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1. Introduction 

In spectral theory, it becomes sometimes necessary to ascertain certain spectral data that 
determine (possibly uniquely) a differential operator and then to develop a method by 
which it may he possible to construct the operator from the data. The involved problem 
is an inverse problem associated with a difyerential operator. Inverse problems were first 
formulated and investigated way back 1929 by Ambarzumyanl, and then since 1945 by 
Borg, Levinson, Marchenko, Krein, Gelfand, Levitan, Gasymov, and recently by Hochstadt 
and others. In 1951, Gelfand and LevitanZ gave a method of reconstructing a second-ordcr 
differential equation from its spectral function p ( 2 )  by reducing the problem to certain 
linear integral equations. Gasymov and Levitan3, by adopting the same technique, solved 
inrrr alio an inverse problem for a finite interval from given spectral characteristics, ie., 
from the sequence of eigenvalues and the normalidng constants for the eigenfunctions 
associated with a second-order differential equation of the Sturm-Liouville type. For works 
on inverse Stum-1,iouville problems, reference may also be made to Levitan4, and 
Marchenkos. In a recent paper, McLaughlin6 presents a survey of the last forty years (till 
1983) of researches on the methods and properties of these methods for recovering 
coetficients of differential equations from spectral data. Results are at first presented by 
invoking mathematical models for physical problems involving (i) a vibrating string with 
variable density but constant tension, (ii) propagation in the vocal tract, (iii) propagation 



;n .:,: i,i:,:npic eizstic nedlum iike theearth's crusf the curvature of the ea;:h being ignored. 
;:-g t i i j  !hr Eulc:.-Bernsdli t:sdei of transverse vibrations of a beam. Theoretical results 
rL?:i-dr,::.;y t:br inserne piobiens a i ?h  special emphasis on the Sturm-Liouville operator 
tiefi ~bi:-~;, :hc spectiei dz?a to be chosen being motivated by the physical examples 
oanii&rcd esriicr. Specid!.; interesting is the consideration by the author of the inverse 
prohIi.cn Sx ;he burth-order equation 

Tile rri!%:crr. is (1 scif-adjoint cigensaiue problem when A(x\t, B(x) are re&!-va!ued and a, b,c 
Ire redl :anstanis. Eq adaptiag the Geifand-Levitan technique2 of integral equations and 
using ;i :mnsi~rmation operator whtch maps sohtions of a known problem on to solutioix 
,, .,; . . di.: :o 02 k i v e a  problem, A(x), B ( s )  and a,b,c are determined from the spectral data 
iompris:ng the sequence of eipcvaiues. the spectral matrix ior the fourth-oider differential 
eqil:ilj~ns and the norming constants defined in the paper. Theoretical results obtained by 
the s-?her are interspersed with peninent remarks on a number of vaiiations of the probiem 
presmted by some other authors. The paper ends with a rich and extensive bibliography 
on inverse problems on differential equations over a finite interval. The inverse probiem 
involving tbur!h-order equations has not been considered as extensively as that involving 
the Sturm-Lieuvilie operator. 

On eliminating r, say. from our system ie. the system (1) with boundary conditions (2), 
(3) {section 2 below) we obtain a fourth-order differentia! equation in u with coenicients 
con?ainlng :he parameter i. wirh boundary conditions at x = 0, x = n also containing the 
parameter i. Our problem is therefore entirely different from the type of fourth-order 
equations considered by McLaughlin. The method of solution of inverse probiem involving 
fourth-order equations with coerlicients as well as the boundary conditions containing the 
paramet-r E. does not appear to be quite well known; but if the same problem can be 
reduced to a second-order system as the one consideied by us by some transfornlations, 
it may be possible to apply !he Gelfand-Levitan technique and a transformation operator 
as we h a w  done like McEaughlin, to solve such inverse problems. 

