
An annotated bibliography of research in parallel
computing at the Indian Institute of Science, 1985-1991

S. K. GHOSHAL AND V. RAJARAMAN

Supercomputer Educat~on and Research Centre, lndian lnstctute of Science. Bangalore 560012, lndm

Abstract

Thx paper briefly describes research actrv~ties ~n parallel computmg conducted at the Indian Institute of Screoce
hetween 1985 and 1991. The activities include parallel computer archltecture, parallel programming languages,
parallcl aigonthmr and task scheduling in multiprocessors. There have been ninety publications in this area which
are c~ted m thls paper w~th small annotations giving the gist of each article.

Key words: Parallel computing, annotated bibhography, parallel computer archltecture, parallel programmtng
language, parallcl algorithms, task scheduling in multiprocessors.

1. Introduction

Parallel computing activities at the Indian Institute of Science have been pursued by many
research groups spread over a number of departments. The research has led to a large
number of Ph.D. and Master of Science theses and published papers in many refereed
journals. The primary purpose of this article is to classify the publications into various
fields and briefly state the main theme of the papers. The research activities may be classified
into a number of broad areas. In the following sections, we specify these areas and subareas.
The published papers are arranged using this classification. The main theme of each paper
is stated after the cited reference. We have included articles published in journals and those
presented at conferences, and have excluded technical reports as most of them eventually
get published. While every attempt has been made to contact individuals working in parallel
computing at the Institute and obtain their publications we may have missed some due to
ignorance or non-accessibility 01 the papers. We trust that we will be excused.

2. Parallel computer architecturet-50

Many groups at the Institute have been proposing architectures for parallel machines and
building prototype hardware. The prototypes have been used as a test bed to develop

172 S . K. GHOSHAL AND V. RAJARAMAN

operating systems, parallel compilers, parallel programming environments and application
programs. Even though commercial parallel machines are widely available in the West, the
situation is quite different in India. Commercial machines have not been available and
there was a motivation to build machines and eventually transfer the technology to the
industry. Besides, test beds are necessary to try out various programming ideas on actual
hardware rather than on idealised simulators. The prototype machines constructed fall into
two categories: Shared memory parallel computers and message-passing parallel computers.
Computers named MULTIMICRO1 and SHAMPZ fall in the first category. MMS3,
BBS5, hypercubes based on Intel microprocessors6 and transputer-based machines1° fall
in the second category. Some architectures are also based on the implementation of an
appropriate specially designed highly parallel hardware algorithm as a board-level back-end
processor to a popular and widely used host machine such as the IBM PC/AT12. An SIMD
machine called CLAP-4, whose processing elements are capable of executing Boolean, simple
near-neighbor and recursiue near-neighbor instructionsl"as also been designed and built
at IISc for image-processing applications.

Besides the general-purpose computers, research has also been conducted in designing
parallel machines for special purposes such as logic programming14- 16, executing programs
written in the paradigm of communicating sequential processes" and solving ordinary
differential equation^'^. These papers14-I= have been put in the class-special-purpose
parallel computers.

Other researchers examine computer architectures (e.g., Biswas et alzo) which use concepts
that are expensive or dficult to implement with current state-of-the-art in technology. In
such cases simulation is used as a tool. The proposed machine is simulated and its
performance evaluated. Excellent simulation strategies2' are formulated and general-
purpose tools craftedz8 to meet these goals. Systolic architecture^^*-^^ and
architecture machines fall into this category. We have listed papers in these and related
areas (e.g., simulating a system of neurons37 or multiprocessors for high-speed numerical
 computation^^^) under Architectural proposals-Simulation and analysis20-41.

Analysing the performance of parallel computers by using idealized models and using
these as guidelines to design actual systems is an interesting research area42-47. After an
actual multiprocessor is constructed in hardware, it is benchmarked on a variety of
application problems to evaluate and suggest ways of improving it5'. We include a separate
section listing papers in this area42-50.

3. Languages for parallel co~nputers~'-~

Most parallel computers are designed using von-Neumann architecture processing elements
which are sequential processors. Programs are written in one of the well-known programming
languages such as Fortran or Pascal designed for sequential computers. There are ways
to extract parallelism from these programs5'. Sometimes, new constructs are added to these
languages to enable multiple processes to be spawned on different processors, e.g, as in Shah
and Patnaikz8. Novel paradigms of concurrent computation like Linda5* are implemented

PARALLEL PROCESSING AT llSc 173

on practical message-passing architectures for extending conventional programming
languages like C for.paralle1 programming. The process of compilation itself can be speeded
up too by using parallel processing t ~ c h n i q u e s ~ ~ ~ ~ ~ . Non-von-Neumann architecturessq
and axiomatization of distributed processes6' result in new languages too. Issues in
designing parallel languages and compilers for them are an important research areas'-60.

4. Algorithms for parallel comp~ters~'"~

Over the years, the design of algorithms for computers has assumed great importance.
With the advent of parallel computers, it is often found that algorithms which are designed
for sequential single processor computers are not appropriate for parallel compntcrs.
Appropriate abstractions for the problem-solving strategy are required at times6'. Thus,
a large number of researchers are now examining algorithms appropriate for parallel
computers. The algorithms should be suitable to be mapped on to multiple processors.
For an example, look at an algorithm for parallel hypertext retrieval6'. There is also a
close relationship between an architecture and an algorithm which is appropriate and
efficiently maps on to the architecture.

Neural networks may be thought of as a densely interconnected set of tiny processing
elements. These are massively parallel systems. These networks mimic (albeit in a gross
way) the dense interconnection of neurons in a human brain and have fascinated researchers.
Many researchers havc been attempting to design algorithms to solve problems using neural
 net^^'-^^. Such algorithms 'train' the network to recognize patterns and solve complex
optimization problems which are intractable on sequential machines. Research in this area
at the Institute is at an early stage. Papers in this areaB"" are also listed in the algorithms
section.

5. Task scheduling in parallel c ~ m p u t e r s ~ ~

Many algorithms may be modelled as directed graphs in which nodes represent computations
(or tasks) and arcs data exchanged between tasks. An interesting research problem is
mapping such a task graph on to a parallel computer with a specified interconnection
between processors. No optimal solution exists for this problem and many heuristics are
e v ~ l v e d ~ ' , ~ ~ . The heuristics differ between architectures.

As may be seen from the above survey a large variety of problems have been examined
by researchers at the Institute. There is a growing body of literature and the bibliography
is a reasonable representation of the work done in this s ~ b j e c t ~ ~ - ~ ~ .

6. Acknowledgements

We would like to thank all the authors whose papers are cited here for generously helping
us by lending their papers and for personal discussions.

174 S K. GHOSHAL A N D V. RAJARAMAN

7. Annotated bibliography

7.1. Parallel computers built in hardware

I. SRIDHAR, M. K., SRINATH, R. and SURESH, K., Parallel numerical computations:
the case for MIMD architectures, Proceedings of the CSI Workshop on Issues in Parallel
Computing, January 1989. This paper elaborates the design philosophy of the
MULTIMICRO parallel computer. Details of the system architecture are given along
with the application programming methodology. The soffware environment provided
by the MMk kernel is described. MULTIMICRO is a multibus 11-based shared memory
architecture. It has eight 803861387-based processing elements. Each processing
element has 2-4 MB local memory. The size of the shared memory is 4-8 MB. The
architecture supports fork-join parallel programming model for Fortran-77 and C. The
MULTIMICRO parallel processor uses an indigeneously developed parallel operating
systems kernel called MMk and provides an efficient message-passing syStem for
interprocessor communication and synchronization, while providing for a uniform
shared memory address space. The MMk kernel has since been transferred for commercial
exploitation to M/s Wipro Information Technology Ltd, Bangalore, by the Department
of Electronics, Government of India, the sponsors of the project. Some of the
applications that have been successfully ported on to the MULTIMICRO include
power systems analysis, physics, molecular dynamics and thermal modelling of satellites,
etc. Although the machine was designed for specific applications in power systems
simulation, a large class of numeric applications have been successfully ported on to
the MULTIMICRO.

