
Jndwn ill)/ SCl., j\1<lr .';.pr 1991,71,125-157
[rdlan tnstltute of Sc;;;;:ce

A paraUelizing compiler for Pascal

MAULlK A. DAVE AND Y. N. SRIKANT

Department of Computer SCience and Automation, Indian Institute of Science, Bangalore 560012, India.

Received on September 24, 1990; RevIsed on March 18, 1991

Abstract

A paraUclizing complIer takes as Its input a program tn a sequential language such as FORTRAN or PASCAL
and after extractmg paralldlsm which IS imphcit in it, generat~s code which is suitable for execution on a parallel
processor. We have used Pascal for our compIler as It has extra features such as recursion, pointers, record
structures and nesting of procedures. The aim is to extract the maxImum parallelism in a reasonable time. Instead
offiowgraphs, the concept of box graphs has been developed and implemented An algonthm has been implemented
to carry out simple and mterprocedural dataflow analysis, array subscript analysIs, to detect parallelism in
boxgraphs and to convert them 111to boxgraphs depicting parallelism exphcitly. The complier generates code for
the ORG Supermax machme, a shared memory multiprocessor with two 68020 processors running on UNIX
operating system Y.3.

Key words: ComplIer, parallel processmg, paralJehzatlOn.

I. Introduction

1.1. Multiprocessors

The demand for high-speed computers is increasing rapidly in structural engineering,
weather forecasting, petroleum exploration, fusion energy research, and other areas which
are extremely important for the advancement of human civilization. Modem computer
architectures are centered on the concept of parallel processing. Parallel computer systems
can be classified into five groups: pipelined computers, array processors, multiprocessor
systems, dataflow computers, and VLSI algorithmic processors. We shall be concerned in
this paper solely with multiprocessor systems and their programming aspects and hence
shall not discuss further pipelined and array processors, dataflow computers, and VLSI
processors.

1. 1. 1. Overview of multiprocessor architecture

A basic mUltiprocessor organization is conceptually depicted in Fig. l. Tbe system contains
two or more processors of approximately comparable capabilities. All processors share

125

126 MAULlK A. DAVE AND Y. N. SRI KANT

ILM!I

I
[m

I
Interprocessor interrupt network

Interprocessor memory connection network

PI, P2, ... , Pn connected to it

FIO.l. Basic mult1processol' organizatlon. LM = Local memory,
p "'" Process()r~ MM = Memory module.

access to common sets of memory modules, 1/0 channels, and peripheral devices. The
entire system is controlled by a single integrated operating system providing interactions
between processors and their programs at various levels. Apart from the shared memory
and I/O devices, each processor has its own local memory and private devices. Interprocessor
communication can be performed either through shared memory (shared memory multi
processor) or through a message-passing mechanism (message-based multiprocessor).
Multiprocessor systems are also known as multiple instruction stream-multiple data stream
(MIMD) machines.

The commercial mUltiprocessor systems available are Sequent Balance 21000, Intel iPSC
Concurrent Computer d5, Apollo DN 10000,4 Processor VAX stations, Multiple transputer
systems (from several vendors), Alliant FX/8, BBN Butterfly Parallel Processor, CRAY
X-MP Model 22, FPS T Series Parallel Processor, IBM 3090, Loral Datano LDF 100, the
Tandem multiprocessor, etc.

1.1.2. Programming multiprocessors

Ptogramming a multiprocessor is different from programming a uniprocessor in two
ways-architectural attributes and a new programming style peculiar to parallel appli
cations.

An architectural attribute that may affect programming in a multiprocessor system is
nonhomogeneity. If the central processors are nonhomogeneous, that is, functionally
different, they must be treated differently by software.

The basic unit of a program in execution on a multiprocessor is a process, an independent

A PARALLELIZING COMPILER FOR PASCAL 127

schedulable entity (a sequential program) that runs on a processor and uses system resources.
It may also execute concurrently with other processes, delayed only when it needs to wait
to interact with other processes or for resources. Hence, a parallel program can be said to
consist of two or more processes.

1.2. Parallelizing compilers

There is another approach for exploiting parallelism on parallel machines other than writing
parallel programs. This is to write such compilers, which will take sequential programs
and determine the parallelism implicit in them. Such compilers which convert sequential
programs into parallel programs are known as parallelizing compilers. Parallelizing
compilers for multiprocessors are sometimes also called as concurrentizing compilers.
Concurrentizing compilers try to create a parallel program consisting of parallely executable
processes out of a sequential program. We shall be concerned in this paper with
concurrentizing compilers only but we shall use both the terms interchangeably.

1.2.1. Why or why not parallelizing compilers?

The use ofparallelizing compilers offers the following advantages over that of writing parallel
programs.

(1) Use of existing software packages: Most of the software in existence is in sequential
languages. Moreover, a lot of money has been spent on producing the existing software
packages. We believe that rewriting all of them in parallel languages is much more
expensive than restructuring them by parallelizing compilers.

(2) Program portability: For different kinds of architectures, we need different language
features to be able to exploit the available parallelism explicitly'. To avoid writing a
separate parallel program for each kind of parallel machine, one can write a single
sequential program and use a parallelizing compiler to restructure them. This is more
advantageous because a major part of a parallelizing compiler is machine-independent
(only the code generator is different just like in an ordinary compiler), and hence can
be used for various kinds of machines with only a little one-time extra effort. Thus
parallelizing compilers improve program portability.

(3) Training facilities not needed: For parallel programming, programmers need additional
training. Moreover, it is difficult to train non-computer science programmers in parallel
algorithms and languages. Parallelizing compilers avoid all such extra strain on the
programming community.

Unfortunately, parallelizing compilers have the following disadvantages also.

(i) The compilation time to detect fine-grain parallelism in sequential programs is very
large.

(ii) Full parallelism is not detected by parallelizing compilers, specially in the presence of
arrays.

(iii) Efficient parallel algorithms have been found for some problems but present-day
parallelizing compilers are not able to convert the corresponding sequential programs
into efficient parallel ones.

128 MAULlK A. DAVE AND Y. N. SRIKANT

In spite of these disadvantages, the advantages, specially (1) and (3) above, seem to be
overwhelming and hence more and more parallelizing compilers are being built all over
the world.

1.2.2. An intrnduction to parallelization

When a sequential program is executed, one operation is performed at a time on the
processor. The output of such a program is the output of the statements executed according
to their textual sequencing. However, for a program, the same output can sometimes be
achieved by different ordering of the statements also. The total ordering imposed by a
sequential language is more restrictive than is necessary to guarantee a program's output.
Only portions of the original total (sequential) ordering are absolutely essential to maintain
the results. The required ordering is a partial ordering as opposed to the total ordering of
the sequential execution. This phenomenon is exploited during the determination of
parallelism in sequential programs.

Dependence is a relation among the statements of a program. A statement s, is dependent
on statement s l' if s 1 must be executed before s 2 to preserve the semantics of the original
program. Under this definition, dependence represents the essential orderings within a
program. Any execution order that preserves a program's dependences also preserves its
output.

Now we explain two main types of dependences, viz., data and control dependence.
Consider the following two statements:

s,:a: = b +c;

sz:d:=a+e;

Since s, uses the value of a, which is changed by s" these two cannot be executed in
parallel. S2 is dependent on S, due to data consideration. Now, consider the following two
statements:

s,:if(a < > 0) then

s.:b:=c+d;

s. and s, cannot be executed in parallel because execution of s, controls whether S4 has
to be executed or not. This is control dependence.

To determine data dependence in the presence of array references and pointers is very
difficult and sometimes impossible. For example, consider the following statements:

s,:a[i + 1): = b + c;

s6:d: = aU + 1];

To determine the dependence of s, and S6 completely at compile time is impossible
beca~se we do not know which element of a will be changed in s, and which will be
used In S6' The subscript analysis methods yield information regarding possible dependence

A PARALLELlZ!NG COMPILER FOR PASCAL 129

only and not complete dependence as in statements s 1 and S2 above. More details of
dependence analysis and other details of a parallelizing compiler are explained in the
forthcoming sections.