The inverse problem associated with the Dirac system was initiated by Levitan and 
Gaiymoi. In 1'366, hut very M e  work on the inverse problem appears to have been done 
far the system 'LY = i M Y ' ,  consisting of m equations each of order n. Only in 1981, Ray 
Paladhi' dcalt with an inverse problem associated with a special case of the system, i.e., 
the system we are going to investigate. By defining a spectral matrix and adopting the 
Gssqrnor-levitan method, he constructed the differential system from the spectral matrix. 
But his conclusion regarding non-unicity of the solution as made by him7 in the last line 
of his theorem 5 (p. 191) appears wrong, the example cited in support on page 190 of the 
article being erroneous. We investigate the inverse problem for a finite interval from spectral 
characteristics to be defined for our system. The investigarion appears important in view 
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%here l j c )  is n 2 x l Hcrmitian matrix and P = is derived from the Sclrrddingcr 

qWatioc !or a deuteron {in its ground state) when tensor interaction forces arc takcn into 
nccoilnl. 

it is interesting to m?e  that the inverse problem was studied almost esclusi~ely by 
nathematicians ir, the USSR, but elsewhere almost exclusively by physicists. 

2. Pieilminary results 

The differential system under consideration is 

where p,q.r are real-valued Cl-,(D,ni-class functions. jk=0, I), summabie on iO,a). By 
C,lj:,B)-class functions we mean sets of functions jreai or complex) which are k-times 
differentiable on (n,B), the kth derivative being coniinuous in the internal. 2. is the eigenvalue 
parameter. 

Tne problem is one of the finite interval (0, n) and the boundary conditions at x = 0 and 
at z = ri are, respectively. 

a,,u(O) f n,2u'(G) + aj,u(0) + al,u'(0) = 0 (2 )  

h,,u(n) + bj,u3(n) + bj,a(n) + b- 14 u'(n)= 0 i3) 

where a,,, b,, are real-dued constants (independent of 2) satisbinp the fdowing conditions: 

(i) rank (a,,) = rank (bi,) = 2, i = 1,2; j = 1,3,3,4 (4) 

=here at least one of 

(ij! uj,a,2ial,ak,=0, j , k =  1,2; 

iiiii bllb22-b,,b,l+h,3b,,-b,,b2,=0; 

(ia} hj2a,, + bj,c,, = 0, bjlu,, + bj,ak, = 0, j,k = 1,2; 

Iv) bj2a,, + b,,a,, f 0. 

The system 

d2ir,'dx2 + 2.u = 0; d2v/dx2 + dli = 0 
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satisfying the same boundary conditions (2) and (3) at x = 0, x = n, a,j, bSj satisfying conditions 
141-(8). is the Fourier system corresponding to (1). 

Let 4;. 4,, 1 = I, 2, j = 3,4 be the boundary condition vectors at x = 0, x = rr (i.e., solutions 
of {I)  which together with their first derivatives take prescribed constant values out of a,,, 
b ,  In the boundary conditions (2!, (3) at x = 0, x = n). For example, we can choose 
ib;l,=, = q5;(OiO.i.)= - ( ~ , , , a , , ) ~ ,  @,lx=o =ibi(Olx,j.)l,=o = di(OO,A)=(o,,.a,,)T. Similarly, 
for bj! ,=,, q5;Ix-. in terms of b,,. 

Then the boundary conditions 12) and (3) can be put in the form [U, 4,], = [U, 4,], = 0, 
where L: = (u; ojr, [.I being the bilinear cuncomitant defined for two vcctors a = (m,,P,)', 
8=(22,82)' by. 

