as

where αt is a pα dimensional state process with 
pα << s . The matrix � consists of basis func-
tions, for which there are many different choices. 
One may consider them to be orthogonal func-
tions like Fourier, Hermite polynomials, eigen-
vectors from a specified or estimated covariance 
function, etc., or non-orthogonal functions like 
wavelets, splines, bisquare, discrete kernel convo-
lutions, etc. With this dimension reduced specifi-
cation, now the process model is given by

STRE models, which form an important subclass 
of LDSTMs, can be further generalized to spatio-
temporal mixed effects (STME) model as follows:

where βt is a time-varying unknown parameter 
and Zt is an n× l dimensional covariate matrix 
associated with time t, n being the number of 
observed data locations and l denoting the num-
ber of covariates.

On a similar note, a different subclass of 
LDSTMs arrives through the following equations:

The design matrix Zt associated with time t 
consists of deterministic functions of space and 
important covariate information. The observed 
data Y t arise from a linear model that is chang-
ing with time. This model in a multivariate time-
series context is referred to as a dynamic linear 
model (DLM) (see31,58). The scope of the model 
is broadened further as29 allowed the columns 
of Zt to vary as random functions of space. The 
aforesaid models are dynamically specified, but 
the dynamics remain invariant across space. A 
significant extension can be achieved by allowing 
the coefficient vector βt to vary across space. This 
obviously implies a substantial increase in the 
number of parameters and may even lead to the 
non-identifiability problem. Putting restrictions 

X t := �αt + νt ,

αt := Mαt + δt .

(5)Y t := F tX t + Ztβt + ǫt ,

(6)

Data Model :Y t := Ztβt + ǫt;

Process Model :βt := Gtβt−1 + ηt;

β0 ∼ N (µ0,�0).

on the parameter space keeps the problem man-
ageable. Paez et  al.58 proposed such a spatially 
varying coefficient dynamic model where they 
took βt(s) := γ̄ t + γ t(s) . The common trend γ̄ t 
evolves dynamically with time, but the spatio-
temporal part γ t(s) are iid Gaussian processes in 
space. Gelfand et al.31 considered a more general 
model in the environmental context where both 
γ̄ t and γ t(s) vary dynamically with respect to 
time. They applied their model in the context of 
spatio-temporal regression. The spatially varying 
coefficients associated with these LDSTMs can be 
represented as

A number of authors proposed an apparently 
different form for the evolution of βt(s) . They 
assumed that

where K (u, s) is a redistribution kernel that 
determines how the coefficients at the previous 
time point influence the coefficients at present. 
Typically, spatially nearer coefficients at the pre-
vious time point get more weight in determining 
the coefficients at present. Although it appears to 
be very different from the evolutionary equations 
considered so far, a discrete convolution-based 
approximation to the integral would yield that 
usual expression.

3.1 � Hierarchical Specification and Prior 
Structure

Now, we consider the LDSTM specified by Eq. 
(4) with time-invariant propagator matrix G to 
illustrate how prior elicitation and Bayesian infer-
ence can be carried out with it. Following the 
suggestion of17, one assumes independent pri-
ors for the unknown parameters �ǫ ,�η,G,µ0 
and �0 . Cressie and Wikle17 assumed 
�ǫ ∼ IW (νǫCǫ , νǫ) , �η ∼ IW (νηCη, νη) , and 
m ≡ vec(G) ∼ MVN (µm,�m) where IW stands 
for inverse Wishart distribution and vec(G) 
represents the vectorized representation of the 
matrix G . Regarding the prior hyperparameters 
νǫ ,Cǫ , νη,Cη,µm,�m , we assume that they are 
fixed and known. The remaining two param-
eters µ0 and �0 are also assumed to be fixed and 
known. With this prior specification as mentioned 

(7)

βt(s) := γ̄ t + γ t(s);

γ̄ t := Ḡt γ̄ t−1 + ω̄t;

γ t := Gtγ t−1 + ωt .