2. GHOSAL, D. and PATNAIK, L. M., SHAMP: An experimental shared memory
multimicroprocessor system for performance evaluation of parallel algorithms, Micro-
processing and Microprogramming, 1987,19, 179-192. The design and implementation
of a shared bus shared memory multiprocessor system designed and built for graphics
applications is given in this paper. It has five Intel single-board computers based on
8086. An Intel microcomputer development system was used for performing input/output
operations. Multibus is used for interconnecting these. An efficient bus-arbitration
algorithm was devised for the system and implemented in hardware. The system has
both global memory and local dual-ported memory. An interprocessor communication
mechanism is implemented through asynchronous hardware interrupts. A multiprocessor
operating system is designed as a supervisor for process management, 1 /0 management
and message interpretation. The on-board timers on the single board computer were
adapted to provide accurate timings of different events so that an appropriate
performance monitoring can be done. Execution time, idle time, active time and
synchronization time were measured for various graphics applications.

3. MOONA, R. and RAJARAMAN, V., Multidimensional multilink multicomputer: A
general-purpose parallel computer, This Journal, This Issue. MMS stands for multidi-
mensional-multilink multicomputing system. It is a computer architecture built with
IBM PC/XT- or PC/AT386-based motherboards interconnected using message-passing
FIFO links. MMS mn be realized using PC motherboards stacked in a specially

PARALLEL PROCESSING AT ilSc 175

designed cabinet. It can alternatively be implemented on a given set oIfull-fledgcd PCs
located within a short geographical distance, with the PCs retaining their functionality
as uniprocessors. The price of this conversion is about Rs. 3,000 per processing clemellt
and involves the plugging in of the commun~cat~cln interface card developed at IISc.
The components used in its hardware, except the first-in first-out (FIFO) memory chip
which is imported, are available locally. The intercomputer communication link can
transfer data between processors at a ratc which is faster than the rate at which a
processor can interchange data with its own primary storage. The link a l s ~ supports
the prinntives of blocked message-passing communication with hardware aids for
automatic synchronization. It supports multicasting in hardware. MMS offers a r~ch
interconncclion topology among the processing elements. Various configurations of
the MMS arc possible and have been implementcd. Programs can be developed on
the MMS architecture so that they can optimally utilize all the processing elements
on any MMS configuration for many classes of application problems. The paradigm
of represenration and execution of parallel programs in the MMS architecture is an
extension of Hoarc's CSP where the sender process does not have to wait for the
receiver to be ready. MMS was first implernentcd using MS-DOS as the basc opcrating
system. IJnder MS-DOS the following languages were provided with user-callable
libraries for parallel processing: Pascal, Fortran, Cobol, l'rolog and C. Recently, Unix
has bccn implemcntcd on the MMS. C is availablc on the Unix system for user
programming. A Fortran will be implemented soon. Our own Pascal con~piler-generating
native code for the MMS will be ported to this system shortly. A number of routines
for numerical integration, curve-fitting and solution of linear programming problems
have been implemented on various configurations of the MMS architecture wilh
satisfactory speedups.

4. GHOSHAL, S . K., GUHA, S., AKIFP, S . M. and RAJARAMAN, V., Simple low-cost
multiprocessor based on message-passing FIFO links, Microprocessors and Microsystems,
1990, 14, 297-300. The motivation for using IBM PC n~otherboards as processing
elements and byte-wide data paths for interprocessor communication links are
elaborated. The design and implementation of the FIFO links used in MMS are given.
A few topologies that the MMS can embed are discussed. Application programming
methodologies are elaborated along with a description of the Pascal-callable firmware
library for parallel programming. The paper concludes by pointing out a few bottlenecks
in the system architecture and suggests steps for alleviating them.

5 . KIJMAR, M. S. S., SRINIVASAN, M. P. and RAJARAMAN, V., A flexible test bed
for multi-microprocessor system studies, Proceedings of the CSI Workshop on Issues
in Purallel Computing, January 1989. Current trends in computer architecture design
indicate that distributed mcmory computer systems will play a vital role in satisfying
the ever-increasing computing needs at a low cost. Multicomputer systems are
distributed memory computer systems designed using off-the-shelf components and
readily avaiiahle general-purpose single-board computers. The crux of the design is in
obtaining a good processor interconncction scheme to reflect the needs of the targetted
multicomputer applications. Message-passing architectures are extensively used in
exploiting coarse-grain parallelism in a wide range of applications. The BBMS consists

176 S. K. GHOSHAL AND V. RAJARAMAN

of a general-purpose front-end computer system that caters to all the general
programming requirements of the user and a back-end consisting of computing elements
(CEs) interconnected with each other and the host through the message broadcast bus
(MBB). This is a multicomputer system with eight homogeneous processors intercon-
nected through a high-speed time-shared bus. Each computer has a 32-bit CPU with
2MB RAM and some peripherals. The bus architecture is such that it reduces the
communication overhead and speeds up the performance in a communication-intensive
environment. Simulation results confirm that at even in fine-grain environment it
performs eficiently. The system is more suitable for solving problems described in the
form of task graph. Communication and arbitration overlaps the CPU execution.
Hence, the communication overheads are minimum. The system can operate both in
MSDOS and UNIX environments. Extensions are provided to C language to enable
users to write application programs. An extensive instrumentation is built to make
measurements under execution condition without any overhead. This machine can be
used to test the performance of algorithms, to detect hot spots in communication
medium, to validate simulated results, etc.

6. DAS, S. R., VAIDYA, N. H. and PATNAIK, L. M., Design and implementation of a
hypercube multiprocessor, Microprocessors and Microsysterns, 1990, 14, 101-105. A
low-cost experimental eight-processor hypercube that can be used as a test bed for
investigating the performance of various parallel algorithms is described in this paper
along with its software communication kernel. The format of the message packet is
described along with the experimental configuration of the hypercube. A dual-ported
random access memory chip is used to implement an interprocessor communication
mechanism that may be viewed as a mailbox. The implementation of the hypercube
host is described. Various programming methodologies usable on the architecture are
discussed.

7. JAGADISH, N., MOHAN KUMAR, J. and PATNAIK, L. M., An efficient scheme
for interprocessor communication using dual-ported RAMs, IEEE Micro, 1989, 10,
10-19. The hardware implementation of an efficient scheme for interprocessor
communication using dual-ported RAMs is described in this paper. This scheme is
what has been used by Das et a16. A three-dimensional hypercube along with the
network controller is described, and the details of the dual-ported RAM chip are given.
The memory map ofeach processing element is described, along with the block diagram
of a node-processor hardware. A circuit diagram of the wait-state generator is provided
and the message-transfer protocol is given. How the scheme can be extended to a
64-node configuration is described. The advantages of the scheme over others employed
on practical machines like the Intel hypercube are discussed.

8. MOHAN KUMAR, J. and PATNAIK, L. M., Extended hypercube: A hierarchical
network of hypercubes, to appear in IEEE Transactions on Parallel and Distributed
Systems. The paper presents an introduction to the topology of the extended hypercube
and analyses its architectural potential in terms of message routing and execution
eficiency of a class of highly parallel algorithms. Topological properties and performance
in terms of computation/communication ratio are also discussed.

PARALLEL PROCESSING AT IISc 177

g, MOHAN KUMAR, J. and PATNAIK, L. M., Fault-tolerant message routing and
error detection schemes for the extended hypercube, to appear in Proceedings ICPP-91.
This paper discusses fault-tolerance aspects of the extended hypercube architecture.
The use of network controllers for error detection and fault-tolerant message routing
is discussed. Error detection algorithms which run concurrently with typical application
examples, viz., matrix multiplication and multinode broadcast have also been discussed.

10. MOHAN KUMAR, J., PATNAIK, L. M. and PRASAD, D. K., Transputer-based
extended hypercube, Microprocessing and Microprogramming, 1990, 29, 225-236. An
extended version of the above hypercube architecture, its transputer-based implementa-
tion and performance studies are reported in this paper.

11. MOHAN KUMAR, J. and PATNAIK, L. M., Performance studies of a transputer-based
extended hypercube, This Journal, This Issue. In this paper, implementation of an
extended hypercube (EH) on a multitransputer system is discussed. A comparative
study of the performance of EH and the hypercube in executing communication-intensive
tasks is carried out.