21 321 181 B?! 
i ,  %!+ib, 

The relations (5) and (6) represented by [$,,q4,l0 = 0, [&,$,I, = 0 are the self-adjointness 
conditions (see Chakravartya, p. 138). The wronskian is 

and the eigenvalues are the simple or double zeros of W(1). In view of our observations9 
(p. 82), we can proceed with the assumption that thc eigenvalues 1, are the simple roots 
of W(i.), which may be taken to be all positive. In particular, let the boundary conditions 
satisfied by the solution (u,c)' be the D~richlet: U(0)  = U(n) = O  or the Neumann: 

V(0) = U'(rr) = 0 and p > 0, pq - r2 > 0, so that Q = 1s positive definite (i.e., the (9 
corresponding quadratic from is positive definite). Then it is easy to show that the 
eigenvalues 2." are positive by considering the Dirichlet integral D(f,g) = J;F(t)dt, where 
f f ( f i r f 2 ) ' . g  = ( g 1 , d 3  Fit)=i;g; + f 2 g ;  +pfigl  +?( f ig l  +f2g1)i-qf2g2,andf ' ,g '  
exlst and are continuous in ( 0 , ~ )  (see Chakravarty and Sen GuptaIo). 

Let {&j be the eigenvalues associated with the system (1) with (2) and (3); define A? = k,  
p ,>O, i fn>Oandi , i=-pn ,p ,>O, i fn<O.  

Then 

where a, are constants depending on the coefficients in the houndary conditions a t  x = 0 
and x = rr and p, q, r which occur in the differential system. For derivation of the exact form 
of x j  we require theconditions (7) and (8); the vector (a,,a,)' is the boundary characteristic 
vector of the given problem9 (pp 81-83). 

Let 
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K,, = K,,, a 2 x 2 matnx (symmetric) having continuous partial derivatives up to the order 
;\yo with respect to cach OF t and x, K(x. t) = 0 for t > x, K(0,O) = 0. Then putting 
c,(rj =c,(r.j!~, 

satisfy the system (1) with boundary conditions (2), if and only if the conditions (3.6)-(3.9) 
of Ray paladhi' (Theorem 1, p. 175) are satisfied. Hencc, 

= 1,2, are two linearly independent sequences of normalized elgenvectors corresponding 
to the eigenvalue 1, of the given differential system. q5+ j = 1,2, therefore, form a basis of 
tbe vector space ofeigenvectors, any element of which is of the form a,rb,(x, 1:) + b,b, (x, i.!), 
wherc a,, b, are any two constants independent of x. The linear combination 

1s therefore an eigenvector chosen to correspond to the eigenvalue I, o i  the system urider 
consideration9 (pp 140-143). 

Let 

Then by the Schwarz inequality and the condition (4), 

to be called the normalizing matrix, is positive definite and therefore A ,  r 0 and i,(x, A,$)/Af 
is the normalized eigenvector corresponding to the eigenvalue I, of our system. (A,) are 
termed the normalizing constants. The sequence of eigenvalues {A,) together with the 
sequences [aj,] and {A,) may be called the spectral characteristics of our boundary-value 
problem (compare Levitan and Gasymov3). 

The Parseval theorem corresponding to our system is 

for two vectors f = ( f,(x), f,(~))~ and g = (g, (X),~,(X))~ each zL2(0,n). 
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Let E,, j = 1.2, be two unit vectors on R x R and let x,r. x # t be given. In (14) put f = E, 

for 0 < r C s and = 0, otherwise and g = E ~  for 0 C z g t ,  = 0, otherwise. Then 

where a,,, is the kronecker delta. 

3. Some asymptotic formulae 

K(x,r) and integrate by parts the integral 

on the right. Then in view of the relations' (p. 175) X,Jx,O) = 0, Y,(x,O) = 0 and the 
asymptotic estimate (lo), we obtain 

a,, cos ns + a,, sin I I ~  x,n a,, sin nx - a,, cos nx 
p1ix3ii'= (a,,,cosnx+ a,, s i n m -  (a]4 sin nx - a,, cos nx 1 

X , (x, x) sin nx - Y, (x, x) cos nx 
Y,(x, x)sin nx - Y,(x, x) cos nx 

where x, are the constants which occur in (10). Similarly, for $,(x,i$). 

