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Abstract 

We report here the desrgn and iabncation of a fast canvolver board. compatible with the 110 slots of the PC/AT, 
Lor the basic mathematical operatlon ol 2-dmensronal convolution of images. Extension of the hardware design 
to peifarm convolution ~n parallel is descnbed. The basic hardware 1s designcd and iabricated usmg locally 
available components. 

Key words 2-D Signal analysis, convolulion, image processing, low-level vision, parallcl computation and table 
look-up. 

1. Introduclion 

Convolution is one of the basic mathematical operations encountered in 1- and 2-D 
signal processing. Signal conditioning, fillering and feature extrac6ion are some of the 
operations that involve convolution. In digital image processing, discrete convolution is 
performed, during early stages (low-level processing), to enhancz images and to extract 
features such as edges and texture boundaries. 

Convolution is computalion intensive. But, digltal convolution can be speeded up by 
making use of the finite nature of digital images. Further, it will be desirable to perform 
convolution using hardware, because considerable amount of time can be saved in 
performing the low-level operations. The fast convolution method is inherently an~enahle 
to parallel implementation. Even the serial version of the method gives an  order of magnitude 
speed-up. The hardware is designed to  perform fast convolution in parallel, using multiple 
add-on boards to a PC/AT. This can facilitate some of the computer vision applications, 
like the robotic vision system, to perform tasks in near real-time. 

In this paper, we present an efficient approach to the realization of the fast convolution, 
and give the hardware details of its implementation. It is believed that the proposed design 
can be cxtended to realize a multiprocessor architecture in VLSI for the real-time processing 
of vision data. 
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mathematicc of convolution is given in Section 2, followed by a brief reference to 
the relerqnt literature in Section 3. A comparison of the direct implementation with the 
fast method of discrete convolution is presented in Section 4. Seclion 5 gives the details of 
the parallel implementation, and Section 6, the hardware features. Finally, possible future 
extensions are suggested and some concluding remarks made in Section 7. 

2. Discrere convolution 

The 2-dimensional convolution operation is representcd by 

where f is the Input signal, h the weighting function and g the convolved output 

Thc discrete version of this IS the summation: 

where f is the input image, m the mask, and g the output image. The input and output images 
are of size N x N (indexed 0. .  . N - 1) and the mask is of size M x M (indexed 0.. . M - I). 
Typical values of N and M are, 512 and 11. The images invariably have 8 bits per pixel. 
To provide motivation for the fast method, some details of the actual computations involved 
in convolution are necessary. These are given below: 

The convolved signal is computed by superimposing the mask (an array containing the 
weighting coefficients, m(i, j)s in eqn (2)), the centre of the mask being aligned with the image 
point f ( k ,  0, and multiplying the values of the corresponding points in the image and the 
mask. The mask is usually a square array, with dimensions invariably being odd. Thc sum 
of the partial products, thus computed, is the output g(k,I). The mask is moved over the 
image. in both the row and column directions, for computing the output at  each pixel. It 
can be verified that for an image of dimension N x N, and a mask of dimension M x M ,  
the direct implementation of the convolution entails N 2  x M2 multiplications. For example, 
if N = 512 and M = 5, then the number of multiplications is 512 x 512 x 5 x 5 = 6 553 600. 

3. Results in the literature 

Literature abounds in results on the implementation of convolution on various computers. 
They, however, amount merely to the division of a given image into sub-images, and a 
processor is assigned to each sub-image. A majority of the publications deals with systolic 
architecture for convolution. For instance, Kung and Song' present an algorithm on a 
machine comprising bit-serial basic cells interconnected to form a 2-D systolic array. Kung 
et a12 use a systolic array, with pipelined arithmetic units as a building block, for 
I-dimensional convolution. The systolic array (for multidimensional convolution) also uses 
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a second level pipelining by allowing the processing elements themselves to be pipelined 
to an arbitrary degree. 

Lee and Aggarwa13 present a parallel convolution scheme, using a 1-dimensional systolic 
structure as a basic unit, for a mesh-connected array processor consistmg of the same 
number of simple processing elements as the number of pixels in the image. The number 
of computation steps is equal to the number of coefficients of the convolution window. 
The computation 1s carried out along the so-called Hamiltonian path ending at the centre of 
the window, the length of which is equal to the number of window coefticients. The authors 
claim that the architecture and the control strategy make the scheme suitable for VLSI 
implementation. 

Maresca and Li4 present a generalized convolution algorithm for mesh-connected 
computers through a snake-sweeping mechanism. Chang et a15 discuss the use of a pyramid 
computer of 0 ( n 2 )  processors for convolution in O(1ogn + k2) time. Ranka and Sahni6 
also present an algorithm for a mesh-connected array, but with data movement less than 
that of the other algorithms and without broadcasting data (window) values. Giordano 
et a17 suggest a semi-systolic architecture (comprising programmable VLSI components) 
for a high-speed pyramidal convolver which allows parallel computation to be carried out 
at different resolutions. Fang and Ni8 deal with parallel algorithms for convolution on 
existing architectures. 

