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Empirical Bayes and Selective Inference

Daniel García Rasines1 and G. Alastair Young2* 

1 Introduction
Two significant challenges to contemporary sta-
tistical inference relate to: the scale of typical 
problems encountered nowadays; the need for 
adaptivity of inference to selection bias.

Modern scientific technology routinely pro-
duces thousands, potentially even more, parallel 
but related data sets, each with its own related 
testing or estimation problem: what is often char-
acterised as ‘large-scale inference’5. In such con-
temporary, data rich settings it is generally the 
case that data analysts examine some aspects of 
data before deciding on a formal statistical model 
or selecting the target parameters and inference 
to be performed. Inference is then adaptive, the 
same data being used both to define the statistical 
question of interest and to actually carry it out. 
Ignoring this adaptivity (‘data snooping’) typi-
cally results in loss of inferential guarantees and 
leads to flawed conclusions: it is, at least in part, 
responsible for the replicability crisis in science.

Our objective here is to review a statistical 
framework, the empirical Bayes approach, by 
which these two main challenges can be effec-
tively met. The principal advocate of empiri-
cal Bayes methods is Professor Bradley Efron of 
Stanford University. Winner of the International 
Prize in Statistics in recognition of the ‘bootstrap’ 
approach to statistical inference, we assert his sup-
port for empirical Bayes methods of statistical 
inference is equally important to the contempo-
rary statistical landscape. Neither fully frequentist  

Frequentist inference: in 
frequentist inference, we treat 
data, x, say, as the observed 
value of a random variable X, 
with a distribution depending 
on a parameter θ , assumed 
to have some true, fixed 
(unknown) value. Inference 
on the value of θ is drawn 
by considering the sampling 
distribution of X, the hypo-
thetical collection of datasets 
we might have seen.
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or Bayesian, empirical Bayes methodology appears 
to provide a satisfactory compromise between 
these two main philosophies of inference. Sun21 
noted the main features: they exhibit Bayesian 
features such as risk-reducing shrinkage and selec-
tion adaptivity, while establishing appropriate 
control of frequentist properties of the inference. 
We consider here the empirical Bayes approach 
and illustrate these properties, while issuing the 
warning that it does not entirely solve the prob-
lems generated by data snooping.

2 �Many�Normal�Means
The many normal means problem serves as 
template for analysis of contemporary large 
scale inference5. In the problem, we model 
data x as the outcome of a random variable 
X = (X1, . . . ,Xp)

T, p ≥ 3 , with a p-dimensional 
normal distribution with mean θ = (θ1, . . . , θp)

T 
and identity covariance matrix Ip , so that 
X1, . . . ,Xp are independent and

Inference is required for the unknown θ 
assumed to have generated the data. In the fre-
quentist perspective, θ is considered as fixed, but 
having some true, unknown value. In the Bayesian 
formulation, θ is itself considered as a random 
quantity, with some assumed prior distribution 
θ ∼ g(θ) . Then, given the specified prior, Bayesian 
inference is extracted from the posterior 

Bayesian inference: in 
Bayesian inference, (X , θ) are 
assumed both to be random, 
and inference about the value 
of θ which gave x is derived 
from the posterior distribu-
tion of θ , given X = x.

(1)Xi ∼ N (θi, 1), i = 1, . . . , p.
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distribution g(θ |x) , obtained through Bayes’ The-
orem5, p.2. We might, for instance, assume as prior 
a multivariate normal distribution in which 
θ1, . . . , θp are independent, identically distributed 
N(0, A), in which case the posterior distribution is 
multivariate normal with mean Bx and variance 
matrix BIp , where B = A/(A+ 1).

3 �Frequentist�Analysis,�Many�Normal�
Means

We start our discussion with a frequentist analy-
sis, described by Efron3 as ‘the most striking theo-
rem of post-war mathematical statistics’. Given an 
estimator δ(X) of θ , define its risk function as

where � · � is the Euclidean norm, 
�X�2 = X2

1 + · · · + X2
p , and Eθ means expec-

tation with respect to repeated sampling of X 
from the model, for fixed parameter value θ . The 
James–Stein estimator is

In the inference problem, the intuitively obvi-
ous estimator is δ(X) ≡ X . This has constant risk: 
R(θ ,X) ≡ p , whatever the value of θ . It turns out 
though (see, for instance,25, Chapter 3) that the 
James–Stein estimator (2) has a risk which is 
strictly smaller: R(θ , δJS(X)) < p , whatever the 
value of θ . We speak of X as ‘inadmissible’ as an 
estimator of θ . This inadmissibility result was dis-
cussed by Stein19 and James and Stein16, though a 
simple proof was not provided until Stein20. Note 
the restriction p ≥ 3 here: if p = 1 or p = 2 the 
estimator δ(X) = X is actually admissible. The 
James–Stein estimator incorporates shrinkage: 
the individual Xi are shrunk, towards 0 in this 
formulation, in providing estimators of θ1, . . . , θp , 
though the shrinkage factor (1− p−2

�X�2 ) involves 

all components of X, which are assumed 
independent.

Practical applications in data analysis of the 
James–Stein and related estimators, are described, 
for example, by Efron and Morris11,12, and, 
famously, in the general interest article Efron and 
Morris13.

3.1  Empirical Bayes Interpretation
The counterintuitive use in the James–Stein 
estimator of what may be termed indirect evi-
dence, of the Xj , j  = i , in the estimation of 
the mean of Xi has9, page 282 always aroused 

Bayes’ Theorem: Bayes’ Theo-
rem is the rule for manipula-
tion of conditional probabili-
ties, P(A|B) = P(B|A)P(A)/P(B) . 
In Bayesian inference, its ap-
plication tells us that the pos-
terior distribution g(θ |X = x) 
is proportional to the product 
of the prior density assumed 
on θ , g(θ) , and the likelihood 
function, the density of X 
evaluated at the observed data 
value x, f (x|θ).