Then substituting for X,(x,x), Y,(x,x) by the relations (3.6)-(3.9) of Ray Paladbi7, we 
obtain after some reductions 

where (u,,Lz,) is the inner product a, la21 + a,,a,, + a1,a,, + a,,a,,. It may be noted 
that the restrictions on  a,, as imposed in (4) are needed in the asympto:ic evaluation of 
q,, i = 1,2,3. 

Since rank (a,)= 2, it follows that 

Then kom (131, (16), (18), (19) it follows that 

A, = D, + O(l/n). 
Put 
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and 
~(x,;.:, A f )  = ?/A!c(x.I$) .  

Then the series 

(where the accent denotes that the term n = 0 is omitted) is uniformly convergent for x, t > 0, 
and either .x $ n, t  $ n - E or t < n, x < a - E, E 1 0 ,  x # t; as can be seen by using the 
as)rnptotic relations (10). (16)-(21) and the uniform convergence of the series Z;gkx/ka 
(aiternativeiely written: Z cos kx (resp. sin kx)/lP) for cc > 1, if - co < s < m and for O <a  $ 1 ,  
if 0 < E C x < 271 - e. It can be further verified that under the stated conditions the series 
obtained by term-wise differentiation of (30) is also uniformly convergent in the intervals 
stated before. 

4. Derivation caf integral equations satisfied by F(x,  t )  

Let M ( x ,  t )  be the matrix 

M(x ,  t )  = jlCl,j(x, t ) )  = (::: such that M(s,t) = 0 for t > x,  

~ ( x ,  0) + Oand M(x, t )  satisfy the reiationr (4.6)-(4.9)as given by Ray Paladhi7 (p. 177). Then 

where and c, are those given in (12) and (11) (see Ray Paladhi7, p. 176). In view of (12) 
and (31) the kernels K ( x , t )  and M(x,  t )  are reciprocally related. We establish the following 
theorem. 
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Theorem 4.1. F ( x ,  t) defined in (30) satisfies the equation 

iM(x,s)MT(t ,s)  ds, if 0 i r i x < n; (32) 

and 

F(x, r )  admits second-order partial derivatives, continuous with respect to x,  t in 10, n] x [o, rr] 
and F(x,O)f  0 ,  a /StF(x, t ) / ,= ,=O for x ~ [ O , n ] .  

Put 

where $2,(.) are the components of the normalized eigenvectors 

$.(x, hl ,A$j  - I/A$$,(x,L$) defined before (see sectlon 2). 

Then from (27), (29) and (31). we have 

Smce term-wise integration is permissible in (30) on account of the uniform convergence 
of the series involved, we have 

- 

where 

c*(u, v, n) = c*(u, n)c*'(o, n) and 0 i u i x,O < v i t. 
That is 

2 / : I : ~ ( u ,  u)dudv = I - AX,," - J, say. 

On substitution from ( 3 3 ,  it follows that 
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From (34) and the relation (15) it follows that I ,  =2min (x, t )  E, where E is the 2 x 2 unit 

matrix (iy). By utiliing s modified version oftbe Parsevalrelation(l4) ~ i th f=(M,~ ,M, ,Y  
. , 

j = 1,2, the column vectors of M(x, I), where M(x, t )  = 0 for t > x and g = E, for t 4 x and 
= 0, otherwise, it follows that 

1 2 =  - ~ j ~ d u ~ ~ M ( u , s ) d i  

Simifarlv. 

and 

Therefore, for all x f: t in 0 Q t,x < n, 
rr Ct  P I  rr 

Put 

and 

Then, substituting for c*(x, n) by (28) and simplifying we obtain 

If x z t,$All = (d, sinnx + d,(l - cosnx)(d,sinnt + d,(l - cos nt)). Similar results hold 
for A,,, A,,  and A,, and also for x < t. Then 

by (23) and the formulae 

f' cos n8/n2 = 2 2 cos n@/nz = 2(n2/6 - 77812 + 02/4), 0 G 8 < n 
l l = - m  n =  1 

and 

f' sin n8/n2 = 0. 
a = - ? i  
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Similarly, 

