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Abstract 

A paraUclizing complIer takes as Its input a program tn a sequential language such as FORTRAN or PASCAL 
and after extractmg paralldlsm which IS imphcit in it, generat~s code which is suitable for execution on a parallel 
processor. We have used Pascal for our compIler as It has extra features such as recursion, pointers, record 
structures and nesting of procedures. The aim is to extract the maxImum parallelism in a reasonable time. Instead 
offiowgraphs, the concept of box graphs has been developed and implemented An algonthm has been implemented 
to carry out simple and mterprocedural dataflow analysis, array subscript analysIs, to detect parallelism in 
boxgraphs and to convert them 111to boxgraphs depicting parallelism exphcitly. The complier generates code for 
the ORG Supermax machme, a shared memory multiprocessor with two 68020 processors running on UNIX 
operating system Y.3. 

Key words: ComplIer, parallel processmg, paralJehzatlOn. 

I. Introduction 

1.1. Multiprocessors 

The demand for high-speed computers is increasing rapidly in structural engineering, 
weather forecasting, petroleum exploration, fusion energy research, and other areas which 
are extremely important for the advancement of human civilization. Modem computer 
architectures are centered on the concept of parallel processing. Parallel computer systems 
can be classified into five groups: pipelined computers, array processors, multiprocessor 
systems, dataflow computers, and VLSI algorithmic processors. We shall be concerned in 
this paper solely with multiprocessor systems and their programming aspects and hence 
shall not discuss further pipelined and array processors, dataflow computers, and VLSI 
processors. 

1. 1. 1. Overview of multiprocessor architecture 

A basic mUltiprocessor organization is conceptually depicted in Fig. l. Tbe system contains 
two or more processors of approximately comparable capabilities. All processors share 

125 



126 MAULlK A. DAVE AND Y. N. SRI KANT 

ILM!I 

I 
[m 

I 
Interprocessor interrupt network 

Interprocessor memory connection network 

PI, P2, ... , Pn connected to it 

FIO.l. Basic mult1processol' organizatlon. LM = Local memory, 
p "'" Process()r~ MM = Memory module. 

access to common sets of memory modules, 1/0 channels, and peripheral devices. The 
entire system is controlled by a single integrated operating system providing interactions 
between processors and their programs at various levels. Apart from the shared memory 
and I/O devices, each processor has its own local memory and private devices. Interprocessor 
communication can be performed either through shared memory (shared memory multi
processor) or through a message-passing mechanism (message-based multiprocessor). 
Multiprocessor systems are also known as multiple instruction stream-multiple data stream 
(MIMD) machines. 

The commercial mUltiprocessor systems available are Sequent Balance 21000, Intel iPSC 
Concurrent Computer d5, Apollo DN 10000,4 Processor VAX stations, Multiple transputer 
systems (from several vendors), Alliant FX/8, BBN Butterfly Parallel Processor, CRAY 
X-MP Model 22, FPS T Series Parallel Processor, IBM 3090, Loral Datano LDF 100, the 
Tandem multiprocessor, etc. 

1.1.2. Programming multiprocessors 

Ptogramming a multiprocessor is different from programming a uniprocessor in two 
ways-architectural attributes and a new programming style peculiar to parallel appli
cations. 

An architectural attribute that may affect programming in a multiprocessor system is 
nonhomogeneity. If the central processors are nonhomogeneous, that is, functionally 
different, they must be treated differently by software. 

The basic unit of a program in execution on a multiprocessor is a process, an independent 
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schedulable entity (a sequential program) that runs on a processor and uses system resources. 
It may also execute concurrently with other processes, delayed only when it needs to wait 
to interact with other processes or for resources. Hence, a parallel program can be said to 
consist of two or more processes. 

1.2. Parallelizing compilers 

There is another approach for exploiting parallelism on parallel machines other than writing 
parallel programs. This is to write such compilers, which will take sequential programs 
and determine the parallelism implicit in them. Such compilers which convert sequential 
programs into parallel programs are known as parallelizing compilers. Parallelizing 
compilers for multiprocessors are sometimes also called as concurrentizing compilers. 
Concurrentizing compilers try to create a parallel program consisting of parallely executable 
processes out of a sequential program. We shall be concerned in this paper with 
concurrentizing compilers only but we shall use both the terms interchangeably. 

1.2.1. Why or why not parallelizing compilers? 

The use ofparallelizing compilers offers the following advantages over that of writing parallel 
programs. 

(1) Use of existing software packages: Most of the software in existence is in sequential 
languages. Moreover, a lot of money has been spent on producing the existing software 
packages. We believe that rewriting all of them in parallel languages is much more 
expensive than restructuring them by parallelizing compilers. 

(2) Program portability: For different kinds of architectures, we need different language 
features to be able to exploit the available parallelism explicitly'. To avoid writing a 
separate parallel program for each kind of parallel machine, one can write a single 
sequential program and use a parallelizing compiler to restructure them. This is more 
advantageous because a major part of a parallelizing compiler is machine-independent 
(only the code generator is different just like in an ordinary compiler), and hence can 
be used for various kinds of machines with only a little one-time extra effort. Thus 
parallelizing compilers improve program portability. 

(3) Training facilities not needed: For parallel programming, programmers need additional 
training. Moreover, it is difficult to train non-computer science programmers in parallel 
algorithms and languages. Parallelizing compilers avoid all such extra strain on the 
programming community. 

Unfortunately, parallelizing compilers have the following disadvantages also. 

(i) The compilation time to detect fine-grain parallelism in sequential programs is very 
large. 

(ii) Full parallelism is not detected by parallelizing compilers, specially in the presence of 
arrays. 

(iii) Efficient parallel algorithms have been found for some problems but present-day 
parallelizing compilers are not able to convert the corresponding sequential programs 
into efficient parallel ones. 
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In spite of these disadvantages, the advantages, specially (1) and (3) above, seem to be 
overwhelming and hence more and more parallelizing compilers are being built all over 
the world. 

1.2.2. An intrnduction to parallelization 

When a sequential program is executed, one operation is performed at a time on the 
processor. The output of such a program is the output of the statements executed according 
to their textual sequencing. However, for a program, the same output can sometimes be 
achieved by different ordering of the statements also. The total ordering imposed by a 
sequential language is more restrictive than is necessary to guarantee a program's output. 
Only portions of the original total (sequential) ordering are absolutely essential to maintain 
the results. The required ordering is a partial ordering as opposed to the total ordering of 
the sequential execution. This phenomenon is exploited during the determination of 
parallelism in sequential programs. 

Dependence is a relation among the statements of a program. A statement s, is dependent 
on statement s l' if s 1 must be executed before s 2 to preserve the semantics of the original 
program. Under this definition, dependence represents the essential orderings within a 
program. Any execution order that preserves a program's dependences also preserves its 
output. 

Now we explain two main types of dependences, viz., data and control dependence. 
Consider the following two statements: 

s,:a: = b +c; 

sz:d:=a+e; 

Since s, uses the value of a, which is changed by s" these two cannot be executed in 
parallel. S2 is dependent on S, due to data consideration. Now, consider the following two 
statements: 

s,:if(a < > 0) then 

s.:b:=c+d; 

s. and s, cannot be executed in parallel because execution of s, controls whether S4 has 
to be executed or not. This is control dependence. 