Multivariate normal dis-
tribution: a random vector 
has a multivariate normal 
distribution if any linear com-
bination of its components 
has the univariate normal 
distribution, with the density 
of values around a central 
point being determined by the 
‘bell-shaped’ Gaussian curve. 
The N (µ, σ2) distribution 
has this density defined by 

f (x|µ, σ2) = (2πσ2)−1/2

exp{− 1

2σ2
(x − µ)2}

.

R(θ , δ(X)) = Eθ�θ − δ(X)�2,

(2)δJS(X) =
(
1− p− 2

�X�2
)
X .

Admissibility: An estima-
tor δ(X) is said to domi-
nate an estimator δ∗(X) if 
R(θ , δ(X)) ≤ R(θ , δ∗(X)) for all 
θ , and the inequality is strict 
for some θ . If an estimator 
can be dominated by some 
other estimator it is said to be 
inadmissible; otherwise it is 
admissible.

controversy, but may be rationalized in empiri-
cal Bayes terms10.

In the Bayes formulation suggested above, 
in which θ1, . . . , θp are independent, iden-
tically distributed N(0, A) and under the 
assumed measure of loss �θ − δ(X)�2 , the 
appropriate estimator of θ is the mean of 
the posterior distribution, δB(X) = BX in 
terms of the random variable underlying the 
data sample. This minimises the Bayes risk 
r(g , δ(X)) =

∫
R(θ , δ(X))g(θ)dθ , the risk func-

tion averaged over the assumed prior g(θ) on 
θ . If the prior variance A is specified, this Bayes 
estimator can be immediately applied, and 
its Bayes risk is readily calculated (Young and 
Smith, Chapter 3) as

Under the model assumed, the Xi are margin-
ally independent, identically distributed as 
N (0,A+ 1) and a simple calculation shows that 
the shrinkage factor has expectation under this 
marginal distribution

So, in the case when A is unspecified in the model 
formulation, we may replace the unknown B in 
the expression for the Bayes estimator by the esti-
mator B̂ = 1− p−2

�X�2 , giving precisely the James–

Stein estimator. We then note25, Section 3.5 that

so that the increase in Bayes risk due to using the 
James–Stein estimator rather than the Bayes esti-
mator δB(X) tends to zero as the prior variance 
A → ∞ . So, the JS estimator has desirable risk 
properties. Frequentist risk is uniformly smaller 
than that of the obvious estimator, and the Bayes 
risk will often be close to that of the Bayes esti-
mator, a desirable situation, as the Bayes estima-
tor has important theoretical properties, such as 
admissibility: there is no estimator δ(X) with risk 
R(θ , δ(X)) uniformly smaller than R(θ , δB(X)) : 
see, for instance Young and Smith25, Chapter 3.

Under our model assumptions, that we 
have Xi|θi, i = 1, . . . , p , independently distrib-
uted as N (θi, 1) and θ1, . . . , θp are independ-
ent, identically distributed N(0, A), and so with 
B = A/(A+ 1) , we have, given data outcome 
x = (x1, . . . , xp) that

r(g , δB(X)) = pB.

E

{

1− p− 2

�X�2
}

= B.

r(g , δJS(X)) = r(g , δB(X))+
2

A+ 1
,
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is a 95% confidence interval (in a frequentist 
sense) for θi . Since the posterior distribution for 
θi|xi is N (Bxi,B) , we have that

is a 95% posterior credible set for θi . Estimat-
ing B by B̂ , gives an empirical Bayes posterior 
interval B̂xi ± 1.96

√
B̂. Efron5, Section 1.5 noted a 

result, which he attributes to Carl Morris, that 
taking into account the variability of B̂ as an 
estimate of B, leads to a refined empirical Bayes 
posterior interval

The above calculations are presented assum-
ing the prior g(θ) under which θ1, . . . , θp are 
independent, identically distributed N(0, A). 
Such assumptions can be generalised. Suppose 
still the model (1), but consider now the prior 
assumption that θ1, . . . , θp are independent, 
identically distributed with common density 
g(θ) . An elegant characterisation of the pos-
terior distribution is given by ‘Tweedie’s for-
mula’6,9, Section 20.3.

Suppose that X is distributed as N (θ , 1) and θ 
has prior g(θ) . The marginal density of X is

in terms of the density φ(·) of N(0, 1). Tweedie’s 
formula provides an expression for the poste-
rior expectation of θ having observed x:

where l′(x) = d
dx log f (x) . The key point here 

is that the posterior expectation E(θ |x) is 
expressed directly in terms of the marginal den-
sity f(x), the context for empirical Bayes. We 
do not know the prior g(θ) , but in large-scale 
situations we can construct an estimate f̂ (x) of 
f(x) from the data x = (x1, . . . , xp) , the realised 
value of X, using techniques such as Poisson 
regression.

In general, empirical Bayes analysis is char-
acterised by the estimation of prior parameter 
values from marginal distributions of data. With 
the prior parameter values fixed at these esti-
mates, we proceed as in a regular Bayes analysis, 

(3)θi ∈ xi ± 1.96,

Confidence interval: in 
frequentist inference a 
confidence set is a random 
set S(X), which under the 
assumed sampling distribu-
tion for X contains the true 
fixed value of the parameter θ 
determining this distribution 
a specified proportion of the 
time.

(4)θi ∈ Bxi ± 1.96
√
B

Posterior credible set: a 
posterior credible set S(x) is a 
set which contains a specified 
proportion of the probability 
mass of the posterior distri-
bution g(θ |x) , for the given 
data x.