9 A,,/nZ = 2(nmin(t, x) - txd: + n2d:/3). 
n- -ll 

Also by using the condition (24) 

f' A,,/nZ= f' A;,/nZ= -2txd,d,+2n2d1d3/3, 
n = - m  n = - m  

Altogetber, from (39) 

= 2 min (t, x) E - AxtIn + 2Bn/3. 

Hence, from (36), (38) and (41), it follows that 

Now, operating with a2/axat both sides of (42) and then integrating by parts as and when 
necessary, we obtain after some reductions 

F(XJ) = - M(X, t)- M=(~,x) + M(x,s)M~(~,s)~s. C (43) 
Since by defmition M(t, x) = 0 for x > t, the relation (32) follows from (43). Again since 
M(x t) = 0 for t > X, the relation (33) also follows from (43). 

Since M(x, t )  has continuous second-order partial derivatives with respect to x, t, in [O, 711, 
F(x, t) has also so for 0 < x t < n, x # t. Also since M(x, 0) # 0, and M,(x, t)l,,, = 0, 
F(x,O) #O and F,(x, t)/,,, = 0 for all xs[O,n]. The theorem therefore follows. 

Theorem 4.2. The kernels K(x, t) and M(x,t) are connected by the equation 

where F(x, t) is defined by (30). 

The proof is a simple repetition of the arguments of Ray Paladhi7 (pp 185-186) with 
our function F(x, t) in place of E(x, t) detined by him by the relation (I) on p. 184, and 
hence omitted (see also Gasymov and Levitan3, pp 18-20, lemma 1.5.1.). The kemel M(x, t) 
is the reciprocal of the kernel K(x, t). 

Theorem 4.3. If 0 < t < x < n, the kernel K(x, t) associated with (12) satisfies the integral 
equation 
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It follows from (12), (27), (29) and (34) that 

Multiplying (46) by cr(v,i.i, A$) and making use of (35) we obtain 

where c(u, o, . . .) and $(u, 4.. .) have the same meaning as in (36) and (37). By a moditication 
of the Parseval theorem (14) as in the case of evaluation of I, and the relations (37), (38) 
and (42), we have from (47), 

where 

Substituting for c(v,&$,A;) and c(s,A:,A:) by (33, we have 
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J ,  = - 2 j":du j': do ji mu, l ) ~ ~ ( l i ,  s)dS 

Hence, from (48) and [49), on substitution of the values of J,, k = 1,2,3,4, and application 
of the operator a2/axar on both sides of the resulting relation, we obtain 

where we have used M(t, x) = 0 for 0 $ t < x < n, by definition. That is 

F(x, t) + K(x, t )  = R, say. (51) 

In view of M(s, t )  = 0, for 0 < s < t, MT(t, S) = 0, for 0 $ 1 i s  and the relations (32) and (33), 

R = ( J  - fi * ( i p ) ) ~ '  (t,.dp)ds 

The required integral equation then follows from (51) 

5. The inverse problem 

Let (i) aii, i = 1,2,j = 1,2,3,4, be aseqnence of real-valuedconstants satisfying the conditions 
(4) and (5); 

(ii) {cr,.:, j = 1,2,3, be a sequence of real numbers such that 

(4 is positive definite; 

(b) K,, have the asymptotic values as given in (16), (18) and (19); 

fiii) {J.,) he a steadily increasing sequence of distinct positive real numbers with asymptotic 
estimates 1; = n + mj/n + d(l/n), where orj is a constant. ,I? is interpreted in the same way 
as in (10). 

Then, A, = r,.a,,(a,. + a,, -2a,.) > 0 and has the asymptotic estimates as in (21). 