To determine data dependence in the presence of array references and pointers is very 
difficult and sometimes impossible. For example, consider the following statements: 

s,:a[i + 1): = b + c; 

s6:d: = aU + 1]; 

To determine the dependence of s, and S6 completely at compile time is impossible 
beca~se we do not know which element of a will be changed in s, and which will be 
used In S6' The subscript analysis methods yield information regarding possible dependence 
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only and not complete dependence as in statements s 1 and S2 above. More details of 
dependence analysis and other details of a parallelizing compiler are explained in the 
forthcoming sections. 

1.3. Related work 

The area of paral1elizing compilers is relatively new when compared with other areas of 
compilers. Thc foundation for work in this area was laid by Kuck and his group. Padua 
f![ ttl present some basic techniques ofparallelization 2

. Banerjee has given an excellent array 
subscnpt test 3 Wolfe has analyzed extensively the problems involved in veclorizing 
FORTRAN programs, and has given techniques such as loop fission, loop fusion, loop 
scalarization, and loop interchanging4

, Apart from these, also described are symbolic 
dependence testing and sectioningS and PFC (Parallel Fortran Converter-a vectorizer 
for FORTRAN) developed at Rice University 6 

Loop concurrentizatioll, trade off between vectorization and concurrentization, and other 
issues are discussed by Padua and Wolfe7

. Wolfe throws some light on the ditTerence 
between vectorization and concurrentization8 . Wolfe and Banerjee review advanced 
techniques for data dependence testing and their applications in concurrentizing and 
vectorizing compilers9 PTRAN (Parallel TRANslator) is a system for automatically 
restructuring sequential FORTRAN programs for execution on parallel architectures. It is 
being developed at the IBM's T. J. Watson Research Center. Allen et al!O give some 
techniques of interprocedural dataflow analysis used in PTRAN, and also an overview of it. 

Application of interprocedural dataflow analysis to vectorization and concurrentization 
results in detection of more parallelism. Though Triolet et al claim good results from their 
method ll

, unfortunately it involves complex algorithms which use symbolic computations 
and linear programming whose cost in terms of CPU time and memory space is heavy. 
Burke and Cytron have given a hierarchical dependence test 12 which is an improvement 
over previous methods. Callahan and Kennedy from Rice University!3 have described a 
new technique called regular section analysis. The idea is to preserve common array 
substructures as regular sections and use them for interprocedural dataflow analysis. Li 
and Yew!4 have introduced a data structure called atom images to propagate subscript 
information through call statements. 

While implementing concurrentizing compilers on real multiprocessors, synchronization 
delay between concurrent processes and assignment of processes to processors poses a very 
difficult challenge!' -!7 Techniques have been developed for run-time detection of 
parallelism also 15 ,18-20. 

A novel technique of parallelization is presented by Ferrante et al21 The w-called 
program dependence graph (POG) proposed as an intermediate program representation 
makes explicit both the data and control dependences for each statement in a program. 

Another area of research is pointer dataflow analysis. Modern-day programs written in 
languages like Pascal, and C use pointers extensively. Attempts are also being made to 
parallclize programs containing pointers22 - 29. 
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1.4. Highlights and organization of the paper 

We have implemented a parallelizing compiler which is based on certain new concepts and 
also some older but well-proven ones. 

Most of the parallelizing compilers have been written for FORTRAN. We have chosen 
Pascal because it has extra features such as recursion, pointers, record structures, and nesting 

of procedures. 

The aim of our compiler is to extract as much parallelism as possible in a reasonable 
amount of time. We observe that shared memory multiprocessors do not have a large 
number of processors. We have not detected fine-grain parallelism as it is not useful on 
shared memory multiprocessors (because of small number of processors and scheduling 
overheads) and the compilation time may become very large. For the latter reason, symbolic 
computation is also not used. 

Instead of flowgraphs, we have developed and implemented the concept of boxgraphs 
in our compiler. Boxgraphs have the following advantages: 

• As they do not contain cycles, analysis becomes easier. 

• As the boxes arc sufficiently large, scheduling overheads are not considerable. 

• As each boxgraph can be analysed separately, parallel algorithms can be developed 
easily (future work). 

• They can be constructed easily for block-structured languagcs. 

• There is provision to display parallelism explicitly. 

An algorithm has been implemented to carry out simple and interprocedural dataflow 
analysis and array subscript analysis, and hence to detect parallelism in boxgraphs and 
to convert thcm into boxgraphs depicting parallelism explicitly. 

We have implemented our compiler on the ORG Supermax machine, a shared memory 
multiprocessor with two 68020 processors running on UNIX operating system V.3. Dynamic 
scheduling of processes and parallelism have been achieved using thc featnres available in 
the system. We do not claim our implementation to be efficient but feel that it is a good 
test bed to tryout experiments with parallelizing compilers. 

Section 2 contains the details of intermediate representation. Section 3 describes 
dependence analysis. Section 4 contains the details of detection of parallelism, and Section 
5 a description of our implementation of parallelism. Finally, Section 6 concludes with 
some results of parallelization and future directions. 

2. Intermediate representation 

In this section, the main features of the intermediate representation used in our compiler 
are described. Only a subset of Pascal, stripped off some of its features such as goto, case 
and with statements, file and set data type, variant records, has been chosen. However, 
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We believe that our pnnclples, when applied to these features also, will work correctly. We 
have removed them to simplify the implementat]on. 

2.1. A brief overview of a parallelizing compiler 

The task of a paraJleJizing compiler can be divided into two parts: (l) Transforming 
the input program into intermediate representation (with parallelism explicit), and 
(2) Transforming intermediate representation to machine code. 

The first part depends on the type of architecture of the machine for which the compiler 
will generate the code. However, it does not depend on specific machine characteristics. 
For example, the first part of a parallelizing compiler will be the same for all kinds of 
multiprocessors with shared memory, but will difTer for multiprocessors and vector 
processors. The second part will need machine details such as the number and typcs of 
processors, and services provided by the operating system. It is because of this reason that 
portability of the first part is higher than that of the second part and can be dealt with 
separately. 

The first part can be further divided into three parts: 

(1) Generation of intermediate code with only sequential features. Tbis is the same as in 
any usual compiler. 

(2) Dependence analysis of the above intermediate code using tbe techniques of datallow 
and controillow analysis. The aim of such analysis is to detect parallelism in programs. 

(3) Conversion of the intermediate code in (1) above into one having parallel constructs 
also. Here. we use the dependence information computed in (2) above. 

The intermediate representation which we have used contains a set each of quadruples and 
boxgraphs. This representation was chosen because it can be implemented on multi
processors with any number of processors. Each procedure or function in the source 
program is recognized as a boxgraph and a set of quadflipJes. The set of quadfllples will 
be the same as in any ordinary compiler and it will be generated during parsing. We shall 
now give a few basic definitions which help in explaining our intermediate representation. 