(5)

θi ∈ B̂xi ± 1.96

[

B̂+ 2

p− 2

{
xi(1− B̂)

}2
]1/2

.

f (x) =
∞∫

−∞

g(θ)φ(x − θ)dθ ,

E(θ |x) = x + l′(x),

as if the values had been specified, without con-
sideration of the data, at the beginning.

3.2  Properties of Empirical Bayes 
and Their Relevance

Empirical Bayes methods are advocated for con-
temporary large-scale problems of statistical 
inference on the basis that: they provide a synthe-
sis between frequentist and Bayesian approaches; 
they ensure some degree of protection against 
selection bias.

Stressed throughout contemporary discus-
sions of empirical Bayes is the notion that such 
methods yield, for the context of large scale 
simultaneous inference, procedures with inter-
pretable frequentist properties. The desirability 
of this is supported by Cox1, Appendix B who com-
ments that ‘from a general perspective one view 
of Bayesian procedures is that, formulated care-
fully, they may provide a convenient algorithm 
for producing procedures that may have very 
good frequentist properties’. We will demonstrate 
this in empirical illustrations below, examining 
the frequentist coverage properties of empirical 
Bayes intervals (5). Efron8 provides ingenious 
methods by which the frequentist properties of 
Bayesian procedures may be estimated directly 
from given data.

It is often asserted (see, for instance,9, Chapter 3) 
that Bayesian inference is immune to selection 
bias. Taking the assertion as justified offers9, Sec-

tion 20.3 some hope that empirical Bayes estimators, 
such as the James–Stein estimator and those con-
structed via Tweedie’s formula, provide a realistic 
protection against selection bias, and will pro-
vide some cure for data snooping. Convincing 
evidence is given by Efron6. However, we discuss 
below that some care must be taken in trust-
ing this assertion. In essence, the immunity only 
holds if selection is assumed to operate both on 
θ and X, rather than only on X (for fixed θ gener-
ated from its prior g(θ) ): see Sect. 4.2.

3.3  Testing Versus Estimation
Focus of the above is on estimation of θ in the 
model (1). The empirical Bayes analysis that we 
have sketched utilises what may be termed9, Sec-

tion 15.5 an effect size model: θi ∼ h(θ) and, given 
θi , Xi ∼ N (θi, 1) , with the assumed prior h(θ) 
not having an atom at θ = 0 . A major focus of 
large-scale inference is the application of empiri-
cal Bayes ideas to provide an effective untangling 
of the interpretation of simultaneous test results: 
see, for instance, Efron and Hastie9, Section 15.3.
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A simple Bayesian framework for simultane-
ous testing9, Section 15.3 is provided by a two-groups 
model: each of the p ‘cases’ (x1, . . . , xp) is either 
null, with prior probability π0 or non-null, with 
probability π1 = 1− π0 . The observation x then 
has density either f0(x) or f1(x) . If π0 = Pr(null) , 
the density underlying observation x is f0(x) if 
null, while if π1 = Pr(non-null) , the density is 
f1(x) if non-null. We may reasonably assume 
f0(x) to be the density of the standard normal 
distribution N(0, 1), while the non-null density 
f1(x) is to be estimated.

Let F0(x) and F1(x) be the cumu-
lative distribution functions cor-
responding to f0(x) and f1(x) and 
S0(x) = 1− F0(x), S1(x) = 1− F1(x), S(x) = π0S0(x)+ π1S1(x) . 
Suppose an observation xi is seen to exceed some 
threshold x0 , and define the Bayes false discovery-
rate Fdr(x0) to be the probability that the obser-
vation xi is null, given that it exceeds x0 . Then 
Fdr(x0) = π0S0(x0)/S(x0) . We suppose that 
S0(x0) is known, and π0 may reasonably in typical 
applications be assumed to be close to 1. While 
S(x0) is unknown, in large-scale testing situations 
it can be estimated by Ŝ(x0) = N (x0)/p , where 
N (x0) is the number of observations in the data 
sample (x1, . . . , xp) with xi ≥ x0 . Then we imme-
diately have an empirical Bayes estimate of the 
Bayes false discovery rate:

Efron and Hastie9, Chapter 15 discuss the relation-
ship of this empirical Bayes posterior probability 
of nullness with frequentist procedures of simul-
taneous hypothesis testing based around control 
of the false discovery rate: see also Efron ([5], 
Chapter 4). Efron and Hastie9, page 282 note how, in 
contrast with James–Stein estimation, such meth-
ods of simultaneous hypothesis testing arouse lit-
tle conceptual controversy.

Having observed xi equal to some value x0 , 
we would be more interested in the probability of 
nullness given xi = x0 , rather than given xi ≥ x0 . 
We can therefore define the local false-discovery 
rate as

We have that

so a local false-discovery estimate

F̂dr(x0) = π0S0(x0)/Ŝ(x0).

f dr(x0) = P{Null|xi = x0}.

f dr(x0) = π0f0(x0)/f (x0),

f̂ dr(x0) = π0f0(x0)/f̂ (x0),

can be constructed using a curve f̂ (x) which 
smooths a histogram of the values {x1, . . . xp} . 
The R package locfdr implements construc-
tion of the local false-discovery estimate, which in 
a data analysis can be used as a selection mecha-
nism to identify parameters for formal infer-
ence. The null proportion π0 can be estimated, 
or approximated to be 1. Similarly, the theoretical 
standard normal null density f0(x) can, in prac-
tice, be estimated: see Efron and Hastie9, Section 15.5 
for a summary and discussion. In a data analysis 
we might define an observation as being ‘inter-
esting’ if, say, f̂ dr(xi) ≤ 0.2 , and flag such for 
follow-up investigation, or as cases where we wish 
to do a formal inference. This, of course, has to 
be done in a way that accounts for the selection 
condition f̂ dr(xi) ≤ 0.2.