βt(s) :=

∫

K (u, s)βt−1(u)du+ ηt(s),
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in17, then one can carry out posterior infer-
ence in a straightforward manner using a Gibbs 
sampler. The Gibbs sampler is implemented 
by simulating from the full conditional distri-
butions in the following order. Simulate from 
[X0 | ·], [X t | ·] for t := 1, 2, · · · ,T − 1, [XT | ·] 
and then simulate from [�ǫ | ·],

[

�η | ·
]

, [m | ·] . 
The full conditional distributions associated with 
state process being MVNs, the full conditional 
distributions associated with �ǫ and �η being 
IWs, and the full conditional distribution asso-
ciated with m being MVN, implementation of 
the Gibbs sampler is straightforward. Simulation 
from the posterior predictive distribution is also 
straightforward as it amounts to simulation from 
an MVN, and therefore, Kriging and forecasting 
can be performed easily.

Alternatively, one can consider the noise 
covariance matrices �ǫ and �η to be induced 
by parametric spatial covariance functions and 
hence can elicit priors for scale and smoothness 
parameters associated with them. In that case, 
the full conditional distributions associated with 
�ǫ and �η would not have closed-form expres-
sions. Consequently, the Gibbs sampler cannot 
be directly implemented and a hybrid Metropo-
lis Hastings within Gibbs algorithm is used. Alike 
the marginal models, prior hyperparameter selec-
tion requires special attention also in the con-
ditional approach. In the light of that, ignoring 
parametric covariance specification and instead 
using a prior distribution on the entire cone of 
positive definite matrices, perhaps using a con-
jugate IW distribution may seem attractive as 
this leads to a closed-form full conditional dis-
tribution. However, note that the inverse Wishart 
posterior no longer limits attention to specific 
spatio-temporal covariance structures of interest, 
which may be considered somewhat undesirable. 
Moreover, Daniels and Kass18 outlined question-
able performance of the IW prior in some hier-
archical modeling settings. As a result, there has 
been renewed interest in non-conjugate Bayesian 
analysis of covariance matrices specified through 
parametric spatial covariance functions.

Finally, the LDSTMs specified previously 
can be extended easily for providing a Bayes-
ian model for multivariate spatio-temporal data. 
Paez et  al.58 modified the DLM stated via Eq. 
(6) to Y t := Ztβt + ǫt ,βt := Gtβt−1 + ηt and 
β0 ∼ N (µ0,�0) where the only difference with 
Eq. (6) is that now Y t ,βt ,β0, ǫt and ηt are matri-
ces and the two noise process distributions and 
the initial distribution all are matrix normal. The 

prior choice is similar to the univariate model, 
and so, Bayesian inference and prediction can be 
carried out in a similar manner.

3.2 � Nonlinear Dynamic Spatio‑temporal 
Models

So far, we have considered conditional spatio-
temporal models whose temporal evolution 
can be described by linear equations. However, 
real-life environmental processes are complex 
and require much more sophistication in model 
specification. In particular, processes like pre-
cipitation, deposition, etc. are driven by com-
plex interactions among atmospheric processes 
and are best represented by nonlinear mod-
els. LDSTMs, as considered in Sect.  3 would be 
unsuitable in such situations. Apart from atmos-
pheric processes, sometimes, sea-surface tem-
perature data is modeled by nonlinear dynamic 
spatio-temporal models (NLDSTMs) owing to 
the complex dynamics of sea waves. Also, many 
processes in the context of growth curve mod-
eling exhibit state-dependent or density-depend-
ent growth, e.g., ∂Y /∂t = Yg(Y ; θ) for some 
nonlinear growth function g(·) (e.g., logistic, 
Ricker, Beverton-Holt, etc.). In addition, many 
processes exhibit what is sometimes referred to 
as nonlinear advection, e.g., in one spatial dimen-
sion, ∂Y /∂t = Y ∂Y /∂s1 (see17). More general 
nonlinear dynamic spatio-temporal models are 
required to accommodate such processes, among 
others. Sanso and Guenni66 considered such a 
truncation-based NLDSTM for modeling of a 
Venezuelan rainfall dataset, given as follows:

where Xt(s) is the state process and bt is a time-
varying parameter associated with the trunca-
tion equation. A more general formulation for 
this model can be written as (see equation 7.39 
on page 380 of17)

where ǫt(s) is a  spatio-temporal  noise pro-
cess. The above model assumes that the obser-
vational equation that connects the observed 
process Yt(s) with the state process Xt(s) is 
nonlinear. Instead of that, nonlinearity can be 
introduced into the evolutionary equation. In 
that case, we would have