12. RAMANI, K., SRIKANTA, S., VENKATESH, Y. V. and RAYMOND, J. W., A parallel
fast convolver for computer vision, This Journal. This Issue. The design and fabrication
of an add-on board to an IBM PC/AT that performs the two-dimensional convolution
of images is described here. The mathematical preliminaries are given. A comprehensive
amount of literature survey on this topic is presented in this context. A hardware
algorithm for convolution is developed which uses a Product look-up table and computes
partial products with both row and column offsets. This scheme is eminently suitable
for parallel implementation. The board-level architecture of the system is described
thereafter. An Intel MCS-48 single-chip microprocessor coordinates the internal
operations and communications with the host which is an IBM PC/AT. The convolver
is compatible with the I/O expansion slot of the PC/AT. It has an on-board input
buffer of size 256 x 256 x 8 bits and an on-board output buffer of 256 x 256 x 16 bits.
Address generation for these buffers and the look-up table is done by counters. There
are opcodes for different operations of the convolver which can be downloaded to the
MCS-48 from the host. After the operation is completed, a return code is sent back to
the host. Coordination between the host and the convolver is done by mutual interrupts.
The paper concludes with reports on the status of high-level language support for the
convolver among other activities. How the convolver board can be used for performing
morphological operations such as erosion and dilation is pointed out.

13. MUKHERJEE, A. and VENKATESH, Y. V., Implementation of a prototype cellular
logic array processor, Defence Science Journal, 1985,35,353-359. Interactive processing
of image data cannot be efficiently done using conventional computers. This paper
describes a prototype array processor CLAP4 that was implemented as an eight-by-four
rectangular grid that runs as an attached processor to an HP 1OOO +nicomputer. Each
processing element has a four-bit ALU and operand and result registers. A processing
element can do Boolean, simple near-neighborhood and recursive near-neighborhood
operations. There is a control unit that performs data transfer between the host and
the array processor, command word decoding, detection of errors in processors and

178 S. K GHOSHAL AND V. RAJARAMAN

other operations. Diiferent implementation details of CLAP-4 are given. Future
directions of woric are pointed out at the end.

7.2. Special-purpose parallel computers

14. SASTRY, A. V. S. and PATNAIK, L. M., OR-Parallel execution of logic programs on
modified Manchester dataflow architectures, Proceedings of the SEARCC, 1988, Tata
McGraw Hill Publishing Company Ltd.

15. SASTRY, A. V. S. and PATNAIK, L. M., A dataflow architecture for OR-parallel
execution of logic programs, Proceedings of the ICPP, 1988.

!6. SASTRY, A. V. S. and PATNAIK, L. M., OR-Parallel execution of logic programs on
a multi-ring dataflow machine, New Generation Computing, 1991, 9(2). Studies on the
OR-parallel execution of logic programs on extensions of the Manchester machine
have been made in these three papers. A new type of a functional unit, called the
definition search unit, has been incorporated. It stores all the definitions of a program.
When a goal arrives, this unit spawns the execution of all the clauses that are there in
the definition of the goal and thus OR-parallelism is exploited. One variant of the
extension interconnects multiple matching units, multiple processors and multiple
memory modules through a shared bus. The other architecture employs a multistage
interconnection network to interconnect three types of rings called processor ring,
memory ring and definition ring. One starts from the basic premise of the computation
model of logic programs on dataflow systems and then shows how to handle multiple
binding environments efficiently. Details of the simulation are given. Speedup is plotted
against the number of processors employed.

17. RAVIKUMAR, C. P. and PATNAIK, L. M., An architecture for CSP and its simulation,
Proceedings %f the International Conference on Parallel Processing, 1987, pp 874-881.
The simulation of an architecture for efficient execution of CSP programs is presented
here. The requirements of a programming language for denoting distributed processes
are brought out. A distributed architecture for a CSP environment is proposed next.
Here, there are a number of processing elements connected to a central processor by
a star-connected message-passing network. Each processor has local memory and a
communication interface unit. Several schemes are discussed to implement CSP. The
instruction set of each processor is formulated. Details of the simulation are given.

18. MURTHY, C. S. R. and RAJARAMAN, V., An architecture of a Navier-Stokes
computer and its implementation, Proceedings of the Sixth IMACS International
Symposium on Computer Methods for PDEs, 1987. The importance of the Navier-Stokes
equation is emphasized. The requirement of high-speed computation to solve these
equations is pointed out. A survey of parallel computer architectures is done. An
architecture for solving the Navier-Stokes equations is proposed. It has a two-
dimensional broadcast bus network with a round robin non-gated sequential service
access scheme to ensure collision-free transmission of data. The system architecture is
described thereafter. The instruction set for interprocessor communication is explained.
A typical system of Navier-Stokes equations is shown as a case study. The finite-difference

PARALLEL PROCESSING AT IISc 179

formulae for this system is derived along with a convergence criteria. How to map the
problem on to hardware is shown. Complexity analysis is done.

19. GHOSHAL, S. K. and RAJARAMAN, V., A parallel digital differential analyzer,
Proceedings of the Indo-US Workshop on Spectral Analysis in One and Two Dimensions,
1989, Oxford and IBH. A systolic architecture is proposed here for solving ordinary
differential equations using parallel predictor-corrector methods. The task-partitioning
scheme is described among the processors. Requirements of the interprocessor
communication link are brought out. The process view of parallel numerical integration
of a system of ordinary differential equation is encoded in the notation of CSP.

7.3. Architectural proposals - Simulation and analysis

20. BISWAS, N. N., SRINIVAS, S. and DHARANENDRA, T., A centrally controlled
multistage shuffle network for reconfigurable and fault tolerant architecture, ACM
SIGARCH, Computer Architecture Newsletter, 1987, 81-87. Conventional routing
methods for shuffle networks are sequential ones. They are prone to collisions and
conflict of messages. The scheme described in this paper is a centrally controlled one.
Here a control code uniquely determines the route of a message without any conflict.
This scheme enhances fault tolerance also. However, a centrally controlled scheme like
this one has its own problems too.

21. BISWAS, N. N. and SRINIVAS, S., Fault tolerance in multiprocessingsystems, Sadhana,
1987, 11, 93-110. How the fault tolerance of message-passing multiprocessors using
shufle exchange networks can be enhanced is described here. An improvement in the
routing algorithm which makes the routing conflict free and enhances the reliability
of the network is elaborated.

22. BISWAS, N. N. and SRINIVAS, S., Simple methods for the calculations of root of
reconfigurable binary tree structure, Proceedings of the IEEE Letters, 1987, 690-692.
How to find the root of a reconfigured binary tree architecture uniquely from its
configuration code is given in this paper. The algorithm can be adapted to identify
other nodes as well in any tree architecture. The amenability of the root to be identified
easily in a reconligured tree architecture using multistage shufile interchange networks
leads to the ability of the architecture to recover from faults.

23. BISWAS, N. N. and SRINIVAS, S., Novel reconligurable tree machine, Electronics
Letters, 1987, 1144-1 145.

24. BISWAS, N. N. and SRINIVAS, S., A reconfignrahle tree architecture with multistage
interconnection network, IEEE Transactions on Computers, 1990, 39, 1481-1485. A
new approach to design reconfigurable tree architectures is presented in the above two
papers. A binary encoding scheme for the numbering of the nodes is used, which enables
easy reconfigurability in the event of a failure. A multistage shufle-exchange network
is used that allows the multiprocessor to rapidly switch from one configuration to
another (there being as many configurations as the number of processing elements).
Results about the connectivity and uniqueness of the encoding scheme are stated and

180 S K GHOSHAL AND V. RAJARAMAN

proved. An example is given with eight processing elements. The advantages of this
interconnection methodology are explained.

25. RAVIKANTN, K., SASTRY, P. S. and VENKATESH, Y. V., A reduction architecture
for the optimal scheduling of binary trees, Future Generation Computing Systems, 1988,
4, 225-233. An interconnection network that allows for scheduling of binary trees of
arbitrary depth on reduction architectures for applicative languages is designed in this
paper. The applicative semantic model of the languages to be implemented on this
architecture is discussed. Issues in designing the interconnection network are discussed.
A scheduling strategy is designed thereafter. Results are stated and proved in this
regard. The strategy is illustrated by partitioning a very large binary tree on an
eight-processor machine. An interconnection scheme for trees with arbitrary arity is
formulated thereafter. Analytical formulae are derived for speedup. Scheduling and
load-balancing strategies are given. The overall design is compared with AMPS,
REDIFLOW and ZAPP for the intended application and is demonstrated to be better
than these. The paper concludes by pointing out the need to investigate dynamic
scheduling strategies, among other directions of future research.