In the following we construct a boundary-value problem (1) with (2) and (3) when {A,},  
{:,m), {A" )  are given. { l . ) ,  {aJ.}, { A , )  together constitute the spectral characteristics of the 
agenvalue problem to be constructed by us. 
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We begin by establishing the following lemma. 

Lemma 5.1. The set of vectors ( c o s I ? t , ~ i n ~ b t ) ~  is linearly independent and is complete in 
L on the interval [O,n], if i., satisfies the asymptotic relation as assumed in (iii) above. 

Since i., #in, when m # n, the linear independence of the system follows from those of 
:cos 2.2 t) and {sin Lit) in [O, n]. The completeness of the system in L(0, n) is established 
by showing that 

for ail large I, implies that f = g = 0 almost everywhere on (0, n), if (f,g)'&L(O, n). 

If possible, let (f, g)' # 0 in (0, n) and (52) hold. Put 

F ( 3  = 1; f exp(iw2x)dx + g exp (- iw2x) d x  1: 
Since each of {cosnx), {sinnx), n = 0, + 1, + 2, f 3,. . . , is complete in (0, n), (exp (inx), 

exp (-  in^))^ is also complete in (0, n). Thus, F(w) cannot vanish at all points w2 = n, n = 0, 
5 1, + 2,..., F(w) is therefore an entire function which does not vanish identically. The 
validity of the lemma is now established in the same way as Levinson" (pp 3-5). 

Let us construct the matrix F(x, t) in the form (30) by making use of the conditions 
(i)-(iii) and the conditions (22)-(26). Then, F(x, t) is uniformly convergent in the domain 
specified in (30). The following theorem is now established. 

Theorem 5.1. The homogeneous integral equation 

where g(t) = (g, ,g2)T is continuous in t and g(t) = 0, t > x, has only the null solution for 
g(t) for every xe(0, n). 

Taking the scalar product of (53) with g(t) integrate with respect to t between the limits 
(0, x) and replace F(s, t) by its series expansion (30). Then, on reduction 

f 2 = f : + f : ,  iff=(fi,fz) ' .  

In view of the conditions (4)-(7), it is easy to deduce that 

c~(x, n) = ('~j'~' ") = ( aj2 ws nx +aj, sin nx ) j = 1,2, are the eigenvectors 
~ , ~ ( x , n )  aj, ws nx + aj, sin nx ' 

of the Fourier system (9). 
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Then, Dl c,(x, n) - D,c, (x ,  n), where D, are those defined in (22) is also an eigenvector with 

where a, are the vectors which occur in (16) and (17) and (a,,a,) is the inner product of 
a, and a,. Substituting for laj12, (a,,a,) in terms of Dj,Do as obtained in (20) and (22) and 
simplifying, it follows that 

Thus, (Dl c,(x, n) - D,c, (x, n))/xf is a normalized eigenvector for the Fourier system (9) with 
boundary conditions (2) and (3). 

Since g(t) = 0 for t > x, we have by the Parseval formula 

[grlt)mdt = g r ( t ) r w  = 1 1 ~  gTi~) i~lc2( t9n)  -D2c1@,n)W 1.' 
n=-m 

sr(t)c*(t,n)dt/2 + 112n f ~ / ~ g r ( s ) l g ( r ) d i d t  

where A is the matrix defined in (25) and g =(g,,g2)TeL2(0,~). (55) 

If further J = (f,, f,)T~L2(0, x), we have, more generally, 

where cf(s, t, n) = c*(s, n)c*(f, n) as before. 

From (54) and (55). we, therefore, have 

From this, since A, r 0, we have 

j;g~(l)cj(t,~2)dt = 0, 

Therefore, by lemma 5.1, 
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where j =  1.2 and k = 1,2: from these it follows that y; = g 2  = O for xs(0,n). by (4). The 
theorem therefore follows. 

The following lemma is only an extension to matnces of the Gasymov-Levitan lemma3, 
p. 14, lemma 1.3.1. 