Yt(s) :=

{

Xt(s)
bt if Xt(s) > 0;

0 if Xt(s) ≤ 0,

(8)Yt(s) := at(s)+ ht(s)Xt(s)
bt (s) + ǫt(s),
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where Ψ (·) is some appropriate nonlin-
ear function. Cressie and Wikle17 dis-
cussed nonlinear state-dependent models 
Xt(s) := Ψt(Xt−1(s))Xt−1(s)+ ǫt(s) which are 
time-varying versions of it. Often the nonlin-
ear function Ψt(Xt−1(s))Xt−1(s) is taken to be a 
threshold function as follows:

where fk(γt) is a function of a time-varying 
parameter γt , and ck; k := 1, 2, . . . ,K  , is the 
condition under which the kth equation is to be 
followed (see equation  7.69 on page 406 of17). 
An example of such a model was given by9 
with regard to long-lead forecasting of tropi-
cal Pacific sea-surface temperature. Hughes and 
Guttorp44 used such a model in an atmospheric 
application and42 employed them for the analy-
sis of an ecological dataset. Another interesting 
class of NLDSTM, that79 (also see17) referred 
to as the General Quadratic Nonlinear (GQN) 
Model, is given by

where 
∑n

j=1 aijXt−1(sj) is a linear combina-
tion of the process at the previous time and 
∑n

k=1

∑n
l=1 bi,klXt−1(sk)g(Xt−1(sl); θ

G) contains 
quadratic interactions of the process and poten-
tially some transformation of the lagged process, 
at the previous time. The model is flexible enough 
to accommodate nonlinear transformations of 
the process through the function g(·) , which 
might depend upon the unknown parameter vec-
tor θG . GQN constitutes a very rich class of mod-
els and many complex process models including 
the one considered by8 for the so-called quasi-
geostrophic flow in the ocean are special cases of 
it. Wikle and Holan78 considered an extension of 
GQN by incorporating higher order polynomial 
interaction terms in the following way:

(9)Xt(s) := Ψ (Xt−1(s))+ ηt(s),

Xt(s) := Ψt(Xt−1(s))Xt−1(s)+ ηt(s) :

=











G1Xt−1(s)+ η1,t(s) if f1(γt) ∈ c1;
.
.
.

GKXt−1(s)+ ηK ,t(s) if fK (γt) ∈ cK ,

Xt(si) :=

n
∑

j=1

aijXt−1(sj)

+

n
∑

k=1

n
∑

l=1

bi,klXt−1(sk)g(Xt−1(sl); θ
G)

+ ηt(si); for i := 1, . . . , n,

It is called the General Polynomial Nonlinear 
(GPN) model. For an excellent overview of such 
NLDSTMs, the reader may look into chapter  7 
of17. NLDSTMs attempt to provide a way out 
when the usual LDSTMs turn out to be too naive 
for the phenomena under study, but that too 
comes with a cost. The issues of dimensionality 
and efficient parametrization present the most 
significant challenges for statistical modeling of 
LDSTMs and these issues get even more critical 
for NLDSTMs. However, what is more daunt-
ing is that without very precise knowledge of 
the underlying dynamics, it is almost impossible 
to elicit an appropriate nonlinear model from 
a large class of probable nonlinear functions. A 
selected nonlinear model, that is unsuitable for 
the physical process under study, would show 
grossly poor predictive performance. Seemingly 
irrelevant departure from reality at the level of 
model specification cumulates over time and the 
outcome may be devastating.

As happens with the marginal approach, 
members of the exponential family of distribu-
tions can also be accommodated within the con-
ditional approach to use them as an appropriate 
model for spatio-temporal categorical data. For 
example, a common choice for spatio-temporal 
species abundance data is a dynamic spatio-tem-
poral Poisson model

where Xt(s) may vary dynamically with respect to 
time.