2.2. Some basic definitions 

Boxes are defined in such a way that when the input program is divided into a number of 
boxes, control flow analysis becomes simple. 

(1) Modified basic block: A modified basic block is a basic block without any "goto' 
quadruple at its end. 

(2) Box: A hox is a set each of whose elements can either be a box or a modified basic 
block and it can be one of the following: 

(i) SIMPlE box: It is a modified basic block. 
(ii) COMPOUND box: It is a set of boxes which can be executed in parallel. 

(iii) FOR box: It contains the box corresponding to the body of a for-loop, the loop 
index variable and the quadruples corresponding to the expressions of a for-loop 
(Fig. 2). 
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Parameter quadruples I 

I I~ 
I Call P I truenext falsenext 

Flu 1. For box for FIG. 3. Loop FIG. 4. Call box. FlO. 5. Condition box. 

the statement for I: box. 
= El to E1 do S.; 

(iv) LOOP box: It contains the box corresponding to the body of a repeat-until-loop 
and a modified basic block containing quadruples for the condition expression 
(Fig. 3). We convert while-loop into repeat-until-loop for convenience. 

(v) CALL box: It contains quadruples for all the parameters and a call to a procedure 
(Fig. 4). 

(vi) CONDITION box: It consists of expression quadruples fanned due to if-then-else 
or if-then statement with special properties that it is connected to two boxes by 
the relation next (defined later). (Fig. 5). 

(vii) NULLbox: It does not contain anything. 
(viii) P ARFOR box: It is the same as a FOR box except that while executing a PAR FOR 

box each iteration of a for-loop can be executed in parallel. 

It is easy to see that boxes may contain other boxes also. 

(3) Next: Let B be a box and let a and b be any elements of B. Then the relation next 
(denoted by N) can be defined as 

N:B->B, 

N = {(a,B)1 box b can immediately follow box a during execution of the program.) and 
having the following properties: 

• If aNb then a < > b. 
• If aNb then bNa is false. 
• If aN band b N c then eN a is false. 
• For any a in B, there exist at most two distinct b"b, in B such that aNb , and aNb,. 
• There exists one and only one element x in B such that if yNx then y is not in B. Such 

an element is defined as the starter of B. 
• There exists one and only one element x in B su~h that if xN y then y is not in B. Such 

an element is defined as the ender of B. 

(4) Exit: Exit of a box b in B is a in B iff bNa. 

1.5) Truellexr and Falsenext: Of the two exits of a CONDITION box b, the box which is 
to be executed if the condition of b is true is called the truenext of b, and the other, the 
falsenext of b. 

(6) Endif: Every CONDITION box has a corresponding endif box. A box b is an endif 
box of c, if 
• there are at least two paths in the hoxgraph from c to b, and 
• all the paths from c to b do not have any box in common except c and b. 



A PARALLELIZING COMPILER FOR PASCAL 133 

(7) Boxgraph: We define a boxgraph as a directed graph with nodes representing boxes 
and with an arc from box hI to box b2 iff hI Nb 2 . The properties of the relation next reflect 
the nature of any boxgraph corresponding to a Pascal subroutine. For the program 
segment given below, the corresponding boxgraph is shown in Fig. 6. 

We divide a program into boxgraphs during parsing and quadruple generation itself. 
Since this uses standard syntax-directed translation methods possible with Y ACC on UNIX 
systems30 .3 \ we do not elaborate it here. For details see Dave23. 

Given program segment 

procedure pr (a, b, c, d: integer; var e,f, g: integer); 
var i: integer; 
begin 

repeat 

end else 

a:=h+c; 

b: =c.d; 

c:=e+/; 

if «coa) < > e) then 
begin 

pr 1 (a, b, c, d); 

e:=e+/; 

c:=b+g 

prj (a, e,j, g); 

for i: = a + 1 to a + 9 do c: = c + 1; 

until (a < > b) 

end; 

3. Dependence analysis 

In this section, we define data dependences, and describe simple and interprocedural dataflow 
analysis and array subscript analysis which are useful in determining the data dependences. 

3.1. Data dependences 

We have already explained in Section 2.2 the concept of data dependence intuitively. Now, 
we shall define the following sets which are used in explaining the parallelisability conditions. 
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param a 

param b 

param c 

param d 

call pr l  - 

/ - 
B2 

call 

box 

- 

param e 

param f 
B.5 

box v,.; 
c := b + g; simple box 

$3 := a + 1; 
B5- for box 

Flo. 6. Boxgraph for the program in Section 2.2. 

B7-loop box 

e B ,  and BI are the starter and the ender, respectively, of Be; . B1 is the endlf box of 8, ;  
B ,  is the exit box of B,; e B ,  is the exit box of B ,  and B,. 



A PARALLELlZING COMPILER FOR PASCAL 135 

a) Changeset: Changeset of a box can be defined as the set of memory locations (variables) 
which are changed when the box is executed. 

b) Useset: Useset of a box can be defined as the set of memory locations (variables) which 
are used (read only) when the box is executed. 

Consider S: a: = b + c; 

T: for i:=j*k to L do W; 

Changeset of S = {a} 

Useset of S = {h,c} 

Changeset of T = {i} u changeset of W 

U seset of T = {j, k, I} u useset of W 

Now various types of data dependences between the two boxes can be defined. 

(1) Antidependence: A non-empty intersection ofu , and C2 implies antidependence between 
a box with useset u , and a box with changeset c2 . 

(2) True dependence: A non-empty intersection of c, and U2 implies true dependence 
between a box with useset u2 and a box with changeset c l' 

(3) Output dependence: If the intersection of c , and C2 is not empty then it implies output 
dependence between boxes with changesets c, and c2 . 

When two boxes have anyone of anti, true, or output dependence between them, then 
they cannot be executed in parallel. For example, consider 

Box I:SI:vl:=v2;S2:v3:=v4; 

Box 2:S4:v2: = v5;S5:v5: = vl;S6:v3 = v6; 

UI={v2,v4} 

U2 = {v5, vI, v6} 

CI = {vl,v3} 

C2 = {v5, v2, v3} 

Since, UI n C2 = {v2}, 

CI n C2 = {vi, v3}, and 

Cl nC2 = {v3}. 

Box I and Box2 have all three dependences. Hence, they cannot be executed in parallel. The 
ill effects of executing them in parallel are: If S4 executes before SI, then v 1 gets a wrong 
value v5 instead of old values of v2. If S5 executes before SI, then v5 gets a wrong value 
(old vi) instead of new vI. If S6 executes before S2, then v3 gets a wrong value (v4), instead 
of v6. 
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3.2. Simple dataflow analysis 

3.2.1. Storing sets for dataflow analysis 

The compiler has been written in C language which does not provide set-type dat 
structures". But C permits powerful bit operations to be performed on unsigned integer: 
We took advantage of this fact and stored the sets in arrays of unsigned integers. Wheneve 
a changeset or useset is to be formed, the required number of unsigned integers are allocate, 
using the Calloc function in C. 