4. Proposed fast convolution 

The finite nature of the digital signals can be exploited to reduce the number of 
multiplications to a considerable extent. To this end, note that the image gray level is 
limited to a value in the integer range 0. ..255. 

During the entire convolution operation each pixel value is multiplied by a particular 
mask value exactly once. That means, for one mask value, there are N x N multiplications. 
However, for the total N x N multiplications there are only 256 distinct products, because 
the image gray level is restricted to a value in the range 0.. .255. In other words, there are 
many redundant products, calculated during the course of the convolution. This redundancy 
is exploited to minimize the total number of multiplications. 

4.1. Product Look-Up Table (LUT) 

Let us now consider the convolution operation with a slight difference in the order in 
which the mask values are multiplied with the pixel values. Since each pixel value is 
multiplied exactly once with each mask value, superimposition of the mask, as obtained 
from the convolution definition, over the image may be dispensed with in the following 
manner. The operation can be performed by multiplying the iinage with one mask value 
at a time, to get an N x N array of partial product. In other words, the convolution is 
performed in M x M steps, each corresponding to getting the partial product for a particular 
mask value. These partial products are finally added, with appropriate offset indexing, to 
get the convolved image. 
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It is no! necessary to perform mu~uplication at every pixel directly. A look-up table can 
be set to have all the possible products for the particular mask value. indexed by the pixel 
value For a 256-level image the LUT will have 256 entries. Now, multiplication is simplified 
to a table look-up. The product is obtained by reading the input image and using the 
value as index in the LUT to get the product. With these simplified operations one 'PASS' 
is defined as: 

I. Set the LUT for the particular mask value. 
2. Read the input buffer. 
3. index the LUT with the value read. 
4. Add the product read from the LUT to the output buffer. 
5. Repeat steps 2, 3 and 4 until all points in the image are read. 

One pass results In an output array of partial products corresponding to a particular 
value. And, one pass is independent of another if a different output buffer is maintained 

for each pass. 

Then the partial products. calculated for every mask value, are added 'appropriately' to 
get the correct convolved output, as descrihcd below. 

4.2. Addition of partiul products with offsets 

The summation of the partial products should be done by maintaining the neighborhood 
order with which the mask values are multiplied with the pixels. This can be illustrated 
with the help of Fig. 1. The partial product arrays corresponding to the two mask values, 
m ( -  1, - 1) and m(- 1;O), with the entire image are shown below. 

According to direct evaluation, p1(0,0) should be added to p2(0, I )  as they correspond 
to the horizontally adjacent values in the mask. Moreover, this sum should go to the output 
location (1, I), because it corresponds to the image location over which the centre of the 
mask is placed. It is evident that addition of the partial products has to he done with 
suitable offsets computed as a function of the mask value indices and the image size. 

Instead of ohtailling the partial products separately, and then adding them to get the final 
result, the operation of getting the sum, as and when the partial products are calculated, 
can be performed using the offsets. For this, the output huffer, having the same size as that 
of the input image, is initialized to zero. The output buffer is modified during every 'pass' 

Fro. 1. Panial product camputation. 
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in the following manner. Read the input image, pass it through the LUT to get the product, 
and add the partial product to the contents of the output buffer location offset by the 
indices of the mask value location, with respect to its centre. 

For mask value m(- 1, - I), the row- and column-offsets are 1 .  The output from the 
look-up table is added to the output buffer contents at (1,l). This can be done by using 
the address (indices) generated for reading the input as the reference, and calculating the 
output address (ind~ces) by adding the row- and column-offsets. The addition is done using 
Modulo N arithmetic to take care of the image size limits. During the operation of one 
pass, the offsets remain the samc. So, for every pass, the look-up table has to be modified 
to hold the correct products, and the offsets have to be calculated for the particular mask 
value location. Since the partial products are added with suitable oflsets to the same output 
buffer, there is no requirement of additional storage for the partial products. 

4.3. Generation of' row- and column-offsets 

As mentioned earlier, the row- and column-offsets are obtained as a function of the 
mask indices and the image size. The expressions for the row- and column-offsets are as 
gwen below: 

Image-slze = N x N Mask-size = M x M 

for I: = 0 to Mask-size12 do 
column-offset [I]: = (Maskksize12) - I; 

for I .  = (Mask-sizeJ2) + 1 to (Mask-six - 1) 
column-offset [I]: = lmage_size - (Maskksize -I); 

for I: = 0 to Mask_size/2 do 
row-offset [I]: = (Maskcsize/2) - I ;  

for I: = (Maskksize/2) + 1 to (Mask-size - 1) 
row-offset [I]: = Imagecsize - (Mask-size - I); 

In this method, the border pixels are wrapped around in both X and Y directions. For 
example, let N - 128 and M = 5. Consider the mask value m(-  2, - 2). Row- and 
column-offsets are 2 and 2, respectively. 