26. BANERJEE, K., SASTRY, P. S. and VENKATESH, Y. V., An SIMD machine for
low-level vision, International Journal of Information Science, 1988, 44, 19-50. This
paper pesents an SIMD machine which has been tuned to execute low-level vision
algorithms employing the relaxation labelling paradigm. Novel features of the design
include: 1) A communication scheme capable of window-accessing under a single
instruction; 2) Flexible I/O instructions to load overlapped data segments; and 3)
Data-conditional instructions which can be nested to an arbitrary degree. A time
analysis of the stereo-correspondence problem, as implemented on a simulated version
of the machine using probabilistic relaxation techniques, shows a speedup of almost
N2 for an N x N array of processing elements.

27. RAVIKUMAR, C. P. and PATNAIK, L. M., High-level simulation of parallel VLSI
architectures, Proceedings of the Second International Workshop on VLSI Design, 1988,
pp 367-381. Several strategies are discussed here to simulate SIMD, systolic and MIMD
architectures. With so many VLSI architectures being proposed for different applications,
there is a need for software bread-boarding. Issues regarding the simulation of parallel
computer hardware are discussed. Mapping between physical entities in a parallel
computer architecture and the corresponding software objects is tabulated. Next a
processor is characterized in terms of its size and capabilities and also its principal
classes of operations. The design and implementation of software objects that emulate
these operations are given in detail. An example of simulating a systolic architecture
using this methodology is given. It is followed by'another one, of simulating an SIMD
architecture. Conway's Game of Life is played on an N x N array of cells being driven
by a control processor.

2% SHAH, N. R. and PATNAIK, L. M., SPARCS: A system for parallel architecture
simulation, Proceedings of the ICPP, 1990, pp 605-606. A software tool featuring a
built-in architecture compiler is described here which can be used to simulate parallel
architectures. An extension of standard Pascal, called X-Pascal, is introduced as a

PARALLEL PROCESSING AT IISc 181

high-level language for specifying concurrency as a directed acyclic graph. Mechansims
for interprocess communication and synchronization are discussed thereafter. An
architecture model is introduced as a quadruple consisting of sets of processors, routers,
memory modules and an irreflexive relationship denoting connectivity. MIMD systems
can be directly mapped on this architecture model. A programmable communication
processor is introduced next, which can be used as a router or an intermediate message
processor. Each router can be programmed to adopt a first-in first-out strategy for the
messages it processes. The simulator core is described next. It sonsists of seven
components. They are: architecture builder, algorithm reader, scheduler, memory
manager, simulation driver, communication handler, and statistics collector, respectively.
The simulator has been used to study a number of proposed novel architectures.

29. KRISHNAN, D. and PATNAIK, L. M., Systolic architecture for Boolean operations
on polygons and polyhedra, Computer Graphics Forum, 1987, 6, 203-210. A systolic
architecture for computing the union, intersection and difference of two polygons and
polyhedra is described here. The different stages of ascan-grid algorithm are implemented
using corresponding hardware units such that the data denoting the edges of the
polygon flow through the system in a systolic fashion.

30. MATHIAS, P. C. and PATNAIK, L. M., A systolic evaluator for linear, quadratic and
cubic expressions, Journal of Parallel and Distributed Computing, 1988, 5, 729-740. A
systolic evaluator for linear, quadratic and cubic expressions is given here. First, a
simple and regular interconnection structure on a square grid of processing elements
is proposed for evaluating linear expressions. It is developed further within the body
of the paper to evaluate quadratic and cubic expressions.

31. MATHIAS, P. C. and PATNAIK, L. M., Systolic evaluation of polynomial expressions,
IEEE Transactions on Computers, 1990,39, 653-665. The approach adopted earlier3'
is extended to cover polynomial expressions in this paper by deriving and using
recurrence relationships between the results computed by multiple wavefronts.

32. AJJANAGADDE, V. G. and PATNAIK, L. M., Design and performance evaluation
of a systolic architecture for hidden-surface removal, Computers and Graphics, 1988,
12, 71-74. A systolic architecture for hidden surface removal is described here. Input
data format, systolic scheme for hidden surface removal and architectural details are
given. Performance evaluation of the same is done by simulation studies.

33. VAIDYA, N. H., DAS, S. R., MATHIAS, P. C. and PATNAIK, L. M., A systolic
algorithm for scanline-based hidden-surface removal, Proceedings of the Third Inter-
national Conference on Supercomputing, 1988, 2, 239-246. An algorithm for hidden
surface removal is given here. A clever use is made of the fact that a segment which is
visible to the observer at the start of an internal retains its visibility until the end of
that interval, provided that an appropriate preprocessing step has already been carried
out to remove polygon intersections in the original scene by suitably fragmenting the
intersecting polygons.

34. MATHIAS, P. C., PATNAIK, L. M. and SUDHA, R., Systolic architectures in curve
generation, Computers and Graphics, 1989, 13, 561-567. Systolic architectures are

i83 S. K. GHOSHAL A N D V RAJARAMAN

proposed here for B-spline generation and invers~on. The hardware impiementat~on of
qL!ch a systolic array is described in detail along with the mleriace with a graphics
display processor.

35. L I G ~ N L A L . 3;. NAXASIMWA MURTY, M. and PATNAIK, L. M., A systolic
approach to pattern clustering, Procecdingr of rhe International Syniposium on Computer
d r ~ i ~ i t ~ ~ t ~ r ~ orid Digiici Sijniii Proressiiq, 1989. A systolic approach to pattern
clustering is developed here. A cluster operator imtation is developed. Its signal flow
graph is a!lalyzed. Thc graph is then iocaiized and mapped on to a two-dimensional
wavefront array. Periormailce analyses and a case study for ICmote sensing are
presznted.

36. PATNAIK, L. M., GOVINDAKASAN, R. and RAMADQSS. N. S., Design and
performance evaluation of EXMAN An Extended MANchester dataflow computer,
I E E E Transmrions on Computers, 1986,35,229-244. The Manchester dataflow machine
execution mode! was appropriately upgraded here to support array access and
procedure call efliciently. The description of a simulator of EXMAN, which is an
extension of the Manchester dataflow computer, 1s given in this paper along with the
design and performance evaluation of EXMAN. EXMAN efficiently supports arrays by
following a hybrid approach that uses both dynamic pointer scheme and random access
structure. The first feature avoids copying operations, which in turn increases the
available memory area for other uses than storing arrays while the second one increases
the effective access speed. EXMAN has multiple matching units. Thus, tokens w~th
different labels, procedure invocation numbers and depths of iteration can be matched
In parallel. EXMAN incorporates a runtime garbage collection scheme. The flowgraph
representation for arrays as implemented in EXMAN facilitates the detection of nodes
that will no longer be rebrenced and this aids the garbage collection scheme. An
ingenious scheme is developed to support the concurrent execution of the different
ilerations of reentrant procedures by incorporating a procedure processing unit. On
each invocation of a procedure, a record called 'procedure map information' is created.
This enables the result tokens of the procedure to be properly returned. A similar
mechanism is developed to supporL the concurrent execution of different loops in an
iteration. A detailed analysis of the performance of EXMAN is done by simulation
studies. The diKerent parameters of EXMAN assumed by the simulator are clearly
tabulated. The speedup obtained is plotted against the number of multiple rnatchlng
units employed for the cases of executing dataflow graphs for matrix multiplication
and two graphics-related programs. A detailed flow analysis is done to assess the
resource balance achieved and the load balance.

37. PATNAIK, L. M. and MOHAN KUMAR, .I., Neural network simulalcrs on
multiprocessor systems, Proceedings of the Workshop on Purallel Processing, Bombay,
1990, PP SEA-23 to SEA-32. A discussion on mapping neural networks on to
mult~processor systems can be found here. The memory requirements for storing the
connection weights are estimated. Comments are made about the requirements of
connectivity among the various processing elements. Different practical computer
architectures are compared to evaluate their utility for this particular application.