Xt(si) :=

n
∑

j1=1

a
(1)
i,j1

Xt−1(sj1)

+

n
∑

j2=1

n
∑

j1=1

a
(2)
i,j1j2

Xt−1(sj2)g(Xt−1(sj1); θ g1)

+

n
∑

j3=1

n
∑

j2=1

n
∑

j1=1

a
(3)
i,j1j2j3

Xt−1(sj3)Xt−1(sj2)

g(Xt−1(sj1); θ g2)

.

.

.

+

n
∑

jp=1

· · ·

n
∑

j2=1

n
∑

j1=1

a
(p)
i,j1j2...jp

Xt−1(sjp) . . .

Xt−1(sj2)g(Xt−1(sj1); θ gp)

+ ηt(si).

(10)Yt(s)
ind
∼Poi(Xt−1(s)),
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4 �Non‑parametric Bayes 
in Spatio‑temporal Data

As already mentioned, a focal issue for the NLD-
STMs is the selection of the form of nonlinearity, 
and such a task is highly non-trivial under little 
knowledge about the underlying process. In that 
case, a non-parametric or semiparametric spatio-
temporal model would be a better alternative. 
Much to our surprise, there is little work on non-
parametric spatio-temporal models. Marginal 
models with non-parametrically specified mean 
function have been applied in the investigation of 
dynamics of spatial pollution surface. In that case, 
one models the spatio-temporal measurement 
or its transformation using a spatio-temporal 
generalized additive model (STGAM). A typical 
STGAM looks like the following:

The STGAM models the data without assuming 
linear or specific nonlinear form for ms(.) and 
mt(.) , thereby modeling the spatial and temporal 
trend non-parametrically. However, a conditional 
model being closer to the etiology of the process 
is a more eluding one. In this regard, Lu et  al.52 
proposed an adaptively varying coefficient spatio-
temporal model that can be expressed as

where Yt(s) is the spatio-temporal variable of 
interest, a(s, z) and b1(s, z) are unknown scalar 
and d-dimensional vector functions, respectively, 
α(s) is an unknown d-dimensional coefficient 
vector, ǫt(s) is a noise process which, for each fixed 
s , forms a sequence of independent and identi-
cally distributed random variables over time and 
X t(s) := (Xt1(s),Xt2(s), · · · ,Xtd(s))

T consists of 
time-lagged values of Yt(s) in a neighbourhood of 
s and, possibly, some covariate values. The model 
was fitted using a classical two-stage procedure. 
The main difference between this model and the 
STGAM is that the former corresponds to the 
conditional approach and assumes flexible non-
parametric form for the conditional structure of 
the space–time model, whereas the latter is asso-
ciated with the marginal approach and stresses 
more on flexible modeling of the trend in space 
and time and the interaction terms.

Guha and Bhattacharya36, on the other 
hand, proposed a Gaussian process-based non-
parametric Bayesian dynamic spatio-temporal 
model, that they referred to as the Gaussian ran-
dom functional dynamic spatio-temporal model 
(GRFDSTM) where both the observational and 

Y (s, t) := µ+ms(s1, s2)+mt(t)+ ǫ(s, t).

Yt(s) := a(s,α(s)TXT (s))

+ b1(s,α(s)
T
X
T (s))X(s)+ ǫt(s),

evolutionary equations are random functions. 
Their model has the following form:

where s ∈ R
2 and t ∈ {1, 2, 3, . . .} . In the above 

description, “GP” stands for “Gaussian process” 
and “GRF” stands for “Gaussian random func-
tion”. Here, X0(·) is a spatial Gaussian process 
on R2 ; ǫt(·) and ηt(·) are temporally independ-
ent and identically distributed spatial Gaussian 
processes on R2 , and f (·) and g(·) are Gaussian 
random functions on R . They are all independent 
of each other. Hence, one no longer has to decide 
about the specific functional forms; instead, all 
one needs to do is to ensure that the probabilis-
tic laws for the random functions are so chosen 
that they give enough probability to sets of func-
tions that seem potentially appropriate for the 
data at hand. Moreover, unlike the LDSTMs or 
NLDSTMs where the functional form is fixed, a 
random functional form is more adaptable to the 
data and expected to represent the true underly-
ing process, which may be complex and highly 
nonlinear, more realistically. The reason behind 
choosing Gaussian processes as probabilistic laws 
for the random functions is that Gaussian pro-
cesses are good natural priors for non-parametric 
regression and classification problems and under 
increasingly dense observations, the true shape 
of the arbitrary function or the classifier can be 
captured accurately, a posteriori. The GRFDSTM 
as specified above involves Gaussian processes 
and therefore requires Cholesky decomposition 
of large covariance matrices, making it computa-
tionally demanding.