1.3. Related work

The area of paral1elizing compilers is relatively new when compared with other areas of
compilers. Thc foundation for work in this area was laid by Kuck and his group. Padua
f![ttl present some basic techniques ofparallelization 2

. Banerjee has given an excellent array
subscnpt test 3 Wolfe has analyzed extensively the problems involved in veclorizing
FORTRAN programs, and has given techniques such as loop fission, loop fusion, loop
scalarization, and loop interchanging4

, Apart from these, also described are symbolic
dependence testing and sectioningS and PFC (Parallel Fortran Converter-a vectorizer
for FORTRAN) developed at Rice University 6

Loop concurrentizatioll, trade off between vectorization and concurrentization, and other
issues are discussed by Padua and Wolfe7

. Wolfe throws some light on the ditTerence
between vectorization and concurrentization8 . Wolfe and Banerjee review advanced
techniques for data dependence testing and their applications in concurrentizing and
vectorizing compilers9 PTRAN (Parallel TRANslator) is a system for automatically
restructuring sequential FORTRAN programs for execution on parallel architectures. It is
being developed at the IBM's T. J. Watson Research Center. Allen et al!O give some
techniques of interprocedural dataflow analysis used in PTRAN, and also an overview of it.

Application of interprocedural dataflow analysis to vectorization and concurrentization
results in detection of more parallelism. Though Triolet et al claim good results from their
method ll

, unfortunately it involves complex algorithms which use symbolic computations
and linear programming whose cost in terms of CPU time and memory space is heavy.
Burke and Cytron have given a hierarchical dependence test 12 which is an improvement
over previous methods. Callahan and Kennedy from Rice University!3 have described a
new technique called regular section analysis. The idea is to preserve common array
substructures as regular sections and use them for interprocedural dataflow analysis. Li
and Yew!4 have introduced a data structure called atom images to propagate subscript
information through call statements.

While implementing concurrentizing compilers on real multiprocessors, synchronization
delay between concurrent processes and assignment of processes to processors poses a very
difficult challenge!' -!7 Techniques have been developed for run-time detection of
parallelism also 15 ,18-20.

A novel technique of parallelization is presented by Ferrante et al21 The w-called
program dependence graph (POG) proposed as an intermediate program representation
makes explicit both the data and control dependences for each statement in a program.

Another area of research is pointer dataflow analysis. Modern-day programs written in
languages like Pascal, and C use pointers extensively. Attempts are also being made to
parallclize programs containing pointers22 - 29.

130 MAUUK A. nAVE AND Y. N. SRIKANT

1.4. Highlights and organization of the paper

We have implemented a parallelizing compiler which is based on certain new concepts and
also some older but well-proven ones.

Most of the parallelizing compilers have been written for FORTRAN. We have chosen
Pascal because it has extra features such as recursion, pointers, record structures, and nesting

of procedures.

The aim of our compiler is to extract as much parallelism as possible in a reasonable
amount of time. We observe that shared memory multiprocessors do not have a large
number of processors. We have not detected fine-grain parallelism as it is not useful on
shared memory multiprocessors (because of small number of processors and scheduling
overheads) and the compilation time may become very large. For the latter reason, symbolic
computation is also not used.

Instead of flowgraphs, we have developed and implemented the concept of boxgraphs
in our compiler. Boxgraphs have the following advantages:

• As they do not contain cycles, analysis becomes easier.

• As the boxes arc sufficiently large, scheduling overheads are not considerable.

• As each boxgraph can be analysed separately, parallel algorithms can be developed
easily (future work).

• They can be constructed easily for block-structured languagcs.

• There is provision to display parallelism explicitly.

An algorithm has been implemented to carry out simple and interprocedural dataflow
analysis and array subscript analysis, and hence to detect parallelism in boxgraphs and
to convert thcm into boxgraphs depicting parallelism explicitly.

We have implemented our compiler on the ORG Supermax machine, a shared memory
multiprocessor with two 68020 processors running on UNIX operating system V.3. Dynamic
scheduling of processes and parallelism have been achieved using thc featnres available in
the system. We do not claim our implementation to be efficient but feel that it is a good
test bed to tryout experiments with parallelizing compilers.

Section 2 contains the details of intermediate representation. Section 3 describes
dependence analysis. Section 4 contains the details of detection of parallelism, and Section
5 a description of our implementation of parallelism. Finally, Section 6 concludes with
some results of parallelization and future directions.

2. Intermediate representation

In this section, the main features of the intermediate representation used in our compiler
are described. Only a subset of Pascal, stripped off some of its features such as goto, case
and with statements, file and set data type, variant records, has been chosen. However,

A PARALLELlZING COMPILER FOR PASCAL 131

We believe that our pnnclples, when applied to these features also, will work correctly. We
have removed them to simplify the implementat]on.

2.1. A brief overview of a parallelizing compiler

The task of a paraJleJizing compiler can be divided into two parts: (l) Transforming
the input program into intermediate representation (with parallelism explicit), and
(2) Transforming intermediate representation to machine code.

The first part depends on the type of architecture of the machine for which the compiler
will generate the code. However, it does not depend on specific machine characteristics.
For example, the first part of a parallelizing compiler will be the same for all kinds of
multiprocessors with shared memory, but will difTer for multiprocessors and vector
processors. The second part will need machine details such as the number and typcs of
processors, and services provided by the operating system. It is because of this reason that
portability of the first part is higher than that of the second part and can be dealt with
separately.

The first part can be further divided into three parts:

(1) Generation of intermediate code with only sequential features. Tbis is the same as in
any usual compiler.

(2) Dependence analysis of the above intermediate code using tbe techniques of datallow
and controillow analysis. The aim of such analysis is to detect parallelism in programs.

(3) Conversion of the intermediate code in (1) above into one having parallel constructs
also. Here. we use the dependence information computed in (2) above.

The intermediate representation which we have used contains a set each of quadruples and
boxgraphs. This representation was chosen because it can be implemented on multi
processors with any number of processors. Each procedure or function in the source
program is recognized as a boxgraph and a set of quadflipJes. The set of quadfllples will
be the same as in any ordinary compiler and it will be generated during parsing. We shall
now give a few basic definitions which help in explaining our intermediate representation.

2.2. Some basic definitions

Boxes are defined in such a way that when the input program is divided into a number of
boxes, control flow analysis becomes simple.

(1) Modified basic block: A modified basic block is a basic block without any "goto'
quadruple at its end.

(2) Box: A hox is a set each of whose elements can either be a box or a modified basic
block and it can be one of the following:

(i) SIMPlE box: It is a modified basic block.
(ii) COMPOUND box: It is a set of boxes which can be executed in parallel.

(iii) FOR box: It contains the box corresponding to the body of a for-loop, the loop
index variable and the quadruples corresponding to the expressions of a for-loop
(Fig. 2).

132 MAULIK A DAVE AND Y. N. SRIKANT

Parameter quadruples I

I I~
I Call P I truenext falsenext

Flu 1. For box for FIG. 3. Loop FIG. 4. Call box. FlO. 5. Condition box.

the statement for I: box.
= El to E1 do S.;

(iv) LOOP box: It contains the box corresponding to the body of a repeat-until-loop
and a modified basic block containing quadruples for the condition expression
(Fig. 3). We convert while-loop into repeat-until-loop for convenience.

(v) CALL box: It contains quadruples for all the parameters and a call to a procedure
(Fig. 4).

(vi) CONDITION box: It consists of expression quadruples fanned due to if-then-else
or if-then statement with special properties that it is connected to two boxes by
the relation next (defined later). (Fig. 5).