PARALLEL PROCESSING AT LISc 183

38. MURTHY, C. S. R. and RAJARAMAN, V., A multi-microprocessor architecture for
solving partial difiercnt~al equations, Microprocessing and Microproqramming, 1987,
20, 1 1 3 118.

39. MURTHY, C. S. K. and RAJARAMAN, V., A multiprocessor architecture for solving
non-linear partial differcnlial equations, Mathematics and Computers in Simulation,
1988,30,453-464.

40. MURTHY, C. S. R. and RAJARAMAN, V.. Multiprocessor architectures for solving
PDEs, Journal of the Inslitution of Elertronics and Telecommunication Enyineers, 1988,
34, 172- 184.

41. MURTHY, C. S. R. and KAJAKAMAN, V., Analytical and simulation studies of
multiprocessor systems lor hgh-speed numerical computation, Mathematics and
Computers in Simulation, 1990, 32, 393 -401. Applications such as heat transfer and
fluid-flow simulation require high-speed numcrical computation. An architecture called
'broadcast cube system' has been proposed in the above four papers. It is a
message-passing architecture w~th its processing elements interconnected by high-speed
buses in different dimensions. The buses are capable of multicasting. Hardware modules
called broadcast control units route the data among different dimensions appropriately.
The three prevlous papers discuss the various issues related to solving partial differential
equations on this architecture. Strategies are developed in this paper for analyzing the
system on practical applications. Simulation results are presented.

7.4. Performance ana1,ysis of parallel computers

42. NARAHARI, Y. and VISWANADHAM, N., Performance modelling of local area
distributed systems using stochastic Petri Nets, Proceedinys of the I E E E Conference
on S.vsrems and Signal Proce.sing, 1986, pp 304-308. In the design of parallel processing
systems, analytical modelling plays an important role and entails powerful modelling
tools to be used, such as atochastic Petri nets (SPNs) and queueing networks (QNs)
In this paper, SPNs have been used to model a local area distributed system LOCUS
comprising several VAX-11/750 computer systems, to derive performance measures
such as response time and to study issues of scalability.

43. NARAHARI, Y. and VISWANADHAM, N., Performance modelling of a kault-tolerant
real-time multiprocessor using stochastic Petri nets, Sadkana, 1987, 11, 187-208. Here,
the fault-tolerant multiprocessor (FTMP) built by NASA, USA, is considered and an
SPN model is developed to capture the real-time operation of this system. The SPN
model used here is more realistic and accurate compared to existing Q N models.

44. NARAHARI, Y. and VISWANADHAM, N., Performance evaluation of computer
systems using Petri nets with deterministic and stochastic timed transitions, Proceedings
of the I E E E TENCON, 1987. A generalized class of SPNs has been proposed as a
new modelling tool for parallel computing systems in this paper.

45. NARAHARI, Y., SURIYANARAYANAN, K. and SIJBBA REDDY, N. V., Dlscrete
event simulation of distributed systems using stochastic Petri nets, Proceedtngs of the

184 S K. GHOSHAL AND V. RAJARAMAN

IEEE-TENCON, 1989, pp 31.4.1-31.4.5. Here SPNs are proposed as a convenient
modelling paradigm for discrete event simulation of parallel and distributed computing
systems. EIlicient algorithms have been developed for simulation using the SPN
paradigm.

46. RAVIKANTH, K., SASTRY, P. S. and VENKATESH, Y. V., Simulation studies on
the performance of an organizational model for graph reduction, Future Generation
Computer Systems, 1990, 6, 163-180. This paper deals with the reduction of graphs in
parallel. A set of processors interconnected as a binary de Brujin graph is used. Each
processor has an execution unit and a communicalion unit. Shared memory intercon-
nection is provided between neighboring processors. Performance analysis is done for
both static and dynamic scheduling strategies. Load balancing is done in the latter
case based on a set of criteria defined in the paper. Random binary and ternary graphs
are generated and used in simulation studies. Details 01 simulation experiments,
~ncluding task creation and execution models, are provided. A wealth of information
regarding speedup and other performance-related issues is given in neatly organized
graphs for various classes and depths of trees, scheduling policies and number of nodes.
Simulation results are analyzed in detail.

47. NARAYAN, R. and RAJARAMAN, V., Performance analysis of a multiprocessor
machine based on dataflow principles, Microprocessing and Microprogramming, 1990,
30, 601-608. The performance analysis of a multiprocessor system based on static
dataflow principles is given here. An execution model of the machine is given. A
mathematical analysis of the same is presented. An idealized fine-grain dataflow graph
is used as a starting example for deriving performance measures. The model is used to
study the machine behaviour and the execution time of the example program, when
the program is represented by dataflow graphs (again idealized) of different grain sizes.
Thus the optimal grain size of the dataflow graph for a class of application programs
is derived, so as to execute the programs in minimal time on a practical configuration
of the machine.

48. NARAYAN, R. and RAJARAMAN, V., A method to evaluate the performance of a
multiprocessor machine based on dataflow principles, IEEE E N C O N , 1989. Further,
the model used earlier47 is tuned to accommodate practical problems. A coalescing
algorithm is developed to combine nodes of a dataflow graph to a desired size for
optimal execution of the program and optimal utilization of the processing elements.
An extensive study leading to design decisions on building such multiprocessor systems
is reported.

49. NARAYAN, R. and RAJARAMAN, V., A method to model a multicomputer system,
Proceedings of the Twenty first Annual Pittsburgh Conference on Modelling and
Simulation, 1990. The n~ethodology and practice (which have been developed in the
context of the studies reported earlier47,48) of the mathematical modelling of the
multiprocessor system is given in this paper. It is further described how the results of
perfomance analysis of application-specific programs can be used to bring out the
design criteria of a scheduler for such multiprocessing systems. The study reveals certain
key factors in the design of multiprocessor systems, uiz., reasonable speedup for larger

PARALLEL PROCESSING AT 11% 185

programs (of the order of 10,000 instructions with eight processing elements (PEs))
can be achieved with a dynamic scheduling strategy, thereby imposing demands for a
high-speed scheduling unit and communication media. In contrast, however. the
eight-1'E machlne using static scheduling achieves comparable spcedup with slower
components. It is further established through the simulation study that the eight-PE
machine using quasi-dynamic scheduling strategy is better than using static policy by
permitting slower scheduling units, which are easily realizable in hardware.

7 5. Benchmarking an exprrimental mulliprocessor built in hardware

50. GHOSAL, D. and PATNAIK, L. M., Parallel polygon scan conversion algorithms:
Performance evaluation on a shared bus architecture, Computers and Graphics, 1986,
1 0 , 7 25. Three parallel polygon scan-conversion algorithms were encoded and executed
on SHAMP' to evaluate the architecture. One of them (PAI) uses only scan coherence
and the other two (PA2 and PA3) take advantage of both scanline and edge coherence.
Both simulation, using a tool called SIMPAR, and actual implementation on SHAMP
were used. The results are given in this paper. Parallel algorithms are compared for
different aspects of their execution behavior on practical multiprocessing architectures.
The improvement of the performance of the algorithms is studied with different
architectural enhancements. A modified multiprocessing architecture is proposed
thereafter which uses a crossbar interconnection network between the processors and
the refresh buffers. Simulation studies are done for this architecture executing the first
algorithm (PA]).

7.6. Languages for parallel computers

51. DAVE, M. A. and SRIKANT, Y. N., A parallelizing compiler for Pascal, This Journal,
This Issue. A Pascal compiler that can extract parallelism from sequential programs

is dcsigned and implemented on a real shared memory multiprocessor. Instead of using
a flowgraph analysis, boxgraphs are used. Interprocedural dataflow and array subscript
analysis are done efficiently. Issues in multiprocessing and compilation for parallelism
are discussed. The rationale for preferring boxgraphs over flowgraphs is elaborated.
The intermediate representation used in this compiler is described in detail. The nature
of different types of dependence and their analysis are given. Techniques for detection
of parallelism and implementation details are given. Results are tabulated. Conclusion
identifies future direction of work, among other details.