The required number of bits is nothing but the total number of variables which may b, 
possible members of the set. For each procedure, this number is different and is stored a: 
a field called datasize in procedure node in the symbol table. Datasize of a procedure i: 
the sum of number of variables declared as local, number of parameters and the datasiz< 
of the parent (the one which is immediately nesting the procedure) procedure. 

Every variable declared in the visible scope of a procedure is allocated one bit. If a 
particular variable is used or changed in the procedure then tbe corresponding bit is on; 
otherwise it is off. The assignment of bits to variables is done by ordering tbe variables. 
The ordering is guided by the declarations in the procedure. For every procedure, the 
ordering is: local variables, value parameters, reference parameters, and global variables 
(in the same order). 

In any declaration, the order in which the variables are declared is assumed for the bits 
also. To illustrate this, we present the following example. 

program p(input, output); 

var a,b,c:real; 

procedure pr(d, e: real; var j:real); 

var g, h: real; 

Shown above is the declaration of a procedure. For the procedure pr, the ordering of 
variables is 

g, h, d, e,f, a, b, c. 

The set (b,c,gj will be represented by bits as lOOOOOll. 

3.2.2. Computation of sets for dataflow analysis 

We now show how to compute change and use sets for different types of boxes. For most 
of the cases, the sets are computed at parsing time itself. For an assignment statement, the 
changeset is the left hand side variable or an array name and the useset consists of all the 
variables involved on the right hand side. For an array reference whether on the right or tbe 
left hand side (of an assignment statement), tbe variables involved in its subscripts are 
included in the useset of the statement. 

The useset (changeset) of a SIMPLE box is nothing but the union of usesets (changests) 
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of the assignment statements which constitute it. For a CONDITION box, the variables 
involved in the condition of the corresponding if-then-else statement are also included in 
the useset. For a FOR box, the useset is the union of use sets of all the boxes which constitute 
the body of the FOR box. The variables involved in the expressions of the limits of the 
corresponding for-loop are also included in the useset. The changeset is the union of 
changesets of all the boxes which constitute the body of the FOR box. The changeset 
(useset) of a LOOP box is found by computing the union of changesets (usesets) of all the 
boxes which constitute the body of the box. The changeset and useset of a COMPOUND 
box are also computed in similar manner. The computation of the sets of a CALL box is 
discussed later. 

3.3. Illterprocedurai dataflow analysis (IPDFA) 

In thls subsection, we discuss interprocedural dataflow analysis which is crucial for any 
dataflow analysis. IPDFA in the presence of array references will be discussed in Section 
3.2. Our method is based on the algorithm for IPDFA 30. 

3.3.1. Need jar IPDFA 

IPDFA is carried out in the presence of call statements. While parsing, the changeset and 
the uscsct of a CALL box are computed as follows. 

All the parameters and reference parameters listed in the procedure call are included 
in the useset and changeset, respectively. 

For example, let the declaration for a procedure be 

procedure pp (iI, ;2, ;3: real; var vi, v2: integer); 

Let it be called as 

pp U1 *j2,j3,j4,jS,j6); 

The CALL box corresponding to the call of pp, during parsing, will have 

useset = {jl,j2,j3,j4,j5,j6), 

changeset = {jS,j6}. 

Since Pascal allows access to glob.al variables in a procedure, the calculated sets for the 
CALL boxes during parsing are only subsets of the actual sets. In the above example, if 
pp uses a variable v declared in any of the procedures which nest pp, then v should be 
included in the useset. This explains the need for IPDFA. The function of IPDFA is to 
update the sets by inspecting all the calls in the program in a separate pass after parsing 
is completed. 

3.3.2. Shifting 

Before putting forth an IPDFA algorithm, the concept of shifting is presented. Since for 
every procedure a boxgraph is created, the useset and the changeset of a procedure can 
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be easily found out by computing the union of the corresponding sets of all the boxes in 
the boxgraph (of the procedure). These sets are stored as bit arrays as explained earlier. 
The data size of a procedure has two parts: one consists of its variables including local 
variables, value and reference parameters and the other only global variables. The process 
of shifting updates the sets in such a way that only global variables are retained in the sets. 

The shifting algorithm for a procedure call is shown below: 

Algorithm: SHIFT. 

Input: A set S, allocated as unsigned integers (as explained earlier). 

(2) A procedure D which is called. 

(3) A procedure R which calls D. 

Output: A set Twith proper shifting carried out. 

Method: If a procedure P is immediately nesting a procedure Q, then P can be called as 
parent of Q. 

Let Datasize (D) = d, 

Datasize (Parent of D) = e. 

Slep L U = set obtained by left shifting of S by d - e bits. 

Step 2. If R is the parent of D then T = U. 

If Rand D are at the same level, then 

T = set obtained by right shifting of U by d - e bits. 

3.3.3. IPDFA Algorithm 

The IPDFA algorithm is as follows: 

Var changed:boolean; 

changed: = TR UE; 

(. This while-loop is to traverse though all the calls in the program repeatedly until changed 
becomes false (i.e., The usesets and changesets have not changed w.r.t. the previous 
iteration.) .• ) 

While (changed) do begin 

changed: = FALSE; 

(. This for-loop takes all the procedures in the input program one by one .• j 

For each procedure P in the input program do begin 

(. This for-loop takes aU the procedure calls made in P one by one. 0) 

For each called procedure q with corresponding box B in P do begin 

(. Finding out the global variables which are used in the called procedure by SHIFT. 0) 

Sl = SHIFT (useset (Q)); 
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(* Updating the useset of the corresponding CALL box. *) 

useset (B) = useset (B) U Sl; 
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(* Computing S2 which represents the new useset formed due to the effects of the call .• ) 

S2 = useset (P) U SI; 

(* If the new usese( is different from the old one, then update and report change by making 
changed as TRUE. *) 

If (S2 < > useset (P)) then begin 

changed: = TRUE; 

useset (P): = S2; 
end 

(* Finding out the global variables which are changed in the called procedure by SHIFT. *) 

S] = SHIFT (changese! (Q)); 

(* Updating the changeset of the corresponding CALL box. *J 
changeset (B) = changeset (B) U SI; 

(* Computing S2 which represents the new changeset formed due to the effects of the 
call. *) 

S2 = changeset (P) U Sl; 

(.If the new changeset is different from the old one, then update and report change by 
making changed as TRUE. *J 

end 
end. 

if (S2 < > changeset (Pl, then begin 

changed: = TRUE; 

changeset (Pl: = S2; 
end 

The IPDFA algorithm repeatedly traverses through all calls in the input program. While 
traversing, it keeps on updating various data details of CALL boxes and procedures. For 
each traversal, it records whether any change occurs or not with respect to the previous 
traversal through the boolean changed. When no change occurs w.r.t. the previous traversal, 
it stops. 

IPDFA computes sets for CALL boxes only. Hence, after IPDFA is over, another pass 
over the boxgraph is required to compute the sets for LOOP and FOR boxes which 
incorporate CALL boxes in them. 