(vii) NULLbox: It does not contain anything.
(viii) P ARFOR box: It is the same as a FOR box except that while executing a PAR FOR

box each iteration of a for-loop can be executed in parallel.

It is easy to see that boxes may contain other boxes also.

(3) Next: Let B be a box and let a and b be any elements of B. Then the relation next
(denoted by N) can be defined as

N:B->B,

N = {(a,B)1 box b can immediately follow box a during execution of the program.) and
having the following properties:

• If aNb then a < > b.
• If aNb then bNa is false.
• If aN band b N c then eN a is false.
• For any a in B, there exist at most two distinct b"b, in B such that aNb , and aNb,.
• There exists one and only one element x in B such that if yNx then y is not in B. Such

an element is defined as the starter of B.
• There exists one and only one element x in B su~h that if xN y then y is not in B. Such

an element is defined as the ender of B.

(4) Exit: Exit of a box b in B is a in B iff bNa.

1.5) Truellexr and Falsenext: Of the two exits of a CONDITION box b, the box which is
to be executed if the condition of b is true is called the truenext of b, and the other, the
falsenext of b.

(6) Endif: Every CONDITION box has a corresponding endif box. A box b is an endif
box of c, if
• there are at least two paths in the hoxgraph from c to b, and
• all the paths from c to b do not have any box in common except c and b.

A PARALLELIZING COMPILER FOR PASCAL 133

(7) Boxgraph: We define a boxgraph as a directed graph with nodes representing boxes
and with an arc from box hI to box b2 iff hI Nb 2 . The properties of the relation next reflect
the nature of any boxgraph corresponding to a Pascal subroutine. For the program
segment given below, the corresponding boxgraph is shown in Fig. 6.

We divide a program into boxgraphs during parsing and quadruple generation itself.
Since this uses standard syntax-directed translation methods possible with Y ACC on UNIX
systems30 .3 \ we do not elaborate it here. For details see Dave23.

Given program segment

procedure pr (a, b, c, d: integer; var e,f, g: integer);
var i: integer;
begin

repeat

end else

a:=h+c;

b: =c.d;

c:=e+/;

if «coa) < > e) then
begin

pr 1 (a, b, c, d);

e:=e+/;

c:=b+g

prj (a, e,j, g);

for i: = a + 1 to a + 9 do c: = c + 1;

until (a < > b)

end;

3. Dependence analysis

In this section, we define data dependences, and describe simple and interprocedural dataflow
analysis and array subscript analysis which are useful in determining the data dependences.

3.1. Data dependences

We have already explained in Section 2.2 the concept of data dependence intuitively. Now,
we shall define the following sets which are used in explaining the parallelisability conditions.

134 MAULIK A. DAVE A N D Y N. SRlKANT

param a

param b

param c

param d

call pr l -

/ -
B2

call

box

-

param e

param f
B.5

box v,.;
c := b + g; simple box

$3 := a + 1;
B5- for box

Flo. 6. Boxgraph for the program in Section 2.2.

B7-loop box

e B , and BI are the starter and the ender, respectively, of Be; . B1 is the endlf box of 8, ;
B , is the exit box of B,; e B , is the exit box of B , and B,.

A PARALLELlZING COMPILER FOR PASCAL 135

a) Changeset: Changeset of a box can be defined as the set of memory locations (variables)
which are changed when the box is executed.

b) Useset: Useset of a box can be defined as the set of memory locations (variables) which
are used (read only) when the box is executed.

Consider S: a: = b + c;

T: for i:=j*k to L do W;

Changeset of S = {a}

Useset of S = {h,c}

Changeset of T = {i} u changeset of W

U seset of T = {j, k, I} u useset of W

Now various types of data dependences between the two boxes can be defined.

(1) Antidependence: A non-empty intersection ofu , and C2 implies antidependence between
a box with useset u , and a box with changeset c2 .

(2) True dependence: A non-empty intersection of c, and U2 implies true dependence
between a box with useset u2 and a box with changeset c l'

(3) Output dependence: If the intersection of c , and C2 is not empty then it implies output
dependence between boxes with changesets c, and c2 .

When two boxes have anyone of anti, true, or output dependence between them, then
they cannot be executed in parallel. For example, consider

Box I:SI:vl:=v2;S2:v3:=v4;

Box 2:S4:v2: = v5;S5:v5: = vl;S6:v3 = v6;

UI={v2,v4}

U2 = {v5, vI, v6}

CI = {vl,v3}

C2 = {v5, v2, v3}

Since, UI n C2 = {v2},

CI n C2 = {vi, v3}, and

Cl nC2 = {v3}.

Box I and Box2 have all three dependences. Hence, they cannot be executed in parallel. The
ill effects of executing them in parallel are: If S4 executes before SI, then v 1 gets a wrong
value v5 instead of old values of v2. If S5 executes before SI, then v5 gets a wrong value
(old vi) instead of new vI. If S6 executes before S2, then v3 gets a wrong value (v4), instead
of v6.

1)6 MAULlK A. DAVE AND Y. N. SRIKANT

3.2. Simple dataflow analysis

3.2.1. Storing sets for dataflow analysis

The compiler has been written in C language which does not provide set-type dat
structures". But C permits powerful bit operations to be performed on unsigned integer:
We took advantage of this fact and stored the sets in arrays of unsigned integers. Wheneve
a changeset or useset is to be formed, the required number of unsigned integers are allocate,
using the Calloc function in C.

The required number of bits is nothing but the total number of variables which may b,
possible members of the set. For each procedure, this number is different and is stored a:
a field called datasize in procedure node in the symbol table. Datasize of a procedure i:
the sum of number of variables declared as local, number of parameters and the datasiz<
of the parent (the one which is immediately nesting the procedure) procedure.

Every variable declared in the visible scope of a procedure is allocated one bit. If a
particular variable is used or changed in the procedure then tbe corresponding bit is on;
otherwise it is off. The assignment of bits to variables is done by ordering tbe variables.
The ordering is guided by the declarations in the procedure. For every procedure, the
ordering is: local variables, value parameters, reference parameters, and global variables
(in the same order).

In any declaration, the order in which the variables are declared is assumed for the bits
also. To illustrate this, we present the following example.

program p(input, output);

var a,b,c:real;

procedure pr(d, e: real; var j:real);

var g, h: real;

Shown above is the declaration of a procedure. For the procedure pr, the ordering of
variables is

g, h, d, e,f, a, b, c.

The set (b,c,gj will be represented by bits as lOOOOOll.

3.2.2. Computation of sets for dataflow analysis

We now show how to compute change and use sets for different types of boxes. For most
of the cases, the sets are computed at parsing time itself. For an assignment statement, the
changeset is the left hand side variable or an array name and the useset consists of all the
variables involved on the right hand side. For an array reference whether on the right or tbe
left hand side (of an assignment statement), tbe variables involved in its subscripts are
included in the useset of the statement.

The useset (changeset) of a SIMPLE box is nothing but the union of usesets (changests)

A PARALLELlZING COMPILER FOR PASCAL 137

of the assignment statements which constitute it. For a CONDITION box, the variables
involved in the condition of the corresponding if-then-else statement are also included in
the useset. For a FOR box, the useset is the union of use sets of all the boxes which constitute
the body of the FOR box. The variables involved in the expressions of the limits of the
corresponding for-loop are also included in the useset. The changeset is the union of
changesets of all the boxes which constitute the body of the FOR box. The changeset
(useset) of a LOOP box is found by computing the union of changesets (usesets) of all the
boxes which constitute the body of the box. The changeset and useset of a COMPOUND
box are also computed in similar manner. The computation of the sets of a CALL box is
discussed later.

3.3. Illterprocedurai dataflow analysis (IPDFA)

In thls subsection, we discuss interprocedural dataflow analysis which is crucial for any
dataflow analysis. IPDFA in the presence of array references will be discussed in Section
3.2. Our method is based on the algorithm for IPDFA 30.