52. SRIKANT, Y. N., Parallel parsing of arithmetic expressions, IEEE Transactions on
Computers, 1990, 39, 130-132. Erstwhile parallel algorithms for parsing arithmetic
expressions have mostly used an idealized PRAM model of parallel program execution.
This paper presents a parsing algorithm that uses practical interconnection between
processors, e.g., mesh, shume, cubes and cube-connected cycles. The algorithm has four
steps. How each step can be executed in parallel on mesh-connected and other practical
machines is elaborated. Complexity analysis for each step is done.

53. SRIKANT, Y. N. and SHANKAR, P., A new parallel algorithm for parsing arithmetic

186 S K GHOSAAL AND V RAJARAMAN

infix expressions, Parallel Computing, 1987, 4, 291-304. A parallel algorithm for
converting an infix expression into a parse tree is given here. i t uses an S l M D shared
memory machine. Certain symbols are introduced and a few basic results are stated
and proved first. ,rben the algorithm for constructing the parse tsee is described. How
the code generation is done for this algorithm to execute on an SIMD machine is
described next. Vector quadruples are used for this purpose. Hardware and time
complexities of the algorithm arc derived.

54. SRIKANT, Y. N. and SHANKAR, P., Parallel parsing of programming languages,
Information Sciences, 1987, 43, 55-83. A new mcthod called hierarchical lungirage
specifications (HLS) is introduced for specifying the syntax of programming languages.
Efficient parallel algorithms executing on an exclusive-read exclusive-write PKAM
machine are presented. An important point lo note here is that the parallel algorithms
do not use a stack. Complexity analyses are done to determine the hardware and timc
complexities of the algorithms.

55. VISWANATHAN, N. and SRIKANT, Y. N., Parallel attribute evaluation, Super-
computing Symposium, 1991. Tree contraction is applied on a CREW PRAM machine
for evaluating attribute expressions in parallel. Other workers' contributions in parallel
evaluation of attribute grammars and their models of parallel program execution are
discussed. Details of the algorithm developed in this paper arc explained with examples.

56. SRIKANT, Y. N., A parallel algorithm for the minimization of finitc state automata,
lnternationai Journal of Computer Mathematics, 1990, 32, 1-11. A parallel algorithm
for solving the set-partitioning problem is developed. The algorithm uses a CREW
PRAM model of parallel computer. Hardware and timc complcxities are given. The
algorithm can be used to minimize finite state automata. The parallel algorithm is
explained in detail and results are stated and proved in this context.

57. GIBBONS, A. M. and SRIKANT, Y. N., A class of problems cfkiently solvable on
mesh-connected computers including dynamic expression evaluation, Information
Processing Lptters, 1989,32, 305-311. The class olefliciently solvable problems using
a PRAM is discussed with an introductory example of a general polynomial expression
evaluation. Different problem-solving strategies like divide and conquer are analyzed
for their complexity. Finally, the problem of dynamic expression evaluation is defined
and discussed in detail. How the different operations can be carried out in parallel is
stated and the required hardware and time complexities are derived.

58. SHEKHAR, K. H. and SRIKANT, Y. N., Linda subsystem on transputers, Proceedings
of Transputing 1991. Linda is introduced to the reader. The different tuple space
operators in Linda are described. Issues in implementing Linda on distributed memory
MIMD computers are discussed. Different ways to organize and partition the tuple
space are compared. The format of a tuple used in this system is shown. Implementation
details of the Linda kernel are given. This implementation supports recursions which
many other Linda systems do not. How mcursion is accommodated within the
framework of Linda is shown. Application programming examples using this Linda
system are given. Plots of speedup are given This Linda system is likely to be

PARALLEL PROCESSING AT IISc 187

implemented on a 64-transputer machine built at the Centre for Development of
Advanced Computing (CDAC).

59. PATNAIK, L. M. and BASST, J., TWO tools for interprocess communication in
distributed dataflow systems, The Computer Journal, 1986,29,506-521. Two program-
ming languages are proposed here for representing distributed processing in dataflow
systems. Essentially the paradigms of Hoare's CSP and Brinch Hansen's distributed
processes were used to enhance the expressive powers of dataflow languages to arrive
at two languages, viz., DDFC and CDFC, respectively. A number of new features have
been incorporated in both of these to make their execution more efficient. Two
simulators were written to test the effectiveness of the implementation. Details of the
simulated dataflow processor and the data structures used by the simulators are given.

60. GOSWAMI, A. K. and PATNAIK, L. M., A functional style of programming with
CSP-like communication mechanisms, New Generation Computing, 1990, 7, 341-364.
Communication mechanisms similar to Hoare's CSP have been built into Backus' FP
and other enhancements are made to FP in this paper. An algebra of programs with
non-determinism is developed. The axiomatic semantics of communication constructs
are presented. It is demonstrated how to transform communicating FP programs into
equivalent non-communicating ones by using the axioms of communication to facilitate
reasoning about the execution hehaviour of the former. Feasibility of the inverse
transformation is demonstrated as well.

7.7. Algorithms for parallel computers

61. MOHAN, T. S. and GANESAN, V. S., A higher order parallel abstraction for fixed
degree divide and conquer problem solving strategy, Proceedings of the IEEE ACE-90,
pp 217-221. An algorithmic framework for the $xed degree diuide and conquer (FDDC)
problem-solving strategy is presented. This adapts the divide and conquer algorithm
for parallel computation. The notion of a thread of execution is captured in an active
rusk object which are the instances of a data type called the tasktype. A higher order
tasking abstraction called maptask is proposed. Cis extended with tasktype and maptask
in a package called the CT Kernel that currently executes tasks on a real distributed
environment. Using the above abstractions, FDDC algorithms have been derived and
implemented for a number of practical application problems. Performance results are
presented and analyzed.

KRISHNA, S. and MOHAN, T. S., Partitioning bibliographic databases for parallel
hypertext retrieval, Proceedings of the COMAD-90, 1990, INSDOC. A description of
the problem is given. A multicomputing system model is formulated. The organization
of the bibliographic data is elaborated. The cost of different types of search operations
is analyzed. A sample bibliographic abstract is shown as a case study. The complexity
of a partition assignment is derived. A heuristic partitioning algorithm is described.

RAVIKUMAR, C. P. and PATNAIK, L. M., Performance improvement of simulated
annealing algorithms, International Journal of Computm Systems, Science and Engineering,
1990, 5, 111-1 15. A pipelined task-partitioning scheme has been suggested here for

188 S. K. GHOSHAL AND V. RAJARAMAN

simulated annealing. Logic placement problem has been used as an example problem
to solve by simulated annealing. The execution zone of the anneding algorithm has
been divided into two zones: high- and low-temperature zones. Pipelined processing
is "sed to accelerate the execution in the high-temperature zone. A rejectionless variant
of the simulated annealing algorithm has been implemented in parallel to handle the
low-temperature case properly.

64. RAVIKUMAR, C. P.,.SASTRY, S., and PATNAIK. L. M., Parallel circuit partitioning
on a reduced array architecture, Computer Aided Design, 1989,21,447-455. A reduced
array architecture has been developed here in the context of partitioning large VLSI
circuits. Kernighan-Lin algorithm for partitioning a VLSI layout is described. An SIMD
architecture with a two-dimensional arrangement of memory and a linear organization
of processing elements is proposed next. The internal organization of each processing
element is described. Six most time-consuming steps in the Kemighan-Lin method are
identified and described thereafter. How each of these can be executed in parallel on
the proposed architecture is elaborated. Data and control structures are described
thereafter for a practical implementation. Analytical results are stated and proved next
about the speedup and optimality of the parallel algorithm on the proposed architecture.

65. GHOSHAL, S. K., GUPTA, M, and RAJARAMAN, V., A parallel multistep predictor
corrector algorithm for solving ordinary differential equations, Journal of Parallel and
Distributed Computing, 1989, 6, 636-648. A new algorithm is developed in this paper
for solving ordinary differential equations on parallel computers. Miranker and Liniger's
parallel predictor corrector algorithm is enhanced to accommodate three correctors
executing in parallel with a predictor approximation. The convergence and consistency
of the algorithm is established. A methodology is implemented to determine the region
of stability of this algorithm by numerical iterations. Task-partitioning schemes are
developed for implementing the parallel predictor-corrector algorithm on practical
multiprocessors. Numerical examples are conducted to plot the errors incurred by the
algorithm for a number of test problems. The superiority of this algorithm over other
sequential and parallel algorithms is demonstrated.