Lemma 5 2 Let the matrices g(t,a), h(t,a) and H(t,s,a) be connected by 

where g and H are continuous in s and t. If for a =ao, g(t, a,) = 0, and the resulting integral 
equation has only the null solution h(t,ao), then in some neighbourhood of a,, k(t,a) is 
contmuous in t, a. Also h(t, a) has continuous derivatives of order m 2 1 with respect to a, 
if N and g have so with respect to a. 

The following theorem is now proved. 

Theorem 5.2. Let F(x, r), 0 S t t x < n be defined by (30) and satisfy the following cond~tions. 

(a) F(x, t )  admits contmuous second-order partial derivatives with respect to x, t in 10,711; 
(b) F(x,O) #0, E,(x, t)l,=, = O  for x~[O,n]. 

Then, 

(i) the integral equation (45) has a unique solution for the symmetric kernel K(x,c), 
0 < t t x < n and K(x,t) = 0 for t > x; K(x, t) is a continuous function of s, t having 
continuous second-order partial derivatives with respect to x, t in x, t~[O,n], x g t; 
(ii) $J~(X, A:), j = 1,2, defined in terms of the matrix K(x, t )  and a,- by the relation (12), satisfy 
the system (I) along with the boundary conditions (2) at x = 0, where 

The first part of the theorem is an immediate consequence of theorem 5.1 and the iteration 
process. The continuity and differentiability of K(x, t) follow from lemma 5.1 in the same 
way as in Gasymov and Levi:an3 @. 15). The proof of the second part follows verbatim 
from the arguments of Ray Paladhi' (pp 183-185) with F(x, t) in place of his E(x, t) and 
hence is omitted. (See also Gasymov and Levitan', pp 15-18 and p. 26 for the classical 
Sturm-Liouville problem.) 

6. Investigation of the eigenvectors for the inverse problem 

where $ j  are defined as in theorem 5.2 (ii) in terms of K(x, t), the unique solution of (45) 
and the aCj, the given sequence of real-valued constants. Obviously, $,(x) satisfy the 
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differential system (1) with d = E, and the boundary condition (2) at x = 0. We prove the 
following theorem. 

Theorem 6.1. {$,(x, J$)/Af } is a complete sequence of orthonormal eigenvectors associated 
with the system (I), (2) and a suitable boundary condition fixed at x = n, {A,) being the 
eigenvalues for the system. 

Put 

GI(&) = I/A! /:f '(x)fi.(x.%)h, f = ( f l . f 2 ) '~L2(o ,  

$.(x,>.$) = cO(x,J.,f) + K(x, t)co(t,i.$)dt 

where 
I: 

cO(x,j.$) = z ~ ~ c ~ ( x , ~ . $ )  - a,.cl(x,& 
Let 

by a change in the order of integration, with a similar relation involving gT and h,, it 
follows that 

Therefore, by (30) and (56), 

Here, c(x,E.i, At)  is the matrix 1 /A;c(x, I$). 
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Substituting for h,(x) by (61), and changing the order of integration, we have 

by (44) and (45). 

From (62) 

h:(x) =g(x) c j -KT(t,x)g(0dt 

which is the Volterra integral system, giving 

where the kernel M ~ ( ~ , x )  is the reciprocal of the kernel KT(t,x). (see Whittaker and 
Watsonlz, p. 218). Hence, from (61), (63)-(66) 

(compare Gasymov and Levitan" pp 20-21). 