3.3.1. Need jar IPDFA

IPDFA is carried out in the presence of call statements. While parsing, the changeset and
the uscsct of a CALL box are computed as follows.

All the parameters and reference parameters listed in the procedure call are included
in the useset and changeset, respectively.

For example, let the declaration for a procedure be

procedure pp (iI, ;2, ;3: real; var vi, v2: integer);

Let it be called as

pp U1 *j2,j3,j4,jS,j6);

The CALL box corresponding to the call of pp, during parsing, will have

useset = {jl,j2,j3,j4,j5,j6),

changeset = {jS,j6}.

Since Pascal allows access to glob.al variables in a procedure, the calculated sets for the
CALL boxes during parsing are only subsets of the actual sets. In the above example, if
pp uses a variable v declared in any of the procedures which nest pp, then v should be
included in the useset. This explains the need for IPDFA. The function of IPDFA is to
update the sets by inspecting all the calls in the program in a separate pass after parsing
is completed.

3.3.2. Shifting

Before putting forth an IPDFA algorithm, the concept of shifting is presented. Since for
every procedure a boxgraph is created, the useset and the changeset of a procedure can

138 MAULIK A. DAVE AND Y. N. SRIKANT

be easily found out by computing the union of the corresponding sets of all the boxes in
the boxgraph (of the procedure). These sets are stored as bit arrays as explained earlier.
The data size of a procedure has two parts: one consists of its variables including local
variables, value and reference parameters and the other only global variables. The process
of shifting updates the sets in such a way that only global variables are retained in the sets.

The shifting algorithm for a procedure call is shown below:

Algorithm: SHIFT.

Input: A set S, allocated as unsigned integers (as explained earlier).

(2) A procedure D which is called.

(3) A procedure R which calls D.

Output: A set Twith proper shifting carried out.

Method: If a procedure P is immediately nesting a procedure Q, then P can be called as
parent of Q.

Let Datasize (D) = d,

Datasize (Parent of D) = e.

Slep L U = set obtained by left shifting of S by d - e bits.

Step 2. If R is the parent of D then T = U.

If Rand D are at the same level, then

T = set obtained by right shifting of U by d - e bits.

3.3.3. IPDFA Algorithm

The IPDFA algorithm is as follows:

Var changed:boolean;

changed: = TR UE;

(. This while-loop is to traverse though all the calls in the program repeatedly until changed
becomes false (i.e., The usesets and changesets have not changed w.r.t. the previous
iteration.) .•)

While (changed) do begin

changed: = FALSE;

(. This for-loop takes all the procedures in the input program one by one .• j

For each procedure P in the input program do begin

(. This for-loop takes aU the procedure calls made in P one by one. 0)

For each called procedure q with corresponding box B in P do begin

(. Finding out the global variables which are used in the called procedure by SHIFT. 0)

Sl = SHIFT (useset (Q));

A PARALLELIZING COMPILER FOR PASCAL

(* Updating the useset of the corresponding CALL box. *)

useset (B) = useset (B) U Sl;

139

(* Computing S2 which represents the new useset formed due to the effects of the call .•)

S2 = useset (P) U SI;

(* If the new usese(is different from the old one, then update and report change by making
changed as TRUE. *)

If (S2 < > useset (P)) then begin

changed: = TRUE;

useset (P): = S2;
end

(* Finding out the global variables which are changed in the called procedure by SHIFT. *)

S] = SHIFT (changese! (Q));

(* Updating the changeset of the corresponding CALL box. *J
changeset (B) = changeset (B) U SI;

(* Computing S2 which represents the new changeset formed due to the effects of the
call. *)

S2 = changeset (P) U Sl;

(.If the new changeset is different from the old one, then update and report change by
making changed as TRUE. *J

end
end.

if (S2 < > changeset (Pl, then begin

changed: = TRUE;

changeset (Pl: = S2;
end

The IPDFA algorithm repeatedly traverses through all calls in the input program. While
traversing, it keeps on updating various data details of CALL boxes and procedures. For
each traversal, it records whether any change occurs or not with respect to the previous
traversal through the boolean changed. When no change occurs w.r.t. the previous traversal,
it stops.

IPDFA computes sets for CALL boxes only. Hence, after IPDFA is over, another pass
over the boxgraph is required to compute the sets for LOOP and FOR boxes which
incorporate CALL boxes in them.

3.4. Array-subscript analysis

In this Section, we shall discuss how to carry out dataflow analysis in the presence of
subscripted variables. Array subscript analysis plays a very important role in parallelizing
compilers because programs use arrays extensively and a lot of parallelism is lost if we do
not execute two boxes in parallel whenever they use a common array variable, even though
the two boxes may be operating on disjoint parts of the array.

140 MAULIK A. DAVE AND Y. N. SRIKANT

3.4.1. Need for subscript analysis

Consider the following statements, Sand T:

S:0[2]: = b + c;

T:d: =0[3];

The changeset of S is (a), and the useset of Sis {b,c}.

The changeset of Tis {d}, and the useset of Tis {aj.

Since the intersection of the changeset of S and the useset of T is non empty, the compiler
will not declare them as parallelizable. However, since a[2J and a[3] do not represent
the same memory location, Sand T can be declared as parallelizable. This suggests that
the conventional dataflow analysis based on sets is not sufficient to extract parallelism in
the presence of subscripted variables.

3.4.2. Complexity of the problem

Essentially our aim is to find out whether a common location in an arrary is being referred
to or not by two array references. At compile time, it is difficult to find out this information.
Consider two array references such as a [il and a [j]. Unless symbolic computation is carried
out, nothing about i andj, which can be useful in determining whether a[iJ and a[j] refer
to a common memory location or not, is known. Symbolic computation is very expensive
and not very practical to implement. Therefore, less-expensive approximate tests have been
developed which can determine whether two array references access a common memory
location or not. These tests give assurance that two array references will not access a
common memory location but fail to assure that both will definitely access a common
memory location. This is a conservative but safe approach towards the problem. We have
implemented those tests which are less expensive but give fairly good results.

3.4.3. GCD Test

Let us consider two array references r[ao + a,.x, + a2*x2 + ... + a •• x.J and r[bo +
b ,*y, + b2 *y, + ... + bm* Yml. The subscripts are linear functions t of the integer variables
Xl ,Xl}'" ,x'" and }'t'Y2,'·' ,Ym, respectively. ao) al , a2 , ... , an bo, hI, h2 , ... , bm are all integer
constants.

Both will refer to the same memory location in the array r when

aO +a 1*x 1 + ... +an*xn-bo-b1*Yl- ... -bm*Ym=O;

i.e., at *x1 + ", +all*xn-b1*Yl - ... - bm*Ym =bo -aQ _ (1)

The above is nothing but a linear Diophantine equation. From the theory of Diophantine

tT~e ,assumption that su~cripts are linear fUDctions of integer variables is generally valid In scientific programs.
ThIS 15 based on observahons of mathematical software packages. •

A PARALLELlZING COMPILER FOR PASCAL 141

equations33 , we have, for an equation of the form C1 *V 1 + C2*V2 + .. , + Ck*Vk = c, where
k> = 2, and C1 ,e2"'" CJ.. are integer constants and Vl' v 2 , ... , Vk are integer variables.

a solution exists iff

gcd (e
"

e2 , ••• ,e.) divides c.