4 �Selective�Inference
Classical statistical methods are designed to give 
error guarantees in situations where the objec-
tives of the inference are specified before collect-
ing the data. In contemporary problems, though, 
such idealised settings are the exception rather 
than the norm. More realistically, an exploratory 
analysis of the data is performed before select-
ing the relevant inferential questions to examine, 
often, as in a regression setting, in the form of a 
selected model. Failing to acknowledge this adap-
tivity in the subsequent inferences can yield the 
reported error assessments invalid: for instance, 
frequentist Type 1 error guarantees of testing 
procedures are lost. This problem of selection 
bias has received considerable attention in recent 
years, particularly from a frequentist perspective. 
Efron7 describes methods for error assessment 
in inference on parameters which account for 
model selection effects. Though9, Chapter 20 there is 
no overarching general theory for inference after 
data snooping, prominent among approaches to 
remedy of the effects of selection bias is the con-
ditional approach, which says that inference after 
selection should be based on hypothetical data 
samples which would lead to the same inference 
problem being tackled. This provides a broad 
framework for inference, which encapsulates the 
large-scale inference problem, expressed by (1), 
which is our focus here.

Suppose our data x represents the realisation 
of a random variable X ∈ X  , whose sampling 
distribution we model by some parametric 
family {F(x; θ) : θ ∈ �} , with F(x; θ) denoting 
the distribution function of X under θ . In the 
example that is our focus here F(x; θ) denotes 
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the multivariate Gaussian distribution Np(θ , Ip) . 
The density function of X we denote by f (x; θ) . 
We assume that there is a set of m potential 
parameters of interest, {ψ1(θ), . . . ,ψm(θ)} , from 
which at most one is to be selected for infer-
ence after observing the data. This selection 
may, as we will discuss, be made according to 
a randomised procedure. In the many normal 
means problem, the set of potential parameters 
of interest would contain all subsets of the p 
means {θ1, . . . , θp} . We assume that we know the 
forms of functions pi : X → [0, 1], i = 1, . . . ,m , 
such that, having observed X = x , ψi(θ) is 
selected for inference with probability pi(x) . 
In our illustrations later, we will specify selec-
tion to entail choice of a one-dimensional 
parameter for inference, specifically the mean 
θI corresponding to the largest element of X, 
XI = max{X1, . . . ,Xp} . We therefore simplify 
notation by writing the selected parameter sim-
ply as ψ , and the corresponding selection prob-
ability as p(y).

The conditional approach to frequentist infer-
ence14 advocates that inference for the selected 
parameter ψ should be based on the conditional 
distribution of the data given selection. This dis-
tribution has density

so that the normalising constant ϕ(θ) is the prob-
ability that ψ gets selected when θ is the true 
parameter. In general, inference based on this 
selective density fS(x; θ) may be awkward: ϕ(θ) 
may be intractable, and inference on ψ may be 
complicated by the presence of nuisance param-
eters. In the normal means example, inference 
on θI depends on the unknown nuisance param-
eters θj : j �= I . Simpler forms of inference, which 
achieve the same protection against selection bias, 
are desirable: an attractive idea is discussed below.

We can interpret the conditional approach as 
a form of information splitting. For a given ψ , let  
R be the Bernoulli random variable which takes 
the value 1 if ψ gets selected for inference, and 0 
otherwise, so that R|X ∼ Bernoulli{p(X)} . Fol-
lowing Fithian et al.14, the data generating pro-
cess of X may be thought of as consisting of two 
stages. In the first, the value, r say, of R is sam-
pled from its marginal distribution, and in the 
second stage X is sampled from the conditional 
distribution X|r. Since it is R which determines 
whether inference is provided for ψ or not, infer-
ence based on information revealed at the second 
stage in necessarily free of any selection bias, since 

(6)

fS(x; θ) =
f (x; θ)p(x)

ϕ(θ)
, ϕ(θ) = Eθ {p(X)},

it eliminates the information about the param-
eter provided by R. So, the information provided 
by the data is divided into two portions, one of 
which is used for selection (R) and the other is 
used for the actual inference (X|R).

There is a trade-off between the power of the 
selection mechanism (the ability to identify a 
parameter when it is truly interesting, such as a 
significant effect), and the power of the subse-
quent inferential method. If powerful inference is 
required and obtaining new data after selection is 
infeasible, we need to utilise the available infor-
mation efficiently. The amount of information 
used for selection can be limited by applying the 
selection mechanism to a randomised version of 
the original data: see Tian and Taylor22, Garcia 
Rasines and Young15. Formally, we can generate a 
random variable W, with known distribution and 
independent of the data, and apply the selection 
mechanism to U = u(X ,W ) , where u is some 
function of the data and the noise: a convenient 
case for the context of the model (1) is 
U = X +W  . Note that, if pU (u) denotes the 
selection function in terms of U, the selection 
function of the data X would be computed as 
p(x) = E{pU (x,W )} . For the model (1) which is 
our focus, we have X ∼ Np(θ , Ip) . Suppose a 
parameter of interest ψ is selected for inference if 
and only if U = Y +W ∈ E , where 
W ∼ Np(0, γ Ip) is a noise vector independent of 
X and E ⊆ R

p is some selection event, defining 
when the quantity ψ is chosen for inference. Then 
we note that U = X +W  and V = X − 1

γ
W  are 

independent, from properties of the normal dis-
tribution. Now, selection is defined only in terms 
of U, so a simple inference can be based on V, 
which is unaffected by the selection of ψ as our 
focus of inferential interest. Such inference is triv-
ial, as V is distributed as Np(θ , {1+ γ−1}Ip) . Note 
that U is distributed as Np(θ , {1+ γ }Ip) , so the 
noise parameter γ has the role of balancing how 
much information about θ we have in the selec-
tion and inferential stages. Garcia Rasines and 
Young15 consider methods of inference based on 
V in regression models.