3.4. Array-subscript analysis 

In this Section, we shall discuss how to carry out dataflow analysis in the presence of 
subscripted variables. Array subscript analysis plays a very important role in parallelizing 
compilers because programs use arrays extensively and a lot of parallelism is lost if we do 
not execute two boxes in parallel whenever they use a common array variable, even though 
the two boxes may be operating on disjoint parts of the array. 



140 MAULIK A. DAVE AND Y. N. SRIKANT 

3.4.1. Need for subscript analysis 

Consider the following statements, Sand T: 

S:0[2]: = b + c; 

T:d: =0[3]; 

The changeset of S is (a), and the useset of Sis {b,c}. 

The changeset of Tis {d}, and the useset of Tis {aj. 

Since the intersection of the changeset of S and the useset of T is non empty, the compiler 
will not declare them as parallelizable. However, since a[2J and a[3] do not represent 
the same memory location, Sand T can be declared as parallelizable. This suggests that 
the conventional dataflow analysis based on sets is not sufficient to extract parallelism in 
the presence of subscripted variables. 

3.4.2. Complexity of the problem 

Essentially our aim is to find out whether a common location in an arrary is being referred 
to or not by two array references. At compile time, it is difficult to find out this information. 
Consider two array references such as a [il and a [j]. Unless symbolic computation is carried 
out, nothing about i andj, which can be useful in determining whether a[iJ and a[j] refer 
to a common memory location or not, is known. Symbolic computation is very expensive 
and not very practical to implement. Therefore, less-expensive approximate tests have been 
developed which can determine whether two array references access a common memory 
location or not. These tests give assurance that two array references will not access a 
common memory location but fail to assure that both will definitely access a common 
memory location. This is a conservative but safe approach towards the problem. We have 
implemented those tests which are less expensive but give fairly good results. 

3.4.3. GCD Test 

Let us consider two array references r[ao + a,.x, + a2*x2 + ... + a •• x.J and r[bo + 
b ,*y, + b2 *y, + ... + bm* Yml. The subscripts are linear functions t of the integer variables 
Xl ,Xl}'" ,x'" and }'t'Y2,'·' ,Ym, respectively. ao) al , a2 , ... , an bo, hI, h2 , ... , bm are all integer 
constants. 

Both will refer to the same memory location in the array r when 

aO +a 1*x 1 + ... +an*xn-bo-b1*Yl- ... -bm*Ym=O; 

i.e., at *x1 + ", +all*xn-b1*Yl - ... - bm*Ym =bo -aQ _ (1) 

The above is nothing but a linear Diophantine equation. From the theory of Diophantine 

tT~e ,assumption that su~cripts are linear fUDctions of integer variables is generally valid In scientific programs. 
ThIS 15 based on observahons of mathematical software packages. • 
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equations33 , we have, for an equation of the form C1 *V 1 + C2*V2 + .. , + Ck*Vk = c, where 
k> = 2, and C1 ,e2"'" CJ.. are integer constants and Vl' v 2 , ... , Vk are integer variables. 

a solution exists iff 

gcd (e
"

e2 , ••• ,e.) divides c. 

Therefore, for equation (1), a solution exists iff 

gcd(a
" 

a2 , •• • ,an> b" b2 ,···, bm) divides (bo - ao). (2) 

This means that if condition (2) is satisfied, then there exist integer values for the variables 
X

"
x2, ... ,x"Y"Yz, ... ,Ym such that (1) is satisfied and hence the two array references may 

access common locations in array r. If (2) is not satisfied then it is definite that (1) cannot 
be satisfied for any integer value of the variables and hence the array references will no! 
access any common memory location in array r. Of course, even if (2) is satisfied, there are 
chances that the integer variables never take value at run time such that (1) is satisfied and 
hence the two array references never access common memory locations in array r. 
Satisfaction of (2) only implies existence of integer values for variables which satisfy (1). 
Condition (2) is the well-known GCD test. 

Although the GCD test is comparatively weak, it is very easy and fast and hence is 
always applied first"·'. 

3.4.4. Banerjee's test 

If it is known at compile time that the values the variables take have upper and lower 
bounds then a more powerful test can be conducted. 

Let us consider two array references r[ao+a,*x, +a2 *x2 + ... +a.*x.J and r[bo+ 
b, *y, + b2 *Y2 + ... + bm*Ym]. Let all xs and ys have some lower and upper bounds for 
the values they can take. For these array references to access a common memory location 
in array r, 

(3) 

We can without loss of generality, assume that x I = Y" X2 = Y2, ... , Xk = y., for some k 
less than or equal to m and n (k can be zero also). 

Let 

Let 
Vi =xi and Cj =a i for i = k + 1, .. . ,n. 

Let 
Vj = Yi,Cj = bi andj = n + i- k, for i = k+ 1, .. ,m. 

Let 
l=m+n-k. 

We have reduced equation (3) to 

(4) 
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Let L" L". ., L, be the lower bounds and U" U" ... , U, be the upper bounds to the 
variables V 1 ,V2 '- .,v/_ 

Before explaining Banerjee's test, we shall define positive and negative parts of a number. 

Positive part 

Positive part of a real number r can be defined as 

pos(r) = 0 if r < O. 

= r, otherwise. 

Negative part 

Negative part of a real number r can be defined as 

neg (r) = 0 of r > 0 

= r, otherwise. 

For any integer variable v, with upper bound U and lower bound L, 

i.e., if L <= v <= U, then, 

neg(c).(U - L) <= c>(U - L) <= pos(c).(U - L) 

which in turn yields, 

Let 

neg (c)*(U - L) + c. L 

<= pos(c)*(U - L) + c. L. 

LBi = neg(ci)*(Ui - L,) + Ci ' L" 

UBi = pos(c,),(Ui - L,) + Ci• Li. 

From (5), for i = \,2, ... , /, we get the set of inequalities: 

LBf <= Ci*t\ <= UBi' 

Adding all the inequalities, for i = \,2, ... , /, we get 

LE, + LB, + ... + LE, 

<=C1 *V 1 +C2 *V2 + ... +c/*v/ 

<=UB, +UB,+ ... +UB,. 

Applying (4), we get 

LE, + LB, + ... + LB, 

<=ao - bo 

<= VB, + VB, + '" + UBi' 

(5) 

(6) 
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All the LEs and UBs can be calculated by knowing cs, Ls, and Us at compile time. (6) is 
known as Banerjee's test. Proofs of the above properties and other details can be found 
elsewhere3 5,9, 

The Banerjee's test, like the GCD test, assures us that two array references will not access 
a common memory location but fails to assure that two array references will definitely 
access a common memory location. This approach is conservative but on the safer side. 
The Banerjee's test takes more time than that ofGCD test, but gives better results. We first 
apply the GCD test and then proceed to Banerjee's test. There are examples where GCD 
test fails and Banerjee's test succeeds, but the vice versa also is not uncommon. Hence 
these two tests are complementary in nature and should be used together to obtain better 
results. 

3.4.5. Multidimensional arrays 

Arrays having more than one dimension need special treatment. Here we shall discuss two 
approaches toward the problem. We have implemented both of them. 