Therefore, for equation (1), a solution exists iff

gcd(a
"

a2 , •• • ,an> b" b2 ,···, bm) divides (bo - ao). (2)

This means that if condition (2) is satisfied, then there exist integer values for the variables
X

"
x2, ... ,x"Y"Yz, ... ,Ym such that (1) is satisfied and hence the two array references may

access common locations in array r. If (2) is not satisfied then it is definite that (1) cannot
be satisfied for any integer value of the variables and hence the array references will no!
access any common memory location in array r. Of course, even if (2) is satisfied, there are
chances that the integer variables never take value at run time such that (1) is satisfied and
hence the two array references never access common memory locations in array r.
Satisfaction of (2) only implies existence of integer values for variables which satisfy (1).
Condition (2) is the well-known GCD test.

Although the GCD test is comparatively weak, it is very easy and fast and hence is
always applied first"·'.

3.4.4. Banerjee's test

If it is known at compile time that the values the variables take have upper and lower
bounds then a more powerful test can be conducted.

Let us consider two array references r[ao+a,*x, +a2 *x2 + ... +a.*x.J and r[bo+
b, *y, + b2 *Y2 + ... + bm*Ym]. Let all xs and ys have some lower and upper bounds for
the values they can take. For these array references to access a common memory location
in array r,

(3)

We can without loss of generality, assume that x I = Y" X2 = Y2, ... , Xk = y., for some k
less than or equal to m and n (k can be zero also).

Let

Let
Vi =xi and Cj =a i for i = k + 1, .. . ,n.

Let
Vj = Yi,Cj = bi andj = n + i- k, for i = k+ 1, .. ,m.

Let
l=m+n-k.

We have reduced equation (3) to

(4)

142 MAULIK A. DAVE AND Y. N. SRIKANT

Let L" L". ., L, be the lower bounds and U" U" ... , U, be the upper bounds to the
variables V 1 ,V2 '- .,v/_

Before explaining Banerjee's test, we shall define positive and negative parts of a number.

Positive part

Positive part of a real number r can be defined as

pos(r) = 0 if r < O.

= r, otherwise.

Negative part

Negative part of a real number r can be defined as

neg (r) = 0 of r > 0

= r, otherwise.

For any integer variable v, with upper bound U and lower bound L,

i.e., if L <= v <= U, then,

neg(c).(U - L) <= c>(U - L) <= pos(c).(U - L)

which in turn yields,

Let

neg (c)*(U - L) + c. L

<= pos(c)*(U - L) + c. L.

LBi = neg(ci)*(Ui - L,) + Ci ' L"

UBi = pos(c,),(Ui - L,) + Ci• Li.

From (5), for i = \,2, ... , /, we get the set of inequalities:

LBf <= Ci*t\ <= UBi'

Adding all the inequalities, for i = \,2, ... , /, we get

LE, + LB, + ... + LE,

<=C1 *V 1 +C2 *V2 + ... +c/*v/

<=UB, +UB,+ ... +UB,.

Applying (4), we get

LE, + LB, + ... + LB,

<=ao - bo

<= VB, + VB, + '" + UBi'

(5)

(6)

A PARALLELIZING COMPILER FOR PASCAL 143

All the LEs and UBs can be calculated by knowing cs, Ls, and Us at compile time. (6) is
known as Banerjee's test. Proofs of the above properties and other details can be found
elsewhere3 5,9,

The Banerjee's test, like the GCD test, assures us that two array references will not access
a common memory location but fails to assure that two array references will definitely
access a common memory location. This approach is conservative but on the safer side.
The Banerjee's test takes more time than that ofGCD test, but gives better results. We first
apply the GCD test and then proceed to Banerjee's test. There are examples where GCD
test fails and Banerjee's test succeeds, but the vice versa also is not uncommon. Hence
these two tests are complementary in nature and should be used together to obtain better
results.

3.4.5. Multidimensional arrays

Arrays having more than one dimension need special treatment. Here we shall discuss two
approaches toward the problem. We have implemented both of them.

Subscript by subscript analysis: Let there be two array references a [r" r 2 , ••• ,r.] and
a[sl,s2, ... ,S,J where rl and s" i= 1,2, ... , n are linear functions of variables indicating
subscript expressions. In subscript by subscript analysis, all the subscripts are checked one
by one. If all of them show failure (i.e., the tests in Section 3.4 indicates access to common
memory locations), then access conflict is assumed, otherwise the two references are assumed
to be access conflict free. That is, for the above two array references, both will access a
common memory location if for all values of i in the range" I to n, r, and s, fail tests in
Sections 3.4.3 and 3.4.4.

Linearization: Burke and Cytron12 showed that linearization of multidimensional arrays
is as important as subscript by subscript analysis. It showed some examples in which
independence (i.e" no access conflict) was not detected by subscript by subscript analysis
but was detected by linearization.

We observe the following facts.
• Memory can be viewed as a one-dimensional array MEM.
• The function that maps array references with multiple subscripts into their locations

in MEM is linear with respect to the subscript (irrespective of whether roW- or
column-major arrangement is assumed).

• Due to this, if all the subscripts of an array reference are linear functions then the
corresponding subscript of MEM will also be a linear function.

Let the declaration of an array a be

var a[ll .. ul, 12 .. u2, ... , In .. un].

Let the target array reference be a[rl,r2, . . ,rn] and rl,r2, ... ,rn be all linear functions.

Let a[lI,12, ... ,ln] be represented as a[O]. By assuming row-major arrangement

144 MAULIK A. DAVE AND Y. N. SRIKANT

a[rl,r2, ... ,m] can be represented as a[fl, (from Horwitz and Sahni34
) where

f = (rl -1l)(u2 -12)(u3 -/3) ... (un -In)

+~-~~-m~-~···~-~+···+~-~

All the array references can be represented by their corresponding single-dimension
subscripts as shown above and then any of the tests in Sections 3.4.3 and 3.4.4. can be
applied on them.

3.4.6. Implementation details

For each box, the use-array and change-array references are stored in a linked list with
each node pointing to a reference. A reference is also stored as a linked list with each node
pointing to a subscript. The subscript stores the corresponding linear function with the
bounds of the variables, if available.

A variable may have bounds because of two reasons:

• for a loop index, the index may be bounded on lower and upper sides, or
• by declaration of subrange data types, e.g., the declaration var i: I .. 5; indicates that i is

bounded by 1 and 5.

During parsing, special routines which have been provided are used to detect whether
an expression is a linear function or not. It is very likely that some subscripts are not linear
functions. For such array references, dependence (i.e., access conflict) is assumed.

3.4.7. Interprocedural dataflow analysis

All the array references present in the body of a procedure are collected. When a procedure
X is called, for the CALL box which contains the call to X, IPDFA transforms the array
references of the procedure in the following manner.

• If the array is locally declared then that reference is discarded.
• If the array is declared as a value or reference parameter then its name is changed to

the corresponding one in the call statement.
• All the variables of the subscripts declared in value and reference parameters are

changed as per the call.

With the above transformation, IPDFA is carried out as explained earlier.

The above actions are carried out to record the impact of the reference inside the procedure
on outside environment. For example,

program pp;

var i,j: integer; a:array;

procedure pr(x:array);

begin

end;

begin

pr(a); (* Box bl. *)

A PARALLELIZING COMPILER FOR PASCAL

a[5.i + 3]: = .. ; (* Box h2. *)

end.

145

By conventional analysis and [PDF A, boxes bland b2 will be declared as non.parallelizable
because of a. But our IPDFA will convert the reference x[S*; + 4] in pr to a[S*i + 4] in
box bl. This will make bl and b2 as paralle1izable. This shows the high importance of
carrying out 1 PDFA with subscripted variables in the manner shown ahove.

Usage of GeD and Banerjee's test in actual detection of parallelism in programs is
described in Section 4.

4. Detection of parallelism

In this section, we shall describe the main algorithm for parallelization. For detection of
paraUelism, there are two considerations: data and controL

4.1. Data considerations

A routine called coexecutable takes two boxes and finds out whether they are suitable for
parallel execution (in which case they arc said to be parallelizable) or not based on data
considerations.