4.1  A Simple Univariate Model
To illustrate some of these ideas, consider the sim-
ple univariate ( p = 1 ) normal model in which 
X ∼ N (θ , 1) , but suppose a selection, or trun-
cation, condition X > 0 is imposed: any data 
provided for analysis satisfies x > 0 . Under the 
condition on selection paradigm, inference on θ is 
based on the conditional distribution of X |X > 0 , 
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with selective density fS(x; θ) = φ(x − θ)/�(θ) , 
in terms of the distribution function �(·) of the 
standard normal distribution. Let F(x; θ) be 
the corresponding distribution function. For 
given observed data outcome xo we can con-
struct the appropriate selective confidence inter-
val, of exact coverage 1− α under repeated 
sampling of X subject to the selection event X > 0 
as {θ : α/2 ≤ F(xo; θ) ≤ 1− α/2} . Unfortunately, 
such inference is inappropriate. Consider the case 
θ ≪ 0 : in such a situation the selection probability 
P(X > 0) is vanishingly small, and the data out-
come X = xo contains little information about 
the value of θ . Indeed, Kivaranovic and Leeb17 
show that such confidence intervals have infinite 
expected length under repeated sampling.

Suppose, instead, we apply the randomisa-
tion idea, and provide inference on θ if and only 
if U = X +W > 0 , where W is random noise, 
independent of X, with distribution N (0, γ ) . 
Then in the definition of the selective density 
(6), p(x) = P(x +W > 0) = �(x/

√
γ ) and 

ϕ(θ) = �(θ/
√
1+ γ ) . Now, with this randomisa-

tion, the confidence interval constructed from the 
selective density

is known to have finite expected length18. In fact, 
the length of the confidence interval is bounded 
above by the length of the confidence interval based 
on the N (θ , 1+ γ−1) distribution of 
V = X − 1

γ
W  . There is loss, in terms of the size of 

the confidence set, in providing inference here 
using V alone, rather than from the conditional dis-
tribution of X |U > 0 . In general, however, the full 
conditional model X |{U ∈ E} may be complicated 
or intractable. The cost incurred in using V alone 
for inference will depend on how informative the 
distribution of U |{U ∈ E} is about the parameter 
of interest.

Figure 1 considers the length of confidence 
sets of coverage 90% constructed from the selec-
tive density (7), as a function of the true mean θ , 
in comparison with the length of the confidence 
set constructed from the normal distribution of V, 
which also has repeated sampling coverage 90%, 
and the length of the ‘face value’ interval con-
structed from the N (θ , 1) distribution of X, ignor-
ing selection. The latter does not have repeated 
sampling coverage close to the nominal 90%, unless 
θ ≫ 0 . In this simple univariate normal model, the 
cost in terms of the length of the confidence set 
might be judged as very slight if the true value of θ 
is less than, say, about − 1.

(7)
fS(x; θ) = φ(x − θ)�(x/

√
γ )/�(θ/

√
1+ γ )

4.2  Selection Bias and Bayesian 
Inference

Why is selection bias a problem? Frequentist 
methods evaluate the accuracy of inferential pro-
cedures with respect to the sampling distribu-
tion of X at a fixed value of the parameter. Since 
selection modifies the sampling distribution, 
by favouring data values with higher selection 
probability, it is clear that inferential correctness 
requires that the reported accuracy be appropri-
ately modified by accounting for the selection, 
through use of fS(x; θ) as the basis for infer-
ence. The Bayesian viewpoint, as we have seen, 
is, instead, that once the data has been observed, 
the recognition that a different data realisation 
could have resulted in a different inferential prob-
lem being posed, or none at all, should have no 
effect on the inference2. This position has been 
challenged (see, for instance,24). Our central the-
sis here is that we must reassess the view that 
Bayesian and empirical Bayes methods necessarily 
provide the protection from selection effects that 
has been crucial to valid inference in large-scale 
problems.

According to Yekutieli24, the correct Bayesian 
inference for a selected parameter depends on 
how the selection mechanism acts on the param-
eter space. Consider the joint sampling distribu-
tion of (θ ,X) , and a selection function p(x). We 
say that θ is random if the joint sampling scheme 
for the parameter and data is such that the pairs 
(θ ,X) are sampled from their joint distribution 
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Figure 1: Univariate example. Lengths of con-
fidence sets of coverage 90% constructed from 
selective density (7), compared to lengths of 
intervals constructed from the normal distribution 
of V and the lengths of the ‘face value’ interval 
(FV) constructed from the N(θ , 1) distribution of X, 
ignoring selection, as a function of θ . Selection 
probability as a function of θ shown in green.
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until ψ ≡ ψ(θ) gets selected and say that θ is fixed 
if θ is sampled from its marginal distribution, 
held fixed, and X sampled from its conditional 
distribution X |θ until ψ is selected for inference. 
Woody et al.23 refer to these two scenarios as ‘joint 
selection’ and ‘conditional selection’, respectively.

As above, let R be the binary random vari-
able that indicates if selection of the parameter ψ 
under consideration has happened. If θ is random, 
its density given selection and a prior density π(θ) 
is π(θ |R = 1) ∝ π(θ)Pθ (R = 1) = π(θ)ϕ(θ) . On 
the other hand, if θ is fixed, its conditional den-
sity is unchanged, π(θ |R = 1) = π(θ) . The con-
ditional density of the data x given θ and selection 
is fS(x; θ) = f (x; θ)p(x)/ϕ(θ) in both cases. 
Then, the posterior distribution for a random 
parameter is

the usual Bayesian posterior, constructed with-
out consideration of the selection. Hence Bayes-
ian inference about ψ = ψ(θ) , which is extracted 
from π(θ |x) , is unaffected by selection in this 
case. In the case of a fixed parameter, the poste-
rior is given by

(8)

π(θ |x) ∝ π(θ)ϕ(θ)f (x; θ)
ϕ(θ)

= π(θ)f (x; θ),

(9)π(θ |x) ∝ π(θ)f (x; θ)
ϕ(θ)

.