Subscript by subscript analysis: Let there be two array references a [r" r 2 , ••• ,r.] and 
a[sl,s2, ... ,S,J where rl and s" i= 1,2, ... , n are linear functions of variables indicating 
subscript expressions. In subscript by subscript analysis, all the subscripts are checked one 
by one. If all of them show failure (i.e., the tests in Section 3.4 indicates access to common 
memory locations), then access conflict is assumed, otherwise the two references are assumed 
to be access conflict free. That is, for the above two array references, both will access a 
common memory location if for all values of i in the range" I to n, r, and s, fail tests in 
Sections 3.4.3 and 3.4.4. 

Linearization: Burke and Cytron12 showed that linearization of multidimensional arrays 
is as important as subscript by subscript analysis. It showed some examples in which 
independence (i.e" no access conflict) was not detected by subscript by subscript analysis 
but was detected by linearization. 

We observe the following facts. 
• Memory can be viewed as a one-dimensional array MEM. 
• The function that maps array references with multiple subscripts into their locations 

in MEM is linear with respect to the subscript (irrespective of whether roW- or 
column-major arrangement is assumed). 

• Due to this, if all the subscripts of an array reference are linear functions then the 
corresponding subscript of MEM will also be a linear function. 

Let the declaration of an array a be 

var a[ll .. ul, 12 .. u2, ... , In .. un]. 

Let the target array reference be a[rl,r2, . . ,rn] and rl,r2, ... ,rn be all linear functions. 

Let a[lI,12, ... ,ln] be represented as a[O]. By assuming row-major arrangement 
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a[rl,r2, ... ,m] can be represented as a[fl, (from Horwitz and Sahni34
) where 

f = (rl -1l)(u2 -12)(u3 -/3) ... (un -In) 

+~-~~-m~-~···~-~+···+~-~ 

All the array references can be represented by their corresponding single-dimension 
subscripts as shown above and then any of the tests in Sections 3.4.3 and 3.4.4. can be 
applied on them. 

3.4.6. Implementation details 

For each box, the use-array and change-array references are stored in a linked list with 
each node pointing to a reference. A reference is also stored as a linked list with each node 
pointing to a subscript. The subscript stores the corresponding linear function with the 
bounds of the variables, if available. 

A variable may have bounds because of two reasons: 

• for a loop index, the index may be bounded on lower and upper sides, or 
• by declaration of subrange data types, e.g., the declaration var i: I .. 5; indicates that i is 

bounded by 1 and 5. 

During parsing, special routines which have been provided are used to detect whether 
an expression is a linear function or not. It is very likely that some subscripts are not linear 
functions. For such array references, dependence (i.e., access conflict) is assumed. 

3.4.7. Interprocedural dataflow analysis 

All the array references present in the body of a procedure are collected. When a procedure 
X is called, for the CALL box which contains the call to X, IPDFA transforms the array 
references of the procedure in the following manner. 

• If the array is locally declared then that reference is discarded. 
• If the array is declared as a value or reference parameter then its name is changed to 

the corresponding one in the call statement. 
• All the variables of the subscripts declared in value and reference parameters are 

changed as per the call. 

With the above transformation, IPDFA is carried out as explained earlier. 

The above actions are carried out to record the impact of the reference inside the procedure 
on outside environment. For example, 

program pp; 

var i,j: integer; a:array; 

procedure pr(x:array); 



begin 

end; 

begin 

pr(a); (* Box bl. *) 
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a[5.i + 3]: = .. ; (* Box h2. *) 

end. 
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By conventional analysis and [PDF A, boxes bland b2 will be declared as non.parallelizable 
because of a. But our IPDFA will convert the reference x[S*; + 4] in pr to a[S*i + 4] in 
box bl. This will make bl and b2 as paralle1izable. This shows the high importance of 
carrying out 1 PDFA with subscripted variables in the manner shown ahove. 

Usage of GeD and Banerjee's test in actual detection of parallelism in programs is 
described in Section 4. 

4. Detection of parallelism 

In this section, we shall describe the main algorithm for parallelization. For detection of 
paraUelism, there are two considerations: data and controL 

4.1. Data considerations 

A routine called coexecutable takes two boxes and finds out whether they are suitable for 
parallel execution (in which case they arc said to be parallelizable) or not based on data 
considerations. 

Let u[,and U 2 be the usesets and c[, and C2 the changesets of boxes B[ and B2 , respectively. 
It is assumed that B, N R2 in the corresponding hoxgraph. 

Let 
set 1 = intersection of U 1 and c2 ; 

set 2 = intersection of C 1 and u2 ; 

set J = intersection of eland c2 . 

If set[,set" and set, are empty (which means none of the three dependences exist) then 
the boxes B 1 and B 2 are declared as paraUelizable by the routine coexecutable because it 
is obvious that parallel execution of B, and B2 does not affect each other. A compound box 
B having elements Bl and B2 , useset u=u1uUz, changeset C=C1UCz is formed. When 
references to the same array are present in any two sets to be intersected, the GeD and 
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Banerjee's tests (see Section 3.2) are applied to all possible pairs of references to check if 

dependences exist. 

4.2. Control cOl1siderations 

4.2.1. Lemma 

Consider a boxgraph such as bc--t b2 -+ ... -+bn· 

If h, is nOI parallelizable with b"b, is not parallelizable with b3, .. ·,bn~' is not 
parallelizable with bn (all due to data considerations), then b, is not parallelizable with bn. 

For proof see Dave23. 

4.2.2, Control dependence 

We say that a box b is control dependent on box c iff 

• there is a path from c to b in the boxgraph 
• there exists a condition box d not equal to b, in the path from c to b in 

the boxgraph such that there is no path from the endif box of d to b in the boxgraph. 

If b is control dependent on c then band c cannol be declared as parallelizable. For 
example, consider the following statements: 

S,: if(a < > b) then 

S,:c: = d; 

Whether S2 will be executed or not depends on the result of S" Hence, S, and S, cannot 
be execuled in parallel. 

4.2.3. Path analys;, algorithm 

From the lemma given above, for a box graph b1 -+b2 -+b 3 -+ ... bn, it is sufficient to 
analyse b, with b2 , b2 with b3 , • • and so on. 

The control dependences and the lemma of the previous section lead to the following 
path analysis algorithm 

The path analysis algorithm takes the starter and the ender of a boxgraph and modifies 
the boxgraph so that it shows parallelism explicitly. 

procedure pathana[ys;s (blfrom, b[to): 

(* blfrom is the starter of the boxgraph and blto is the ender of the boxgraph. *) 
begm 

bl = blfrom; 

while (bl < > b[to) do begin 
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if (bl is a CONDITION box) then begin 

pathanalysis (truenext of hI, endif of bl); 

pathanalysis (falsenext of hI, endif of hI); 

end 

else begin 

end; 

b2 = next of bl; 

if (b2 = NULL or b2 = NULL BOX) then goto label; 

if (b2 is not CONDITION box) then 

b I = datatest (b I, b2); 

else bl = b2; 

if (bl = NULL or bl = NULLBOX) then got a label; 

end 

label:; 

end; 

The datatest routine carries out the following tasks: 

It takes two boxes b j and b2 as parameters, and 
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• by data consideration, it finds out whether they can be executed in parallel using the 
routine coexecutable (Section 4.1), 

• if they cannot be executed in parallel then b2 is returned. otherwise, 

- a compound box b is formed from b j , and b,. Box b has as its changeset the union 
of the changesets of bj and b, and as its useset the union of the usesets of b j and b2 . 