66. GHOSHAL, S. K. and RAJARAMAN, V., Increasing stability interval of parallel
multistep predictor corrector methods, Proceedings of the National Seminar on Parallel
Processing Systems and Their Applications, Institution of Engineers, Calcutta, India,
December 9-11, 1988. A nonlinear optimization scheme is executed to maximize the
region of absolute stability of the parallel predictor-corrector algorithm developed by
Ghoshal et a16=. A vector representation is developed to denote the errors incurred by
the algorithm at each step. Data dependency to be honoured in cases of implementation
on real multiprocessors is taken into account. The transformation to the vector of
errors at each step is formulated as a matrix, whose eigenvalues must lie within the
unit circle for the parallel algorithm to be stable. Rosenbrock's nonlinear optimization
algorithm is used to alter the coefficients of the three correctors so as to endow the
parallel predictor-corrector algorithm with the maximum region of stability. Numerical
experiments are presented to demonstrate the effectiveness of the optimization
methodology over a number of test problems. Results are presented graphically.

PARALLEL PROCESSING AT IISc 189

67. GHOSHAL, S. K. and RAJARAMAN, V., Optimally stable parallel techniques for
handling variable steps in initial value integration, Computer Science and Informatics,
1987, 17, 22-38. In order that they can be used in a practical initial value integrator,
approximation formulae should be able to change their step size. In this paper,
appropriate parallel techniques are developed for the predictor-corrector algorithms
described ear lie^^^,^^. Task-partitioning schemes for these techniques are elaborated
using a practical computer architecture as a model of parallel computer. Techniques
similar to what had been applied to the approximation f o r m ~ l a e ~ ~ , ~ ~ are used to
maximize the interval stability for these techniques so that they withstand frequent
changes in step size. This enables an efficient initial value integrator implemented on
a practical multiprocessing architecture to integrate moderately stiff equations with a
step size that is larger than what is possible with sequential methods. Thus the
parallelism unfolded by the algorithm and exploited by the architecture can be effectively
used on a large class of practical problems. Numerical results are plotted to substantiate
this claim.

68. PAI, M. A., GHOSHAL, S. K. and KULKARNI, A,, A predictor corrector algorithm
in the parallel solution of power system dynamics, Proceedings of the North American
Power Systems Symposium, 1990. No parallel algorithm can be called effective unless
it solves a practical problem on a real multiprocessor. What has been developed
earlier65-67 is used here to solve systems of ordinary differential equations arising out
of a real power system application using the four-processor-shared memory multi-
processor CRAY-2. The transient stability analysis of a fifty-generator power system
spanning the United States and Canada is done to simulate the clearing of a fault in
one of the buses. Various models of tasking that can be used on the CRAY-2 to harness
parallelism present in a program, viz. auto-tasking, micro-tasking, and macro-tasking
are compared. The issues in designing and profiling parallel programs for running on
the CRAY-2 are discussed and distinguished between. The need for developing
quasi-parallel programs in benchmarking is brought out. Sequential, quasi-parallel and
parallel programs (using different .tasking models available on the CRAY-2) are
developed. Different user-controllable architectural and operating systems parameters
are varied. Various compiler directives (to control the operation of the vectorizer and
to do other compiler optimizations) are used in an organized way that makes sense to
a power systems engineer. A suite of programs are prepared this way and executed in
the dedicated mode on the CRAY-2. The results are compared with what is given by
an equivalent program using the IMSL library and are found to tally. They agree with
other industry standard programs (e.g., the EPRI program which was run on the same
data) too. The speedups obtained are tabulated and analyzed. The speedup and
processor utilization are found to be satisfactory. Scope of further work in this area
is pointed out.

69. HALDAR, C. and PATNAIK, L. M., Three algorithms on hypercube architecture and
their applications to geometry problems, Proceedings of the Fourth Conference on
Hypercubes, Concurrent Computers and Applications, March 1989. Guidelines have
been developed here for developing efficient hypercube algorithms on the basis of
analyzing the execution of three basic algorithmic operations. First, the hypercube

190 S K. GHOSHAL AND V. RAJARAMAN

nodes are labelled and other tagging primitives are performed on the architecture so
as to set the context of the mathematical abstraction of a few routing and partial
ordering operations. Then the syntax and semantics of BROADCAST and SORT are
defined which are more or less the same as their names. Subsequently, the notion of
dimension-sort is intrpduced, and a recursive divide and conquer algorithm is
developed for finding the maximal elements of a set of points. Results are stated and
proved about the complexity of the various steps of this algorithm. Then a set of
geometric intersection problems are taken up for finding their optimai mapping on the
hypercube and dktermining the resultant complexity. Finally, a search algorithm is
derived and demonstrated by solving the problem of finding the Convex Hull of a set
of points on a plane. Conclusions are drawn about the design of efficient geometric
algorithms and their partitioning on hypercubes.

70. RAMAN, S., PATNAIK, L. M. and MALL, R., Parallel implementation of circuit
simulation, to appear in International Journal of High-speed Computing. This paper
presents a synthesizing overview of current trends in parallel algorithms and architectures
for the simulation of VLSI circuits based on SPICE and relaxation techniques.

71. MALL, R., PATNAIK, L. M. and RAMAN, S., Simulated annealing-based channel
routing on hypercube computers, Proceedings of the Fourth CSIIIEEE International
Symposium on VLSl Design, New Delhi, January 1991, pp 75-81.

72. MALL, R. and PATNAIK, L. M., PMAZE: A parallel maze routing for hypercube
computers, Proceedings of the Third International Workshop in VLSI Design, 1990,
pp 124-132. An efficient algorithm for solving the routing problem in VLSI layout
design has been proposed in the above two papers to execute on hypercubes. The three
phases of Lee's maze-routing algorithm, viz., wavefront expansion, backtrace and
cleanup are made parallel. The resulting algorithm, called PMAZE, is then mapped
on to a hypercube. A scheme is developed to route information about the different nets
that do not overlap in parallel. Theorems are stated and proved in this context to
derive the maximal set of such nets from a given netlist. The execution of PMAZE is
studied on a simulated hypercube. Details of the netlist used are given, along with plots
of the speedups for different routing lengths and number of processors.

73. RAVIKUMAR, C. P., SASTRY, S. and PATNAIK, L. M., A data parallel approach
tolocal search placement algorithms, Proceedings of the Second International Workshop
on VLSI Design, 1988, pp 3-27. A data parallel approach is developed here to arrive
at an SIMD algorithm for the circuit placement problem in VLQ. The details of a
typical VLSI chip in its number of grids, slots, channels and nets, etc., are tabulated
first to get an idea of the complexity of a typical practical routing problem. Previous
approaches to accelerate the execution of a router are elaborated next. An iterative
improvement algorithm is presented thereafter for the placement of modules. It is
analyzed next for finding out ways to execute it in parallel. A taxonomical study is
made next of the different parallel iterative placement methods. The appropriate
computational model to suit the execution of each of these is decided thereafter. The
hardware requirement is estimated. Theorems are stated and proved after that to show
that the algorithm that was developed to generate the random placement is appropriate

P A R A L L E L PROCESSING AT IlSc 191

and provides a good speedup. Similar studies are undertaken thereafter for placement
perturbation and cost difference evaluation. That sets the context for describing the
overall parallel algorithm for parallel placement. Analytical results are presented on
the performance evaluation of the algorithm. Simulation studies are done then to study
the execution time of key steps in the algorithm, the overall running time, the behaviour
of the cost improvement function and other parameters. A wealth of information
obtained by simulation studies is presented graphically.

74. RAMAN, S. and PATNAIK, L. M., An annealing-based circuit partitioner for
hypercube architectures: Design and performance evaluation, International Journal of
High-speed Computing, 1990, 2, 69-84.

75. RAMAN, S. and PATNAIK, L. M., HIRECS: Hypercube implementation of relaxation-
based circuit simulation, International Journal of High-speed Computing, 1989, I ,
399-432. Hypercube-related parallel circuit simulation algorithms and partitioning
strategies have been reported in these two papers.