So, for a fixed parameter the posterior needs to 
be adjusted, and would formally be obtained by 
attaching the prior density π(θ) to the selective 
likelihood, fS(x; θ) . The viewpoint that Bayes-
ian inference does not require an adjustment for 
selection, and protection against selection bias 
might be expected to be afforded by the empirical 
Bayesian approaches to inference sketched above, 
follows from the implicit assumption that the 
parameter is random. While posterior densities 
(8) and (9) are formally correct given the respec-
tive sampling mechanisms, it might be argued 
that it is not clear that a parameter can be labelled 
as random or fixed without explicit consideration 
of the sampling mechanism. In the context of 
the normal means problem, it may be reasonable 
to consider the parameter θ as random, but the 
sampling process might not be well-defined, and 
caution is appropriate in any assumption that 
Bayesian inference (or the empirical Bayes infer-
ence we have described) does provide protection 
against selection bias. In the context, say, of a 
genetic study where the quantity Xi is a measure-
ment relating to gene i, with θi being some ‘true 
effect’ due to that gene, it might be reasonable 
to consider θi as an intrinsic quantity associated 
with that gene i.e. to consider, in terms of our dis-
cussion, θi as a fixed parameter.

5 �Numerical�Illustrations
5.1  Random and Fixed Parameter Models
We describe here a variant of the analysis carried 
out by Efron and Hastie9, Section 20.3 to examine the 
idea that empirical Bayes estimates are a realistic 
approach to the problem of selection bias intro-
duced by data snooping.

We consider the many normal means model 
(1), with p = 1000 . We specify the distribution of 
θ = (θ1, . . . , θp) to be such that the components 
are independent N(0, 1), so that the posterior 
distribution of θi|xi is N (Bxi,B) , with B = 1/2 , 
and the Bayes estimator is E(θi|xi) = Bxi . 
The empirical Bayes estimator, that is the 
James–Stein estimator, is θ̂i = B̂xi , where 
B̂ = 1− (p− 2)/

∑p
i=1 x

2
i  . We generate 50,000 

replications from the specified joint distribution 
of (θ ,X) . For each we determine the index I cor-
responding to the largest observed data point, 
I = argmax{Xi} , and construct the face value 
interval (3), the Bayes interval (4) and empirical 
Bayes interval (5) for θI.

Figure 2 shows a histogram for the first 1000 
replications of XI − θI , together with the corre-
sponding histogram for θ̂I − θI . Selection bias is 
obvious: the fact that we have chosen to examine 
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Figure 2: Distribution over 1000 replications 
of XI − θI (Face value) and θ̂I − θI (EB), where 
XI = max{X1, . . . , X1000} and θ̂I = B̂XI is the empirical 
Bayes estimator.
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the parameter value θI corresponding to the larg-
est observation means that the uncorrected, face 
value differences are not centred on zero, but 
shifted to the right. By contrast, the empirical 
Bayes differences θ̂I − θI are centred at zero. The 
coverages of the true θI over the 50,000 replica-
tions of the face value, Bayes and empirical Bayes 
intervals (3), (4) and (5) were 0.330, 0.950 and 
0.949 respectively. The empirical Bayes inter-
val delivers the desired frequentist property, of 
containing the parameter of interest θI in very 
close to 95% of the replications. Selection of the 
parameter of interest as θI from the data means 
that the face value interval has frequentist cover-
age very far from the nominal desired 95%. Note 
that the face value interval (3) has, for this con-
text, constant width 3.92, while the Bayes interval 
(4) has constant width 2.77, and over the 50,000 
replications the empirical Bayes interval had aver-
age width 2.80. The Bayes and empirical Bayes 
estimators of θI were virtually unbiased over the 
replications, while the face value estimator XI 
displays substantial positive bias in this situation, 
demonstrating the need to correct the inference 
for selection.

As we have argued, to mitigate against the 
selection bias, we can utilise the idea of ran-
domisation. For each specified noise level, we 
define the parameter of interest from a particu-
lar dataset X = (X1, . . . ,Xp) , with the Xi inde-
pendent, Xi ∼ N (θi, 1) , and independent noise 
{W1, . . . ,Wp} , with the Wi independent, identi-
cally distributed N (0, γ ).

The above analysis reflects what we described 
in Sect. 4.2 as a random parameter context: on 
each of the replications (θ ,X) was simulated 
from the specified joint distribution. Instead, 
we consider now repeating the simulation for 
a fixed parameter context. Here, a fixed value 
θ = (θ1, . . . , θp) , again with p = 1000 , was gen-
erated from the assumed prior, in which the 
elements of θ are independent N(0, 1). Fig-
ure 3 shows a histogram of the 1000 values 
θ1, . . . , θ1000 , as a probability distribution, with 
the N(0, 1) density from which they were gener-
ated superimposed.

Two different analyses are then carried out. In 
the first simulation, for each of 20,000 replica-
tions we make inference for θI , 
I = argmax{Xi +Wi} . Therefore, as before, we 
are considering inference for a different target 
parameter on each replication. Note that we are 
not therefore considering coverages of confidence 
sets in any conventional frequentist sense, as the 
parameter for which inference is made is not held 
fixed over the replications. As before, we consider 

the repeated sampling coverages of the face value, 
Bayes and empirical Bayes intervals (3), (4) and 
(5), which we recall are all of nominal 95% cover-
age. Now also included in the analysis are cover-
ages of confidence intervals for θI obtained from 
the normal distribution of VI = XI − 1

γ
WI , 

which we argued is unaffected by selection. 
Table 1 shows that, indeed, intervals based on this 
latter quantity yield the nominal desired repeated 
sampling properties in this fixed parameter sam-
pling model, even under selection. The empirical 
Bayes intervals do not fully mitigate against data 

Table 1: Coverages of face value, Bayes, empiri-
cal Bayes (EB) intervals, together with intervals 
based on randomisation.