Let u[,and U 2 be the usesets and c[, and C2 the changesets of boxes B[and B2 , respectively.
It is assumed that B, N R2 in the corresponding hoxgraph.

Let
set 1 = intersection of U 1 and c2 ;

set 2 = intersection of C 1 and u2 ;

set J = intersection of eland c2 .

If set[,set" and set, are empty (which means none of the three dependences exist) then
the boxes B 1 and B 2 are declared as paraUelizable by the routine coexecutable because it
is obvious that parallel execution of B, and B2 does not affect each other. A compound box
B having elements Bl and B2 , useset u=u1uUz, changeset C=C1UCz is formed. When
references to the same array are present in any two sets to be intersected, the GeD and

146 MAULlK A. DAVE AND Y. N. SRIKANT

Banerjee's tests (see Section 3.2) are applied to all possible pairs of references to check if

dependences exist.

4.2. Control cOl1siderations

4.2.1. Lemma

Consider a boxgraph such as bc--t b2 -+ ... -+bn·

If h, is nOI parallelizable with b"b, is not parallelizable with b3, .. ·,bn~' is not
parallelizable with bn (all due to data considerations), then b, is not parallelizable with bn.

For proof see Dave23.

4.2.2, Control dependence

We say that a box b is control dependent on box c iff

• there is a path from c to b in the boxgraph
• there exists a condition box d not equal to b, in the path from c to b in

the boxgraph such that there is no path from the endif box of d to b in the boxgraph.

If b is control dependent on c then band c cannol be declared as parallelizable. For
example, consider the following statements:

S,: if(a < > b) then

S,:c: = d;

Whether S2 will be executed or not depends on the result of S" Hence, S, and S, cannot
be execuled in parallel.

4.2.3. Path analys;, algorithm

From the lemma given above, for a box graph b1 -+b2 -+b 3 -+ ... bn, it is sufficient to
analyse b, with b2 , b2 with b3 , • • and so on.

The control dependences and the lemma of the previous section lead to the following
path analysis algorithm

The path analysis algorithm takes the starter and the ender of a boxgraph and modifies
the boxgraph so that it shows parallelism explicitly.

procedure pathana[ys;s (blfrom, b[to):

(* blfrom is the starter of the boxgraph and blto is the ender of the boxgraph. *)
begm

bl = blfrom;

while (bl < > b[to) do begin

A PARALLELIZING COMPILER FOR PASCAL

if (bl is a CONDITION box) then begin

pathanalysis (truenext of hI, endif of bl);

pathanalysis (falsenext of hI, endif of hI);

end

else begin

end;

b2 = next of bl;

if (b2 = NULL or b2 = NULL BOX) then goto label;

if (b2 is not CONDITION box) then

b I = datatest (b I, b2);

else bl = b2;

if (bl = NULL or bl = NULLBOX) then got a label;

end

label:;

end;

The datatest routine carries out the following tasks:

It takes two boxes b j and b2 as parameters, and

147

• by data consideration, it finds out whether they can be executed in parallel using the
routine coexecutable (Section 4.1),

• if they cannot be executed in parallel then b2 is returned. otherwise,

- a compound box b is formed from b j , and b,. Box b has as its changeset the union
of the changesets of bj and b, and as its useset the union of the usesets of b j and b2 .

The nexts of b will be exactly according to the nexts of b,.

If b, is the endif box of Some box c then next of b, is made the endif box of c. Also
duplicates of b2 are made and are attached to all the boxes having next as bz. If next
of b, is NULL and b, is an endif box then a N ULLBOX is created and this is taken
as next of b and as nexts of all the duplicates made. For example, for the program
segment given below, Fig. 7 shows the corresponding boxgraphs before and after the
path analysis.

if (a < > b) then begin

c: =d+ e;

end

148 MAULlK A. DAVE AND Y. N. SRIKANT

/"\
b2 63 --path analysis--7

~/
b4

FIG, 7. Example for path analysis.

else

J:=2;

g:=!+I:

box b1 :a < > b;

box b,:c:=d+e;

box b,:f:=2;

box b.:g:=! + 1;

Notice that b, and b4 can be executed in parallel.

- Next of b, is returned.

b)

/ ~
"

{ b2 ,b4 }

\ /
null box

b3

!
b4

For each subroutine the corresponding boxgraph is modified by the major analysis
routine. Major analysis routine calls the path analysis routine by passing the starter and
the ender of boxgraphs. All the LOOP boxes and the FOR boxes which have their own
boxgraphs are also modified by calling the path analysis algorithm. All the FOR boxes
whose corresponding for-loops can be unrolled are identified as PARFOR boxes.

4.2.4. Loop unrolling

Loop unrolling is very important in parallelization. In a for-loop, if different iterations of
the for-loop are data- independent (i.e., data computed in one iteration is not used in any
other iteration) then these iterations can be executed in parallel. For example,

for i: = 1 to 9 do begin

end;

aU]: = i + e;

b[i]: = i.e;

dU]: = c- i;

A PARALLELIZING COMPILER FOR PASCAL 149

All the iterations of this loop can be unrolled and executed in parallel with different values
(1 to 9) of i supplied to them. Loop unrolling can be carried out by comparing the boxgraph
attached to the corresponding for-loop with istelfunder data considerations. The boxgraph
is supplied to the routine coexecutable which determines whether the loop can be unrolled
or not. If the loop can be unrolled then the FOR box corresponding to it is converted to
a PARFOR box. The meaning of a PARFOR box is that the boxgraph attached to it
(body of the loop) is to be executed in parallel for different values of its index starting from
lower to upper limit.

4.2.5. Paral/elization of CALL statements involving recursion

Each CALL statement in the program is converted to a CALL box as shown earlier. Onr
method can declare a CALL box as parallelizable with any other type of boxes. This
automatically takes care of recursion. For example,

procedure pr;

begin

pr;

<rest of the body of the procedure which does not depend on the data computed before>

{say this is B}

end

In the given program, body B can be declared as parallelizable with the call pro This means
that the next recursive call is executed in parallel with the present execution of the body
of the procedure. One classic example is the fibonacci sequence computation algorithm.
The procedure calls itself twice while executing. Both the calls can be executed in parallel
as detected by our compiler.

5. Implementation of parallelism

In the previous sections, we described how to generate the boxgraphs and convert them
to show parallelism explicitly. Conversion of these boxgraphs to assembly code depends on
specific machine details. We have implemented our compiler on the ORG Supermax
machine which is a shared memory multiprocessor with two 68020 processors running on
UNIX operating system V.3 at a speed of 25 MHz. We generate 68020 assembly code.

The ORG Supermax has two processors, each with 4 MB of local memory. But the
processors can access the other processor's local memory by declaring it as a shared memory.
We have designed our scheme to suit this machine. The aim of our scheme is to use both
the processors as efficiently as possible during the execution of the program. To achieve
this purpose, we have chosen to implement dynamic scheduling of processes.

150 MAULIK A. DAVE AND Y. N. SRIKANT

Dynamic scheduling has the following advantages over static scheduling.

• Dynamically created processes cannot be implemented using static scheduling. We
need to create processes dynamically in the case of reCUTSlve procedure calls.

• If the number of asynchronous parallel processes are more than the number of
processors available, then dynamic scheduling gives much better performance.

• In the case of heavy nesting of processes and limited number of processors, dynamic
scheduling is a good choice.

Dynamic scheduling has the following disadvantages over static scheduling.

• The scheduling time overhead is more in dynamic scheduling than in static scheduling.
If process execution times are not sufficiently large then this can affect the program
execution speed in a serious manner.

• Static scheduling is more efficient in the case of synchronous or almost synchronous
parallel processes.

• In static scheduling, the processes are assigned to the processors statically. Due to
this, the local data used by the processes can be put into local memories of the
corresponding processors. If accessing local memory is faster than accessing shared
memory then static scheduling may improve the performance considerably.