Alternatively, based on kernel convolution 
of order-based dependent Dirichlet process 
(ODDP), Das and Bhattacharya19 constructed 
a nonstationary, non-parametric space–time 
process, which is fitted under the Bayesian 
framework using a transdimensional transforma-
tion-based Markov Chain Monte Carlo method. 
Their approach is attractive, being very fast for 
moderate size spatio-temporal data.

5 �Massive Spatio‑temporal Data
With the growing capabilities of Geographic 
Information Systems (GIS) and user-friendly 
software, statisticians today routinely encounter 
geographically referenced data containing obser-
vations from a large number of spatial locations 
and time points. Conditional spatio-temporal 

(11)

Yt(s) := f (Xt(s))+ ǫt(s),

Xt(s) := g(Xt−1(s))+ ηt(s)

X0(·) ∼ GP(µ0(·), c0(·, ·)); f (·), g(·) ∼ GRF(·, ·),
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models discussed throughout this article often 
involve inversion and Cholesky decomposition 
of large covariance matrices, thereby rendering 
them infeasible in such settings. The traditional 
path to modeling of such massive spatio-tempo-
ral datasets is to use low-rank spatio-temporal 
models, which assume that the observed spa-
tio-temporal process is driven by a much lower 
dimensional spatio-temporal state process32. The 
generic equation associated with such a low-rank 
process is of the form X t := �αt + νt where 
X t is the original state process that drives the 
spatio-temporal observed process which yields 
the observed data and αt is a pα dimensional 
low-rank state process with pα << s . That way, 
the computational cost can be reduced from the 
order of ∼ O(n3T 3) flops to ∼ O(nT ) flops. Here, 
flops stand for floating-point operations and are 
a unit for measuring the amount of computation 
performed by an algorithm.

Katzfuss and Cressie48, in an attempt to 
model a massive spatio-temporal CO2 meas-
urement data over the globe, used a low-rank 
spatio-temporal model with spatially heteroge-
neous variability. They fitted the model under 
the Bayesian framework using sparsity-inducing 
and shrinkage-inducing prior for the propaga-
tor matrix of the basis-function coefficients, i.e., 
� . The data size being 61, 236 their model dem-
onstrated an impressive performance. Alterna-
tively, the dimension-reduction can be achieved 
through a kernel convolution of the form 
Xt(s) :=

∫

K (u, s)Xt−1(u)du+ ηt(s) . Indeed, 
Lemos and Sansó51 considered a discrete pro-
cess convolution that approximates the integral, 
and based on that, they proposed a model for a 
massive sea-surface temperature dataset. Their 
model provided an effective way of reducing the 
computational burden required for inference, by 
considering only nearby spatial locations in the 
formation of the discrete convolution approxima-
tion. On the contrary, Banerjee et  al.4 proposed 
a class of low-rank models motivated by Krig-
ing ideas. Although the model was proposed in 
the context of massive spatial data, but it can be 
implemented to massive spatio-temporal data 
too. Let us briefly illustrate their idea.

Consider a set of knots 
(s∗1, t

∗
1 ), (s

∗
2, t

∗
2 ), · · · , (s

∗
m, t

∗
m)) in space–time, 

which may, but need not, be a subset of the entire 
collection of nT observed space–time locations 
(s1, 1), (s2, 1), · · · , (sn,T ) . If the original model 
for Y (s, t) is a Gaussian process with mean func-
tion 0 and covariance function cη((s, t), (s′, t ′)) , 
then the low-rank process is a Gaussian pro-
cess with mean function 0 and covariance 

function cη((s, t), (s
′, t ′))− �s,t�

−1
22 �s′,t ′ . 