The latter are based on VI and require γ > 0 . Fixed parameter 
sampling model, all figures based on 20,000 replications. 
In each replication interval constructed for θI , where 
XI +WI = max{X1 +W1, . . . , X1000 +W1000} , Wi distributed as 
N(0, γ )

γ Face value (3) Bayes (4) EB (5)
Randomi-
sation

0.0 0.308 0.976 0.976 –

0.25 0.326 0.976 0.974 0.947

0.5 0.388 0.975 0.973 0.951

1.0 0.539 0.967 0.966 0.952
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Figure 3: Histogram of the 1000 values 
{θ1, . . . , θ1000} , as a probability distribution, with the 
N(0, 1) density from which they were generated 
superimposed. Repeated sampling coverages 
assessed conditional on selected parameter for 
inference being value indicated by vertical line.
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snooping in this sampling model, while inference 
based on VI does. Table 1 shows coverages of the 
Bayes and empirical Bayes intervals to be some 
way off the desired 95%. A histogram of differ-
ences θ̂I − θI for the ‘no noise case’, γ = 0 , is still 
centred on zero, but is not symmetric, with posi-
tive skewness.

In a further simulation, a particular data-
set X = (X1, . . . ,Xp) , with the Xi inde-
pendent, Xi ∼ N (θi, 1) was generated, and 
I = argmax{XI } ≡ 269 identified. It is worth 
noting that the selected parameter of interest is 
not the largest θi : in fact 22 values exceed θ269 , 
as shown by the vertical line in Fig. 3. Then we 
reconsider the repeated sampling coverages of 
the face value, Bayes and empirical Bayes inter-
vals (3), (4) and (5), but now conditional on 

the fixed parameter value θ269 (actually equal to 
2.120) being chosen as the parameter of interest 
on each replication. So, each of the 20,000 rep-
lications in this case had X269 = max{Xj} . On 
each of the replications, the parameter of inter-
est is the same, so in this analysis we are actu-
ally examining the coverages of the confidence 
sets in a strict frequentist sense. The empirical 
Bayes method does not protect against selection 
bias in this fixed parameter context. The whole 
analysis was repeated based on randomised 
data (X1 +W1, . . . ,X1000 +W1000) , for differ-
ent noise levels γ . When γ = 1.0 , for instance, 
the target parameter turned out to be defined as 
θI ≡ θ115 = 2.719 . The coverages of the Bayes 
and empirical Bayes intervals, shown in Table 2 
are now very far from the nominal desired 95%. 
Inference based on VI does ensure strict frequen-
tist control of confidence set coverage.

Figure 4 provides the analogue of Fig. 2 
for this fixed parameter model, when the 
analysis is based on the randomised data 
(X1 +W1, . . . ,X1000 +W1000) , for the case 
γ = 1 . The same bias due to selection of the 
interest parameter of a ‘face value’ inference as 
seen in Fig. 2 is evident. By contrast with Fig. 2, in 
this fixed parameter model, the differences θ̂I − θI 
are no longer centered around zero. Figure 5 
shows that the distribution over the replications 
of VI − θI is centered at zero. The corresponding 
figures for the face value and empirical Bayes esti-
mators XI and θ̂I are very similar for other noise 
levels γ , including the case γ = 0 , when no ran-
domisation is employed.

5.2  A Two‑Groups Model
We consider now the two-groups model con-
sidered in Sect. 3.3. In this situation, as dis-
cussed, it is reasonable to suppose that the 
proportion π0 of the elements of θ that are null, 
θi = 0 , is large. We take, as before, p = 1000 , 
and set θ1 = · · · = θ900 = 0 , with the remain-
ing components of θ as a set of independent 

Table 2: Coverages of face value, Bayes, empirical Bayes (EB) intervals, together with intervals based 
on randomisation.

The latter are based on VI and require γ > 0 . Fixed parameter sampling model, all figures based on 20,000 replications, conditional on 
selected parameter being specified θI

γ θI Face value (3) Bayes (4) EB (5) Randomisation

0.0 2.120 0.117 0.999 1.000 –

0.25 2.120 0.191 1.000 1.000 0.950

0.5 2.266 0.416 1.000 1.000 0.951

1.0 2.719 0.710 0.982 0.979 0.950
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Figure 4: Distribution over 1000 replications 
of XI − θI (Face value) and θ̂I − θI (EB), where 
XI +WI = max{X1 +W1, . . . , X1000 +W1000} , under fixed 
parameter assumption and randomised response, 
Wi distributed as N(0, γ ) , the case γ = 1 , θ̂I = B̂XI is 
the empirical Bayes estimator.
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realisations of N(0, 1), held fixed over a series of 
20,000 replications of the model (1). We report 
here results for the situation where inference 
is made on θI , this chosen parameter of interest 
being selected on the basis of randomised data: 
XI +WI = max{X1 +W1, . . . ,X1000 +W1000}  , 
with the noise variables W1, . . . ,W1000 inde-
pendent N (0, γ ) . So, again, the target param-
eter varies over the replications. In this context, 
since we might primarily be interested in iden-
tifying true, non-zero, effects, rather than in just 
examining the overall coverage properties of the 
empirical Bayes interval and the interval based 
on VI , we examine: P(θI ∈ Interval | θI = 0) and 
P(θI /∈ Interval | θI �= 0) . If an interval contains 
zero, we might conclude that there is no evidence 
to suggest that the corresponding effect is non-
null, while if the interval does not include zero, we 
might infer evidence of a non-null effect. Results 
are given in Table 3. The empirical Bayes intervals 
for θI contain zero too high a proportion of times, 

while intervals based on VI correctly contain θI , 
when the true value of this selected parameter is 
θI = 0 , on the specified proportion 95% of rep-
lications. The inference based on the randomi-
sation quantity VI is more powerful, in the sense 
that the intervals for non-zero selected θI do not 
include zero in a higher proportion of replica-
tions. Of course, as the noise level γ increases, the 
proportion of replications for which the selected 
parameter of interest is actually null increases.