76. CHOWDHURY, S. and NARASIMHA MURTY, M., A parallel algorithm for
generation of minimal spanning tree in Euclidean space and its implementation using
systolic arrays, Proceedings of the IEEE TENCON, Seoul, 1987. Other workers'
contribution towards developingparallel algorithms for generation of minimal spanning
trees is reviewed. An algorithm that takes advantage of the fact that not all the distance
computations are necessary is proposed next. This algorithm generates Bentley's K - d
trees which are complete k-ary trees. A systolic architecture for executing this algorithm
efficiently is described next. It has four basic building blocks: the differencer, the squarer,
the accumulator and the square-rooter. An extensive simulation is done and the results
are presented.

77. NANDY, S. K., Geometric design rule check of VLSI layouts in distributed computing
environment, to appear in International Journal of Computer Aided VLSI Design. The
paper provides a distributed system to perform VLSI layout verification. Design rule
checking (DRC) can be performed in parallel by exploiting either spatial independence
or layer independence in layout data on a network of workstations. It is shown that
the former approach performs better than the latter one for large layouts. An algorithm
to optimally partition a layout and a scheme to allocate DRC tasks to idle processors
in a distributed computing environment to attain load balancing is also described.

78. NANDY, S. K. and PANWAR, R. B., Geometric design check of VLSI layouts in
mesh-connected processors, t o appear in International Journal of Computer Aided VLSI
Design. This paper presents a parallel algorithm to perform design rule check (DRC)
of layout geometries in a VLSI layout. The algorithm is based on a linear quadtree
representation and works on a mesh-connected interconnection of processors. DRC is
performed by doing a parallel boundary following of the layout geometries in the VLSI
layout. Through a complexity analysis, it is shown that a linear speedup with respect
to the number of processors can be achieved for very large Layouts. Further, the
algorithm can be readily adapted to other interconnection topologies of higher
connectivity, viz., higher dimensional meshes or hypercubes by embedding 2-dimensional
meshes on to these interconnection topologies.

192 S. K. GHOSHAL AND V. RAJARAMAN

79. NANDY, S. K., MQQNA, R. and RAJAGOPALAN, S., Lincar quadtrec algorithms
on the hypercube, Proceedings of the lCPP, 1988. Two algorithms of importance to
Image processing, VLSI design and computer graphics are developed lor executing on
hypercubes in this paper. Images are represented as quadtrees. A scheme is developed
to encode the quadtrees in a linear array. A boundary following algorilhm and thc
related neighbor finding algorithms are described then. Ways of embedding the
quadtrees on the hypercube are described thcreafter. A complexity analysis of the
neighbor finding algorithm is performed. Analytical expressions for speedup are given.

7.8. Neural networks

80. RAO, D. S. and PATNAIK, L. M., Neural network-based appcoach to standard cell
placement. Electronics Letters, '1989, 25, 208-209. An algorithm for placement of
standard cells in VLSI circuits based on an analogy with neural nctworks is given in
this paper. A measure for the stimulus to a cell is formulated. Hebb's rule is then used
to arrive at a connectivity matrix between the standard cells. The connectivity
information given by the user is presented too. The process is repeated until each cell
has bcen perturbed at least once. After the connection strengths between all the cells
is reinforced, a simple partitioning is done. This procedure is applied recursively. The
performance of this algorithm has been found to he better than the standard
Kernighan-Cin method.

81. SRIRAM, K. B. and PATNAIK, L. M., Neural network approach for the two-dimcn-
sional assignment problem, Electronics Letters, 1990, 26, 809-810. The approach used
earliers0 has been extended to cover the two-dimensional assignment problem in this
paper.

82. RAO, D. S., PROVENCE, J. D. and PATNAIK, L. M., A neural network-based method
for dynamic reconfigurability of array processors, Proceedings of the Symposium on
Parallel Processing, 1990, Fullerton, CA, USA. A neural network-based method for
dynamic reconfiguration of array processors has been reported here.

83. DESHPANDE, V. and DASGUPTA, C., Neural network models of associative
memory, Procecdinys of the D A E Symposium on Solid State Physics, 1990. Modelling
of associative memory using neural networks is done here. The paper also gives the
history of the subject along with the shortcomings of the classical Hopfield model.
Three improvements are studied over the Dotsenko model for the storage and
associative recall of strongly correlated memories. A neural network in which
computations are performed with limit cycles is proposed. Analytical and numerical
treatment of the same is summarized.

7.9. Task scheduling in parallel computers

84. MURTHY, C. S. R. and RAJARAMAN, V., Task assignment in a multiprocessor
system, Microprocessors and Microprogramming, 1989, 26, 63-71.

85. MURTHY. C. S. R. and RAJARAMAN, V., O n the assignment of precedence and
communication constrained tasks in a multiprocessor system, Computer Science and

PARALLEL PROCESSING AT I ISC 193

Informatics, 1989, 19, 17-22. Issucs in task assignment in a multiprocessing context are
discussed in the above two papers. A survey is made of the work done by others in
th~s subject. A message-based multiple-bus mult~processor is described next. The set
of tasks to be assigned on this multiprocessor is posed as a directed acyclic graph.
Terminology is developed for assignment configurations and the precedence and the
constraints involved in this context Certain combinatorial results are staled and proved.
A heur~stic task assignment algorithm is proposed thereafter. Its complexity is estimated.
The implementation details of the algorithm are given. The efficiency of the algorithm
is demonstrated over a series of task-assignment problems using graphs.

86. RAJARAMAN, V., Conversion of decision tables to programs in multiprocessor system,
Computer Science and Informatics, 1989,19,30-35. Two heuristic methods are developed
in this paper for converting decision tables to computers programs that execute in
parallel on a multiprocessor. The methods are so designed that the programs execute
in minimum time. Simulation studies on randomly generated decision tables show that
resulting programs execute in time close to the lower bound for ideal execution. The
two algorithms are described in detail within the body of the paper. Results of the
simulation studies are tabulated. Conclusions point out the maximum number
of processors usable under this scheme for generating near-optimal programs among
other inferences.

87. SADAYAPPAN, P. and VISVANATHAN, V., Modeling and optimal scheduling of
parallel sparse Gaussian elimination, to appear in IEEE Transactions on Computers.
Task graphs called minimally constrained task graphs (MCTG) are proposed here to
model parallel Gaussian elimination and its scheduling on multiprocessors. MCTGs
contain both directed edges and undirected edges. Their optimality of scheduling is
proved on a CREW multiprocessor with unbounded number of processors. The
suboptimality of DAGs in this respect is demonstrated. The Gaussian elimination
algorithm is explained and a taskgraph corresponding to it is used as an example in
this regard. An MCTG is formally delined thereafter for this problem. An algorithm
for greedy-level assignment for such a graph is explained. Comparisons between the
number of levels using the DAG and the MCTG approaches are made and tabulated
for a number of sparse matrices arising out of circuit simulation. Certain results which
are used in this paper are stated and proved in the Appendix.

88. MOHAN, T. S., A tasking abstraction for message-passing architectures, Proceedings
of the PARCOM-YO, 1990, pp 21-29, Narosa. A semantically sound linguistic construct
called Abstruct Tasktype has been proposed. It is formulated for C. An implementation
is made on a real distributed computing environment. Performance evaluation for a
large number of application problems is made.

7.10. Books

89. RAJARAMAN, V., Elements of parallel computing, 1990, Prentice-Hall of India. This
book is a hasic introduction to the design of parallel computers and how to solve
problems on parallel computers. It has an annotated bibliography for further reading.

194 S. K. GHOSHAL AND V. RAJARAMAN

90. GOSWAMI, A. K. and PATNAIK, L. M., Non-determinism and communication in
jiinrtional proyranrming systems, Lecture Notes in Computel- Science, Springer-Vedag
(in press). Non-determinism and inter-program communication are introduced in
functional programming systems. Several new program-formlng operations are developed
in this context which simplify thc ways of reasoning about thc programs algebraically.
Algebraic methods for development of programs from their specifications are described.
Illustrative examples arc given to explain thc various programming concepts.