The nexts of b will be exactly according to the nexts of b,. 

If b, is the endif box of Some box c then next of b, is made the endif box of c. Also 
duplicates of b2 are made and are attached to all the boxes having next as bz. If next 
of b, is NULL and b, is an endif box then a N ULLBOX is created and this is taken 
as next of b and as nexts of all the duplicates made. For example, for the program 
segment given below, Fig. 7 shows the corresponding boxgraphs before and after the 
path analysis. 

if (a < > b) then begin 

c: =d+ e; 

end 
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/"\ 
b2 63 --path analysis--7 

~/ 
b4 

FIG, 7. Example for path analysis. 

else 

J:=2; 

g:=!+I: 

box b1 :a < > b; 

box b,:c:=d+e; 

box b,:f:=2; 

box b.:g:=! + 1; 

Notice that b, and b4 can be executed in parallel. 

- Next of b, is returned. 

b) 

/ ~ 
" 

{ b2 ,b4 } 

\ / 
null box 

b3 

! 
b4 

For each subroutine the corresponding boxgraph is modified by the major analysis 
routine. Major analysis routine calls the path analysis routine by passing the starter and 
the ender of boxgraphs. All the LOOP boxes and the FOR boxes which have their own 
boxgraphs are also modified by calling the path analysis algorithm. All the FOR boxes 
whose corresponding for-loops can be unrolled are identified as PARFOR boxes. 

4.2.4. Loop unrolling 

Loop unrolling is very important in parallelization. In a for-loop, if different iterations of 
the for-loop are data- independent (i.e., data computed in one iteration is not used in any 
other iteration) then these iterations can be executed in parallel. For example, 

for i: = 1 to 9 do begin 

end; 

aU]: = i + e; 

b[i]: = i.e; 

dU]: = c- i; 
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All the iterations of this loop can be unrolled and executed in parallel with different values 
(1 to 9) of i supplied to them. Loop unrolling can be carried out by comparing the boxgraph 
attached to the corresponding for-loop with istelfunder data considerations. The boxgraph 
is supplied to the routine coexecutable which determines whether the loop can be unrolled 
or not. If the loop can be unrolled then the FOR box corresponding to it is converted to 
a PARFOR box. The meaning of a PARFOR box is that the boxgraph attached to it 
(body of the loop) is to be executed in parallel for different values of its index starting from 
lower to upper limit. 

4.2.5. Paral/elization of CALL statements involving recursion 

Each CALL statement in the program is converted to a CALL box as shown earlier. Onr 
method can declare a CALL box as parallelizable with any other type of boxes. This 
automatically takes care of recursion. For example, 

procedure pr; 

begin 

pr; 

<rest of the body of the procedure which does not depend on the data computed before> 

{say this is B} 

end 

In the given program, body B can be declared as parallelizable with the call pro This means 
that the next recursive call is executed in parallel with the present execution of the body 
of the procedure. One classic example is the fibonacci sequence computation algorithm. 
The procedure calls itself twice while executing. Both the calls can be executed in parallel 
as detected by our compiler. 

5. Implementation of parallelism 

In the previous sections, we described how to generate the boxgraphs and convert them 
to show parallelism explicitly. Conversion of these boxgraphs to assembly code depends on 
specific machine details. We have implemented our compiler on the ORG Supermax 
machine which is a shared memory multiprocessor with two 68020 processors running on 
UNIX operating system V.3 at a speed of 25 MHz. We generate 68020 assembly code. 

The ORG Supermax has two processors, each with 4 MB of local memory. But the 
processors can access the other processor's local memory by declaring it as a shared memory. 
We have designed our scheme to suit this machine. The aim of our scheme is to use both 
the processors as efficiently as possible during the execution of the program. To achieve 
this purpose, we have chosen to implement dynamic scheduling of processes. 
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Dynamic scheduling has the following advantages over static scheduling. 

• Dynamically created processes cannot be implemented using static scheduling. We 
need to create processes dynamically in the case of reCUTSlve procedure calls. 

• If the number of asynchronous parallel processes are more than the number of 
processors available, then dynamic scheduling gives much better performance. 

• In the case of heavy nesting of processes and limited number of processors, dynamic 
scheduling is a good choice. 

Dynamic scheduling has the following disadvantages over static scheduling. 

• The scheduling time overhead is more in dynamic scheduling than in static scheduling. 
If process execution times are not sufficiently large then this can affect the program 
execution speed in a serious manner. 

• Static scheduling is more efficient in the case of synchronous or almost synchronous 
parallel processes. 

• In static scheduling, the processes are assigned to the processors statically. Due to 
this, the local data used by the processes can be put into local memories of the 
corresponding processors. If accessing local memory is faster than accessing shared 
memory then static scheduling may improve the performance considerably. 

In spite of these disadvantages, we preferred to implement dynamic scheduling because 
the advantages overweigh the disadvantages. 

We create two programs from the imput Pascal program. One is the master and the 
other is the slave. All the data are stored in the shared memory so that both the programs 
can access it at any time. The programs also share a common message queue. The common 
message queue contains messages to start a new process, execute it completely, or halt it. 

In the beginning, the master calls the main procedure and starts execution. The slave 
waits for a message to be put into the common message queue. As soon as the common 
message queue obtains a message to execute a process, the slave removes the message from 
the queue and starts executing the process indicated by it. 

Whenever parallel processes are to be executed by either the master or the slave program, 
all the parallely executable processes are put into the common message queue. A common 
identifier is assigned to all these parallel processes to identify them as children of the same 
process. This is essential because, due to nesting of processes, they can create other children 
processes. Further, the master and the slave programs also keep track of the number of 
child processes with a given identifier which have not yet completed execution. This is 
required to resume the execution of the parent process which created these child 
processes. 

After putting messages to execute these processes into the common message queue, the 
program (slave or master) which created them takes a process from the message queue and 
starts executing it In the meantime, if the other program becomes free then that will also 
take a process from the que~e and start executing it. Each time a program completes 
executJOn of a process, It carnes out the following tasks: 
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• It puts a message into the queue saying that the process has been completed. 
• If it has crcated parallel processes, then it checks whether execution of all the child 

processes it created has been completed or not. This can be done by using the identifier 
supplied when the parent process puts the child processes into the queue. 

• If all the processes created by it have been executed then it resumes execution of the 
parent process which created these child processes. 

• If all the child processes have not been executed completely then it waits for a message 
to execute a process to be put into the queue (if not already available). 

The first implementation was nol efficient because it generated C programs instead of 
assembly code and used UNIX system calls for management of message queues. The current 
imp!cmentation (ongoing) produces assembly code and incorporates autoscheduling 
techniques and uses sophisticated guided self-scheduling strategies for loop scheduling"
Code generation in detail is beyond the scope of this paper and will be reported after 
carrying out a thorough perfonnance test of the autoscheduling technique. 