Input address Output address 
0, 0 Row: (0 + 2) mod 128 2, 2 

Column: (0 + 2) mod 128 

127, 10 Row: (127 + 2) mod 128 1, 12 
Column: (10 + 2) mod 128 

127, 127 Row: (127 + 2) mod 128' 1, 1 
Column: (127 + 2) mod 128 
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5. Parallel implementation 

As described in Section 2.2, the convolution of the image of size N x N, with a mask of 
size M x M, is complete after M x M passes. 

It can be seen that the outcome of one pass does not depend on the outcome of the 
other, at any stage. That is, if multiple passes, corresponding to different mask elements, 
are carried out in parallel, and the respective outputs are written to different output buffers, 
then the final summation can be performed as the last operation in the sequence. 

Consider one unit, containing an input buffer, a LUT, an output buffer and the timing 
logic, that performs one pass. Using such units the convolution can be completed using 
full or partial parallel implementation. 

If only one such unit is used to do the operation, in M2 sequential passes, then the 
resultant structure is a serial fast convolver. When we have M Z  units performing M 2  passes 
in parallel, each unit doing a pass corresponding to  a mask value, the convolution is 
completed in one parallel pass. This leads to a full parallel structure for the implementation 
of the fast convolution method (M2-parallel scheme). However, K  units, where K is a factor 
of M2, can be made to proceed in parallel (K-parallel scheme). But each unit will perform 
a sequence of M 2 / K  passes, the resulting partial products being accumulated in the K 
output buffers. Then the partial products, calculated for every mask value, obtained using 
M L  or K-parallel scheme, are added appropriately to get the correct convolved output. 

5.1. Speed-up factor 

It is easily seen that the number of multiplications is reduced to a total of M  x M x 256. 
That is, the look-up table is initialized for each mask value, and in the process 256 
multiplications are performed. For the entire operation the look-up table is set M x M  times, 
as the number of passes equals the number of mask elements. So, the number of 
multiplications for convolving an image of size N x N with a mask of size M  x M  is 
independent of the size of the image. Moreover, the whole process is now transformed into 
simple memory accesses with appropriate addressing. 

The execution times for different schemes are explained by the following analysis 

Let the image be of size N x N and 8 bitslpixel, and mask be of size M  x M. Let t, be 
the time taken for one multiplication. Define one memory access as the sequence: reading 
input buffer, reading the LUT, and reading and writing the output buffer. Let t. he the time 
taken for one such memory access. 

Direct method 

Number of multiplications:N2 x M2 

Number of memory accesses:N2 x M2 

Time taken to complete convolution: N2 x M 2  x (t, + to) 

(neglecting the time taken to add the partial products). 
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Table I 
Comparative analysis of the different schemes 

Scheme Time Speed-up factor 

Direct N2*M'*(t ,  + t.) 1 

M2-prallel 256*M2"r, + N2*t, 1" + 1. 
M' - (N large) 

f 

Similarly, the time and speed-up factors are computed for the other schemes (Table I). 

The software implementation (serial scheme) of the LUT-based convolution was 
compared with the direct method of convolution. The speed-up is about 2.2. The small 
value is due to the fact that t, > t,, where t. includes the time taken for instruction decoding 
and address calculation. So the improvement in the execution time is only marginal. But, 
in the direct hardware implementation t, can be reduced to such an extent that t, < t,, 
and very high speed-up factors can be obtained. 

If all the M 2  passes are performed in parallel, then a speed-up of approximately M Z  
times the value for serial scheme can be obtained. This will make some of the low-level 
tasks performable in near real-time. However, it is possible to have K passes proceeding 
in parallel, and if K is a factor of MZ,  the convolution can be completed with a speed-up 
of approximately K times that of the serial scheme. 

6. Hardware features 

The hardware prototype of the fast convolver has been fabricated. Only one unit has been 
built, so the convolution can be done only by sequential passes. The board is designed to be 
compatible with the 110 extension slot of the pc/AT9. (The board was fabricated using 
off-the-shelf components.) Essentially, it consists of fast memory chips, adders, counters, 
latches, monostable multivibrators and other logic chips. A single chip processor, Intel 
MCS-481°, coordinates the internal operations and the communication with the host 
machine(PC/AT). The design is straightaway extendable to parallel operation by duplicating 
the hardware boards. 