In spite of these disadvantages, we preferred to implement dynamic scheduling because
the advantages overweigh the disadvantages.

We create two programs from the imput Pascal program. One is the master and the
other is the slave. All the data are stored in the shared memory so that both the programs
can access it at any time. The programs also share a common message queue. The common
message queue contains messages to start a new process, execute it completely, or halt it.

In the beginning, the master calls the main procedure and starts execution. The slave
waits for a message to be put into the common message queue. As soon as the common
message queue obtains a message to execute a process, the slave removes the message from
the queue and starts executing the process indicated by it.

Whenever parallel processes are to be executed by either the master or the slave program,
all the parallely executable processes are put into the common message queue. A common
identifier is assigned to all these parallel processes to identify them as children of the same
process. This is essential because, due to nesting of processes, they can create other children
processes. Further, the master and the slave programs also keep track of the number of
child processes with a given identifier which have not yet completed execution. This is
required to resume the execution of the parent process which created these child
processes.

After putting messages to execute these processes into the common message queue, the
program (slave or master) which created them takes a process from the message queue and
starts executing it In the meantime, if the other program becomes free then that will also
take a process from the que~e and start executing it. Each time a program completes
executJOn of a process, It carnes out the following tasks:

A PARALLELIZING COMPILER FOR PASCAL lSI

• It puts a message into the queue saying that the process has been completed.
• If it has crcated parallel processes, then it checks whether execution of all the child

processes it created has been completed or not. This can be done by using the identifier
supplied when the parent process puts the child processes into the queue.

• If all the processes created by it have been executed then it resumes execution of the
parent process which created these child processes.

• If all the child processes have not been executed completely then it waits for a message
to execute a process to be put into the queue (if not already available).

The first implementation was nol efficient because it generated C programs instead of
assembly code and used UNIX system calls for management of message queues. The current
imp!cmentation (ongoing) produces assembly code and incorporates autoscheduling
techniques and uses sophisticated guided self-scheduling strategies for loop scheduling"
Code generation in detail is beyond the scope of this paper and will be reported after
carrying out a thorough perfonnance test of the autoscheduling technique.

6. Results, conclusions, and future directions

6.1. Summary

A highly ambitious compiler writer will feel dissatisfied after writing a parallelizing compiler
because:

(I) Some of tbe sequential algorithms which can be easily parallelized by hand cannot be
parallelized even by using the most advanced parallelizing techniques developed to date.
Quicksort is a good example.

(2) Programs written in languages like Pascal, Ada and C lise pointers extensively. Because
the area of pointer dataflow analysis is still not well developed, we have a none-ta-happy
situation regarding parallelization of non-numerical programs.

However, an optimistic compiler writer will feel satisfied because:

(l) For numerical programs, the performance of parallelizing compilers is quite good.
(2) Paralleliling compilers are cost effective when compared to human beings doing a

similar job of parallelizing existing large programs.
(3) Programs parallelized using parallelizing compilers have higher reliability than pro

grams parallelized by hand.

Our approach to the problem has been to extract the maximum parallelism possible in
a reasonable amount of compilation time. Moreover, our intermediate representation
viz., boxgraph is specially designed to suit sbared memory multiprocessors, and has the
following advantages over other representations:

(1) For well-writtcn programs, our box-choosing algorithm chooses the boxes in such a
way that each box will be sufficiently large. This reduces the scheduling overheads
considerably in shared memory-multiprocessors, which in turn increases tbe speedup
of the parallelized program.

152 MAULlK A. DAVE AND Y. N. SRIKANT

(2) Analysing boxgraphs is much easier and hence compilation time is less.
(3) Sequential algorithms for analysing boxgraphs are such that in future, parallel

algorithms can be developed without too much effort so that compilation time can be
brought down even further.

(4) For any block-structured language, the method to construct boxgraphs is quite simple.

We have implemented various techniques ofarray subscript analysis. Our implementation
and interprocedural dataflow analysis in the presence of subscripted variables have given
fairly good results.

The back end of the parallelizing compiler to generate assembly code is about to be
complete. We have used autoscheduling techniques combined with guided self-scheduling
of loops to implemented parallel programs.

6.2. Results

The compiler is about 12000 lines of C-code and it took nearly 12 months to finish. We
have tested it on a large number of programs and have found satisfactory results. We
include a list of some of the programs (Table I) that we have tested together with some
comments on the perfonnance of our compiler with respect to the programs. The actual
listing of the programs and the boxgraphs with parallelism explicit have been included in
Dave's thesis". We have taken these programs from well-known books35 - 38•

The above results indicate tbat we have been able to achieve our target, namely, detection
of a reasonable amount of parallelism in a reasonable amount of time. The time for
parallelization is quite small. The average speed of our paral/elizing compiler is approximately
100 lines of source code per second.

6.3. Conclusions

The higb speed of our parallelizing compiler is basically due to the set structure which has
been extensively used in our compiler. The following factors may improve the amount of
parallelism detected by our parallelizing compiler: (i) use of U-D, D-U, and D-D chains,
(ii) constant propagation, (iii) induction variable elimination, (iv) loop interchanging,
and (v) more sophisticated array subscript analysis.

However, these factors will also increase the time required for parallelization. We intend
to implement these techniques in a future version and study their effect on actual
programs.

6.4. Future research directions

(1) A large amount of work needs to be done in the area of pointer dataflow analysis on
the lines proposed".

(2) Parallel algorithms need to be developed for the existing techniques of detecting
parallelism, thus decreasing the compilation time.

Table I
Perrormance statistics of the parallelizing compiler

Sl Program Functton* Reference No. of Time taken for Total No of loops No. of No of calls No. of
no. hnes of parallelization no. of parallchzed procedure parallelized cnbegin-coend

loops calls blocks

ex 1 35 165 6.3s 19
am 2 35 129 3.6s 15 11
eel 3 35 78 0.78 0 7
de 4 35 75 0.8s
ff 36 48 O.5s
fibo 37 16 O.ls

36 17 O.ls
mm 35 48 0.4s
trasales 9 38 85 1.7s

10 fi 10 35 96 Us

*Funclions oj the programs

1. adi: This is an implementation of a relaxation method called alternate direction implicit.
2. amoeba: It is a procedure for solving the problem. or multidimensional minimization by the Downhill-Simplex method proposed by

Nelder and Mead.
3. eel: It is a procedure to compute complete ellipticaimtegrai.
4. des: It is an implementation of data encryption standard integral.
5. dID: It is a procedure to compute 2-dimensional fast Fourier transform assuming that the one-dimensional fast Fourier transformation

procedure is supplied.
6. fib: It computes the famous fibonacci numbers.
7. It is a part of an implementation of a simple multigrid relaxation algorithm.
8. mmid: Implementation of the modified midpoint method.
9. This is an implementation of the famous travelling salesman problem.

10. fit: A program for fitting data to a straight line.

(eontd)

»
."

~ »
t'"

'" ~
~
8 ;:::
::!i :;;
'" Cl
'"
~
t'"

~
w

Table I (Con/d)

Comments on the programs

1. A very large program chosen mamly to demonstrate some oflhe features oflhe parallehzing compiler. Nestmg ofparallchsm is observed.
A reasonable degree of parallelism was detected.

2. In this program, a very high degree of parallelism was detected. WHh effiCient scheduling mechanisms the parallel program can achieve
substantial speedup.

3 It is a small numencal program. Due to dependences, the paraJIelism detected IS almost nil.
4. Although this program is small, a very high degree of parallelism was detected.
5, Here is an example where 4 out of 6 loops were detected to be parallelizable. This highly parallehzable procedure is used ill numerical

programs very frequently, and hence explains the importance of paraUehzing compilers.
6. Two recursive procedure calls were parallelized. Hence, the degree of parallelism detected IS very high. Fibonacci numbers are used

repeatedly in sorting and other programs.
This partIal program 1S given to detect how the mjection (first loop) and prologation (second loop) operations III a simple multtgrid
reluxatlOn algorithm are unrolled by the paraUelizing compiler.