5.3  Data Analysis
Efron and Hastie9, Section 13.3 and elsewhere discuss 
analysis of data from a prostate cancer study. 
The data consists of a set of p = 6033 observa-
tions (X1, . . . ,Xp) , each measuring the effect of 
one gene. Efron and Hastie9, Section 15.1 describe 
how these observations are extracted from raw 
gene expression data comparing a set of prostate 
cancer patients and a set of control patients. The 
objective is to identify non-null genes, for which 
the patients and the controls respond differently: 
a reasonable model for both null and non-null 
genes is the normal means model (1). Suppose 
we use f̂ dr(xi) < 0.2 as a selection rule, based on 
the data on all p = 6033 genes, giggled by injec-
tion of small levels of random N (0, γ ) noise, with 
γ = 0.25 . This identifies 15 ‘interesting’ cases. The 
plot produced by locfdr with default settings 
is shown as Fig. 6. Note that the estimated null 
distribution, by both maximum likelihood and 
the central matching estimate method4, are nor-
mal distributions with standard deviation close 
to 

√
(1+ 0.25) , which we expect, as locfdr is 

applied to {X1 +W1, . . . ,Xp +Wp} , with the Xi 
assumed to have variance 1 and the independent 
noise variables Wi specified to have variance 0.25.

Of the p = 6033 cases, 478 of the face value 
intervals (3), 130 of the Bayes intervals (4) and 9 
of the empirical Bayes intervals (5), for genes 332, 
364, 579, 610, 914, 1068, 1720, 3940, 4546, all 
among the set of 15 interesting cases selected by 
locfdr, do not contain zero. Over the full set of 
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Figure 5: Distribution over 1000 replica-
tions of VI − θI , with VI = XI −WI/γ , where 
XI +WI = max{X1 +W1, . . . , X1000 +W1000} , under fixed 
parameter assumption and randomised response, 
Wi distributed as N(0, γ ) , the case γ = 1.

Table 3: Two-groups model.

Coverage of true null values, correct identification of non-null values of θI , where XI +WI = max{X1 +W1, . . . , X1000 +W1000} , under fixed 
parameter assumption and randomised response, Wi distributed as N(0, γ ) . Empirical Bayes (EB) intervals, randomised intervals based on VI

γ P(θI = 0)

P(θI ∈ Interval | θI = 0) P(θI /∈ Interval | θI �= 0)

EB (5) Randomisation EB (5) Randomisation

0.1 0.38 0.995 0.949 0.004 0.057

0.25 0.41 0.995 0.948 0.004 0.073

0.5 0.48 0.994 0.950 0.005 0.134

1.0 0.66 0.992 0.951 0.006 0.230
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p = 6033 genes, 350 of the intervals based on 
Xi − 1

γ
Wi do not contain zero. Of the 15 cases 

selected by locfdr, intervals based on 
Xi − 1

γ
Wi do not contain zero only for one case, 

gene with label 914, which might temper any will-
ingness to read too much into the fact that 9 of 
the empirical Bayes intervals suggest non-null 
effects among the 15 cases selected from the full 
set of 6033 genes for detailed inspection.

6 �Discussion
Many contemporary problems of large-scale 
inference may, perhaps after transformation and 
data scaling, be expressed in terms of the many 
normal means model (1), with interest typically 
being in some subset of θ = (θ1, . . . , θp)

T chosen 
after examination of the data, such as the element 
of θ corresponding to the largest observed data 
point. The empirical Bayes approach to inference 
in this model provides a framework with attrac-
tive properties. If estimation is required for the 
whole parameter vector θ , empirical Bayes esti-
mators incorporate shrinkage, through the indi-
rect evidence provided by all of the elements of 
X = (X1, . . . ,Xp) in estimation of all of the indi-
vidual components of θ : the result is desirable fre-
quentist and Bayes risk properties. The empirical 

Bayes inference can be seen to be adaptive to the 
data-driven specification of the parameter cho-
sen for inference, maintaining appropriate con-
trol of frequentist properties of the inference, at 
least under a random parameter or joint selec-
tion assumption. Under a random parameter 
assumption, for instance, an empirical Bayes 95% 
confidence set will contain the target parameter 
of interest on close to 95% of instances. This is 
not necessarily true under a fixed parameter or 
conditional selection model. Such frequentist 
properties do not, of course, relate formally to 
those demanded by the condition on selection 
paradigm of selective inference, which requires a 
95% confidence set to contain a specified target 
parameter for 95% of instances for which that 
fixed target parameter is chosen by the selection 
mechanism. Some care is required on attributing 
to empirical Bayes methods such strong frequen-
tist control. If this is demanded, methods based 
on selection of the target parameters from ran-
domised versions of sample data offer a simple 
alternative.

A further key context where there is data-
driven choice of the parameters selected for 
formal inference concerns high-dimensional 
regression, where inference is carried out after 
model selection using the same data. Formal 
examination of the ability of empirical Bayes 
methods to account for selection bias in that 
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context is unexplored, but would add to the con-
clusions reached here for many normal means 
problem.
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