If the same board is used for parallel implementation, with K passes in parallel, then 
there will be K input and output buffers. Each hoard will accumulate results corresponding 
to ( M Z / K )  passes. The sum can be obtained as a last step by reading the contents of the 
K  output buffers and adding them. 
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6.1. Hardware description 

Refer to the block d~agram (Fig. 2) of thc convolvcr. The input buKer is 256 x 256, 8-bit 
wide. This amounts to a memory of sirc 65536 bytes. Two 32 K x 8 chips are used to form 
the 64K-byte input buffer. The output buffer is 256 x 256,16-bit wide. Four 32 K x 8 chips 
are used for realizing the output buffer. The input and output buffers are addressed using 
16 lines. The LUT, implemented on an 8 K x 8 chip, has 256 locations, each 16-bit wde. 
In this case, 8 address lines are required to address the LUT. 16-Bit addition is performed 
using four 74LS283 4-bit adders". The clock rate ib 1.25 MHz, and hence the clock period 
is 800ns. Address is gencrated using four 74LS161 4-bit preset counters. As descr~bed in 
offset address generation section, the output buffer is addressed using another 16-bit preset 
counter, which is driven by the same clock that drives the input address generator. The 
terminal count of the input address generator marks the end of one pass (Fig. 4). 

6.2. Timing considerations 

Addressing of the buffers and the LUT is done by the counters. Intermediate signals for 
latches and read signals are generated using monostable multivihrators. 

Address gen. 

U Output 
Image 
buffer h 

Offset addr. gem 

Control signals 

based Interface 

To PC/AT I/O slot 
FIG. 2. Functional block diagram of the faat cunvolvei 



A PARALLEL FAST CONVOLVER FOR COMPUTER VISION 167 

I<---------------------- 800"s -------------------------> I 

Input I I 
memory I 
read I 1 

I I 
Output : t, l read LUT 
memory I I 

read ; 1 

I 
Address 
generated 
here 

FIG. 3. Timing details of the Cast convolver. 

I I I I 
I I I I Output 
: t, I Add I t, i memory 

I I I write 

LUT 
0&07 

Fro. 4(a). Input section. 
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FIG. 4(bl. Control section. 

FIG. qa)-(c). Hardware schematic diagram. 
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In one clock pcrlod the following operations have to be completed: 

1.  Read input buffer; read output buffer. 
2. Use data read from the inpul buffer to addrcss the LUT and read the LUT. 
3. Add the value read lrom the LUT to the one read from the output buffer. 
4. Write the output buffer. 

The major time factors are the time taken for steps 1, 2, 4 and 5. The access time 
for the input and output buffers is 150ns, and that of the LUT 30011s. The adder takes 
5011s to complete 16-bit addition. I n  stcp 1, both the input and the output buffer are read 
simultaneously. So the total time taken for the above operations is 150 + 300+ 501- 150 
= 650ns. One pass is completed after 65536 clocks. The time taken (Fig. 3) to complete 
one pass of the convolution is derived to be 65536 x 800 ns. 

For example, to complete the convolution of a 256 x 256 image with a 3 x 3 mask. the 
time taken will be 52.4 x 9 = 471.6ms. That is approxin~ately 112s. If all the nine passes 
are performed in parallel, the time taken will be the same as that for one pass (54.2111s). 
This does not include the time takcn for the mitidl loading of the image and the setting 
up of the LUT. By using faster memory, typically 80ns, the processing time per pass can 
be reduced to about 20ms. 

Along with the hardware development, the interface software has also been developed. 
The user is given a sct of calls to download data, set operation codes, and get return codes. 
There are opcodes for the following operations at the board level: (i) Load input buffer 
from the host, (ii) start pass, (iii) load LUT, (iv) read output buffer, (v) load row- and 
column-offsets, and (vi) end of operation. 

The opcodes for these operations are sent to thc single-chip processor, MCS-48, 
controlling thc board activities. MCS-48 decodes the opcodes and starts the appropriate 
action. After the completion of the operation a return code is sent to the host. Coordination 
between the board and the host is achieved through mutual interrupts. 

7. Conclnsions and further work 

The principle of operation of the fast convolver board, and its parallel implementation, 
emphasizing the speed-up factor, are described. The speed advantage suggests that the 
parallel version will facilitate near real-time performance of low-level computer vision tasks. 
After the completion of prototype testing, parallel implementation will be taken up. 
High-level language support for the fast convolver will be provided so that the user need 
not use the low-level calls to use the fast convolver. 

It is poss~ble to extend the design of the convolver board to perform morphological 
operations, such as erosion and dilation. This can be achievcd since the morphological 
operators are similar in nature to the convolution operation. In other words, slight 
modifications in the adder stage will make the board a multifunctional unit. 
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