Here, Var(Y ∗) := �22 where Y ∗ consists of 
Y (s, t) associated with the m spatio-tempo-
ral knot points, Cov(Y (s, t),Y ∗) := �s,t and 
Cov(Y ∗,Y (s′, t ′)) := �s′,t ′ . The name origi-
nates from the fact that this low-rank process is 
obtained by considering the prediction of Y (s, t) 
and Y (s′, t ′) , pretending as if Y (s, t) associated 
with the m knot points are the actual observed 
data. Unfortunately, for nT large, the low-rank 
process is not a good approximation to the 
original process from which the data is being 
generated, and moreover, under strong spatio-
temporal dependence among nearby space–time 
coordinates, spatio-temporal models based on 
them perform poorly even for moderate values 
of nT. Instead, bias-adjusted low-rank models 
tend to perform better but at the cost of increased 
computation.

Other approaches to the modeling of mas-
sive spatio-temporal data hinge on the assump-
tion of sparsity. Sparse methods include 
covariance tapering. The idea of covariance 
tapering is based on the fact that many entries 
in the nT × nT  covariance matrix associated 
with the nT space–time coordinates are close to 
zero and associated space–time coordinate pairs 
could be considered as essentially independ-
ent. Usually, sparsity in the nT × nT  covari-
ance matrix associated with the nT space–time 
coordinates is induced using compactly sup-
ported spatio-temporal covariance functions, 
thereby producing only a few nonzero entries. 
This is effective for parameter estimation and 
prediction of the response, but it has not been 
fully developed or explored for more general 
inference on the state process. Sparsity can also 
be induced by considering an inverse covari-
ance matrix associated with the nT space–time 
coordinates, that contains only a few nonzero 
entries. However, unlike low-rank processes, 
these do not, necessarily, extend to new ran-
dom variables at arbitrary spatio-temporal 
coordinates. In this regard, the work of20 is very 
important. They offered an alternative com-
putationally efficient strategy by constructing 
a sparsity-inducing spatio-temporal process, 
also induced by a given Gaussian process in 
space–time. Unlike the covariance tapering-
based sparsity methods, their method produces 
a sparse process over whole space–time, thereby 
giving a valid probability model for Y (s, t) for 
any combination of s and t. In their method, 
they replaced the full likelihood by an approxi-
mate likelihood which can be computed in 
O(nT) flops thereby making it applicable to 
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massive spatio-temporal datasets. In that article, 
Datta et al.20 successfully applied their model to 
a massive pollution dataset, using a fully Bayes-
ian framework.

Different methods of massive spatio-tem-
poral data can be clubbed together to what can 
be referred to as the multi-resolution approxi-
mation. See47, who recently studied a multi-
resolution dynamic spatio-temporal model in 
the context of sediment movements. With the 
advent of powerful computers, there is a sharp 
rise in the number of articles on massive spatio-
temporal data and it is impossible to provide a 
comprehensive review of all such existing meth-
ods. However, in a recent article, Heaton et al.39 
compared different classical and Bayesian meth-
ods for massive data, albeit in the purely spatial 
context. Banerjee2, on the other hand, discussed 
the relation between many different Bayesian 
methods for massive data, again in the purely 
spatial context.

6 �Discussion and Conclusion
In this article, we have considered Bayesian spa-
tio-temporal modeling of discrete-time point-
referenced spatio-temporal data. Starting with 
the marginal models, we have discussed different 
specifications of mean and covariance functions 
and have demonstrated how a marginal spatio-
temporal model can be fitted under the Bayesian 
framework. We also have touched upon mar-
ginal spatio-temporal modeling of non-Gaussian 
data and categorical data with a discussion on 
how marginal spatio-temporal models can be 
extended to multivariate settings. Then, we have 
considered the conditional specification approach 
and reviewed some linear and nonlinear condi-
tional spatio-temporal models, their Bayesian 
implementation, and related issues. Following 
that discussion, we also have mentioned some 
non-parametric spatio-temporal models. Finally, 
we have provided a brief exposure to spatio-tem-
poral modeling approaches for massive spatio-
temporal data. However, we have not discussed 
the very important problem of spatio-temporal 
misalignment and related Bayesian models nei-
ther have we reviewed machine learningbased 
Bayesian models, which is a rapidly emerging 
subfield of spatio-temporal statistics. Some recent 
articles in this direction are53–55,76 and81.
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