6. Results, conclusions, and future directions 

6.1. Summary 

A highly ambitious compiler writer will feel dissatisfied after writing a parallelizing compiler 
because: 

(I) Some of tbe sequential algorithms which can be easily parallelized by hand cannot be 
parallelized even by using the most advanced parallelizing techniques developed to date. 
Quicksort is a good example. 

(2) Programs written in languages like Pascal, Ada and C lise pointers extensively. Because 
the area of pointer dataflow analysis is still not well developed, we have a none-ta-happy 
situation regarding parallelization of non-numerical programs. 

However, an optimistic compiler writer will feel satisfied because: 

(l) For numerical programs, the performance of parallelizing compilers is quite good. 
(2) Paralleliling compilers are cost effective when compared to human beings doing a 

similar job of parallelizing existing large programs. 
(3) Programs parallelized using parallelizing compilers have higher reliability than pro

grams parallelized by hand. 

Our approach to the problem has been to extract the maximum parallelism possible in 
a reasonable amount of compilation time. Moreover, our intermediate representation 
viz., boxgraph is specially designed to suit sbared memory multiprocessors, and has the 
following advantages over other representations: 

(1) For well-writtcn programs, our box-choosing algorithm chooses the boxes in such a 
way that each box will be sufficiently large. This reduces the scheduling overheads 
considerably in shared memory-multiprocessors, which in turn increases tbe speedup 
of the parallelized program. 



152 MAULlK A. DAVE AND Y. N. SRIKANT 

(2) Analysing boxgraphs is much easier and hence compilation time is less. 
(3) Sequential algorithms for analysing boxgraphs are such that in future, parallel 

algorithms can be developed without too much effort so that compilation time can be 
brought down even further. 

(4) For any block-structured language, the method to construct boxgraphs is quite simple. 

We have implemented various techniques ofarray subscript analysis. Our implementation 
and interprocedural dataflow analysis in the presence of subscripted variables have given 
fairly good results. 

The back end of the parallelizing compiler to generate assembly code is about to be 
complete. We have used autoscheduling techniques combined with guided self-scheduling 
of loops to implemented parallel programs. 

6.2. Results 

The compiler is about 12000 lines of C-code and it took nearly 12 months to finish. We 
have tested it on a large number of programs and have found satisfactory results. We 
include a list of some of the programs (Table I) that we have tested together with some 
comments on the perfonnance of our compiler with respect to the programs. The actual 
listing of the programs and the boxgraphs with parallelism explicit have been included in 
Dave's thesis". We have taken these programs from well-known books35 - 38• 

The above results indicate tbat we have been able to achieve our target, namely, detection 
of a reasonable amount of parallelism in a reasonable amount of time. The time for 
parallelization is quite small. The average speed of our paral/elizing compiler is approximately 
100 lines of source code per second. 

6.3. Conclusions 

The higb speed of our parallelizing compiler is basically due to the set structure which has 
been extensively used in our compiler. The following factors may improve the amount of 
parallelism detected by our parallelizing compiler: (i) use of U-D, D-U, and D-D chains, 
(ii) constant propagation, (iii) induction variable elimination, (iv) loop interchanging, 
and (v) more sophisticated array subscript analysis. 

However, these factors will also increase the time required for parallelization. We intend 
to implement these techniques in a future version and study their effect on actual 
programs. 

6.4. Future research directions 

(1) A large amount of work needs to be done in the area of pointer dataflow analysis on 
the lines proposed". 

(2) Parallel algorithms need to be developed for the existing techniques of detecting 
parallelism, thus decreasing the compilation time. 



Table I 
Perrormance statistics of the parallelizing compiler 

Sl Program Functton* Reference No. of Time taken for Total No of loops No. of No of calls No. of 
no. hnes of parallelization no. of parallchzed procedure parallelized cnbegin-coend 

loops calls blocks 

ex 1 35 165 6.3s 19 
am 2 35 129 3.6s 15 11 
eel 3 35 78 0.78 0 7 
de 4 35 75 0.8s 
ff 36 48 O.5s 
fibo 37 16 O.ls 

36 17 O.ls 
mm 35 48 0.4s 
trasales 9 38 85 1.7s 

10 fi 10 35 96 Us 

*Funclions oj the programs 

1. adi: This is an implementation of a relaxation method called alternate direction implicit. 
2. amoeba: It is a procedure for solving the problem. or multidimensional minimization by the Downhill-Simplex method proposed by 

Nelder and Mead. 
3. eel: It is a procedure to compute complete ellipticaimtegrai. 
4. des: It is an implementation of data encryption standard integral. 
5. dID: It is a procedure to compute 2-dimensional fast Fourier transform assuming that the one-dimensional fast Fourier transformation 

procedure is supplied. 
6. fib: It computes the famous fibonacci numbers. 
7. It is a part of an implementation of a simple multigrid relaxation algorithm. 
8. mmid: Implementation of the modified midpoint method. 
9. This is an implementation of the famous travelling salesman problem. 

10. fit: A program for fitting data to a straight line. 
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Table I (Con/d) 

Comments on the programs 

1. A very large program chosen mamly to demonstrate some oflhe features oflhe parallehzing compiler. Nestmg ofparallchsm is observed. 
A reasonable degree of parallelism was detected. 

2. In this program, a very high degree of parallelism was detected. WHh effiCient scheduling mechanisms the parallel program can achieve 
substantial speedup. 

3 It is a small numencal program. Due to dependences, the paraJIelism detected IS almost nil. 
4. Although this program is small, a very high degree of parallelism was detected. 
5, Here is an example where 4 out of 6 loops were detected to be parallelizable. This highly parallehzable procedure is used ill numerical 

programs very frequently, and hence explains the importance of paraUehzing compilers. 
6. Two recursive procedure calls were parallelized. Hence, the degree of parallelism detected IS very high. Fibonacci numbers are used 

repeatedly in sorting and other programs. 
This partIal program 1S given to detect how the mjection (first loop) and prologation (second loop) operations III a simple multtgrid 
reluxatlOn algorithm are unrolled by the paraUelizing compiler. 

8. High degree of parallelism was detected in thIS small program. The variable swap was the bottleneck for not parallelizing loops 12 and 13. 
9. No comments. 

10. The only lmportaJlt paraJlelizatlOn is of two procedure caUs of sqrt. The degree of parallelism detected is faIr. 
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(3) New techniques using parallel algorithms need to be developed to extract more 
parallelism which is being discarded only bccause their sequential versions are very 
expensive. 

(4) Symbolic computation should perhaps be used in a limited fashion to extract parallelism. 
(5) An efficient implementation of the back end of our parallelizing compiler with 

self-scheduling techniques incorporated into it is underway. This will be used (0 measure 
the performance of our parallelizer with respect to real-life application programs. 

(6) Data-partitioning techniques suitable for parallelizing programs to be run on message
based multiprocessors need to be developed. 
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