8. High degree of parallelism was detected in thIS small program. The variable swap was the bottleneck for not parallelizing loops 12 and 13.
9. No comments.

10. The only lmportaJlt paraJlelizatlOn is of two procedure caUs of sqrt. The degree of parallelism detected is faIr.

:t

~
E
:>"

"'" ~
OJ ,.
&
:<
:z
~ :;: ,.
~

A PARALLELIZING COMPILER FOR PASCAL 155

(3) New techniques using parallel algorithms need to be developed to extract more
parallelism which is being discarded only bccause their sequential versions are very
expensive.

(4) Symbolic computation should perhaps be used in a limited fashion to extract parallelism.
(5) An efficient implementation of the back end of our parallelizing compiler with

self-scheduling techniques incorporated into it is underway. This will be used (0 measure
the performance of our parallelizer with respect to real-life application programs.

(6) Data-partitioning techniques suitable for parallelizing programs to be run on message
based multiprocessors need to be developed.

References

1. HWANG, K. AND BRIGGS, F. A.

2. PADUA, D. A., KUCK, D. J. AND

LAWRIE, D. H.

3. BANERJEE, U.

4. WOLFF~ M. J.

5, ALLEN, J. R.

6. ALLEN, J. R. AND KENNEDY, K.

7. PADUA, D. A. AND WOLFE, M. 1.

8. WOLFE, M.

9. WOLFE, M. AND BANERJEE,U.

10. ALLEN, F., BURKE, M., CHARLES, P.,
CYTRON, R. AND FERRANTE, J.

11. TruOLET, R., IRIGOIN, F. AND

FLAUTRIER, P.

12. BURKE, M. AND CYTRON, R.

13. CALLAHAN, D. AND KENNEDY, K.

14. Ll,. Z. AND YEW, P.

15. POLYCHRONOPOULOS, C. D.

Computer architecture and parallel processing, 1984, McGraw-HilL

High~speed multiprocessors and compilation techniques, IEEE Trans.,
1980, C-29. 763·776.

Speed up of ordinary programs, Ph.D. Thesis, 1979, University of Illinois
at Urbana-Champaign.

Optimizing supercompilers for supercomputers, Ph.D. Thesis, 1982,
University of nlinois at Urbana-Champaign.

Dependence analysis for subscripted variables and Its application to
program transformation, Ph.D. Thesis, 1983, Rice University, Houston,
Texas.

Automatic translation of Fortran programs to vector .form, Rice
University Reports, July 1984.

Advanced compiler optimizations for supercomputers., Commun. ACM,
1986,29.1184-1201.

Vector optimizations vs vectorization, J. Parallel Distributed Computing,
1988,5,551-567.

Data dependence and its application to parallel processing, Inter. J.
Parallel Programming, 1987, 16, 137~178.

An overview of the PTRAN analysis system for multiprocessing, J.
Parallel Distributed Computing, 1988, 5, 617~640.

Direct paralleiization of call statements, ACM SIGPLAN'S6 Symp.
Compiler Construction, 1986.

Interprocedural dependence analysis and parallclization, ACM SIG·
PLAN'86 Symp. Compiler Construction, 1986.

Analysis of interprocedural side effects in a parallel programming
environment, J. Parallel Distributed Computing, 1988,5, 517-550.

Efficient interprocedurai analysis for program parallelization and
restructuring, ACM PPEAIS, 1988.

Guided self-scheduling: A practical scheduling scheme for parallel
supercomputers, IEEE Trans., 1987, C-36, 1425-1439.

156

16.

17.

18.

19.

20.

2l.

22.

23.

24.

25.

MAULIK A. DAVE AND Y. N. SRIKANT

MIDKIFF, S. P. AND PADUA, D. A.

AIICEN, A. A!'ID NICOLAU, A.

POLVCHRONOPOL"LOS, C. D.

POL YCHRONOPQULOS, C. D.

POL YCHRONOPOULOS, C. D.

FERRANTE, 1., OTTENSTEIN, K. 1.
AND WARREN, J. D.

HENDREN, 1. 1. AND NICOLAU, A.

DA\'E.M. A.

HORWITZ, S., PFEIFFER, P. AND

REP~ T.

GROB, 1. S.

Compiler algorithms for synchronization, IEEE Trans., 1987, C.36,
1485-1495.

OptimalloopparallelizatlOn, ACM Proc. SIGPLAN'88 Conj. Program.
ming Language Design and Implementation, 1988.

Advanced loop optimizatIOns for parallel computers, CSRD Report
No. 664, Untversity of IllInois at Urbana~Champaign, 1987.

More on advanced loop optimizatIOns, CSRD Report No. 667, University
of IlLmois at Urbana-Champaign, 1987.

Compiler optimizations for enhancing parallelism and their Impact on
architecture design, IEEE Trans., 1988, C~37, 991-1004.

The program dependence graph and its use in optimization, ACM
Trans. Programming Languages Systems. 1987,9,319-349.

Parallelizing programs with recursive data structures, iEEE Trans.,
1990, PDS-I, 35-47.

A parallelizing compiler for Pascal, M.Sc. (Engng) Thesis, 1989,
Department of Computer Science and Automation, Indian Institute of
Science. Bangalore.

Dependence analysis for pointer variables, Proc. ACM SIGPLAN'89
Symp. on Programming Language DesIgn and Implementation, June
1989.

Automatic exploitation of concurrency in C: Is it really so hard?,
Ultracomputer Note·140. Ultracomputer Research Laboratory, New
York.

26. ALLE.N, R. AND JOHNSON, S. Compiling C for vectorization, parallelization, and inline expansion,
Proc. ACM SIGPIAN'88 Conf. on Programming Language Design and
Implementation, June 1988.

27. GUARNA, V. A. AnalYSis of C programs for parallelization in the presence of pointers,
CSRD Report No. 695, University of Illinois at Urbana·Champaign,
1987.

28. CQUTANT, D. Retargetable high·level allias analysis, ACM Symp. on Principles of
Programming wngu.ages, 1986, pp 110-118.

29. WElHL., E. W. In1erprocedural dataflow analYSIS in the presence of pointers. procedure
variables, and label variables, Seventh Annual ACM Symp. on Principles
of Programming Languages. 1980, pp 83-94.

30. AHO, A. V., SETHI, R. Al'.'D Compilers-Principles, techniques and tools, 1986, Addison~Wesley.
ULLMAN, J. D.

31. JOHNSON, S. C. YACC - Yet another compiler compiler, 1975, CSTR 32, Bell Labs,
Murray Hills, N. J.

32. KERNIGHAN, B. W. AND The C programming langu.age, 1977, Prentice-Hall.
RITCHIE, D. M.

33. NIVEN, I. AND ZUCKERMA.N, H. S. An introduction to the theory of numbers, 1972, Wiley.

34. HOROWlTZ. E. AND SA~l, S. Fundamentals of data structures in Pascal, 1984, Galgotia Book Source,
New Delhi.

A PARALLELlZING COMPILER FOR PASCAL 157

35. PRESS, W. H., FLANN tRY, B. P.,

TEUKOLSK. Y, S. A. AND

VETTERLlNG, W. T.

36. TSENG, P.

37. KNUTH, D. E.

38. BRAWER, S

Numerical recIpes: The art of scientific computing, 1988, Cambridge
University Press.

A parallellZing compiler for dIstributed memory parallel computers, Ph.D.
Thesis, 1989, Carnegie Mellon University, CMU-CS-89-148.

Fundamental algorithms, 1983, Addlson-WesleyJNarosa.

Introduction to parallel programming, 1989, Academic Press.