Let 

Thus, F(x) = f(x) ae. on [O,n]. Hence, for any vector f e L,(O,n), we obtain formally the 
expansion formula 
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The uniform convergence in [0, n] of the series on the right of (68) is proved as follows. Let 

T(x) = Lf = (-" + pfl + f 2 ) c ~ 2 ( ~ ,  n), where f = (fl,fZ)Te L2(0,n). Also, 
- f ; + r f 1 + &  

let f(x) satisfy the boundary condition (2) at x = 0. Then, since f and $, satisfy the 
boundary conditions (same) at x = 0, [f, $.lo = 0, [.I being the bilinear concomitant 
of the vectors f and I),. Since $, satisfies the differential system (1) with 1.= A,, we have 
by Green's theorem 

LC, - c. = l/AnCf, $,I, 
where 

en = l / A n ~ ~ ~ ( x ) $ n ( x , > $ ) d x .  (69) 

Let a ,  satisfy the additional condition 

la112~L421.=laZi2Cf.~lla. (70) 

Then, it follows from the asymptotic relations (16)-(18) and the relation (69) that 

i,C.- C,=o(~jn) .  (71) 

If G(.x,y,i) be the Green's matrix for the differential system (1) and the boundary conditions 
(7j and (3, we have 

Hence, by the familiar Titchmarsh argumentl"p. 27), 

by the Cauchy inequality and the inequality (a + bj2 < 2(aZ + b2). 

Since, by (67), X:= _ , A,C? < m, the uniform convergence of X:= _ , C,,$.(x, .It) in [O, n] 
follows as in Titchmarsh13 (p. 27). The series is also absolutely convergent. In particular, 
let f(x) = $,(x, I.;), so that 

Since {z Atxi are two linearly independent sequencer, and rank (a,) = & it follows from 

(72) that 
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where a,, is thc kronecker delta. 

Thus, [$.(x,i!)j IS an orthogonal system satisfying (1) and (2) in L2(0,n). By Green's 
theorem applied to any two elements $ j ( x ,  A:), j = m,n, ni # n, we have 

Define the boundary cond~tion at x = n by (74). Then {~,~,,(x,i.i )/A: ] represents a sequence 
of normalized eigenvectors for the system (I), (2) and (74). {A,) is obviously a sequence of 
eigenvalues. The relation (67) is the Parseval relation for the system constructed. The system 
is therefore complete and the theorem is proved. 

We next establish the following lemma which is theconverse ofa theorem ofChakravartys 
( p  138). 

Lemma 6.1. If two linearly independent vectors U ,  V satisfy the condition [U, V], = 0 with 
[O,, +z]  = 0, where +, , 6, are thc boundary condition vectors at x = n, then [U, +,I, = 
[ V ,  d,], = 0, j =  1,2 and hence U, V satisfy the boundary conditions at n given by (3). 

Let HI. HZ be two linearly independent vectors connected with $,, &2 by the relations 
[ B , ,  O,] = 0 and [b,, 8,] = 6 ,,,, r , s  = 1,2, where 6,,, is the kronccker delta. Evidently, the 
choice of B,, 9,  in the above way is not unique and in fact three more independent rclalions 
are necessary for complete determination of @,, 8',, H,, 6. 

In the P-identity of Chakravartyyidentity 2.2, p. 135), let us identify 4, = 0,, 6, = 8,, 
4, = U and &, = V,  where the six vectors 4,, j = 1,2,. . ., 6, are linearly independent and 
for convenience we write 14,. $,I, = - [4 j ,  4J, = Pi,. It then follows from the P-identity, 
(since PI, = 0, P,, = 0, P,, = 0, P,3 = 0, P2& = 1, PSI = 0, P13 = I), that 

' ~ 5 ~ ~ 6  - ' ~ 6 ~ 4 5  + P1 Sp36 --'16p35 =O- (75) 

There can be three more relations of type (75) corresponding to three more independent 
choices of H. Since 8,, H,, I J ,  V are linearly independent, the four vectors of type 
(P,,. P,,, P,,, P,,) arising by considering four linearly independent choices of (8, ,  8,) are 
linearly independent. Giving thesc four vectors the values E,, j = 1,2,3,4, where cJ tR4 is 
thejth unit vector, wederivefrom(75), PI,  = P,, = P16 = P,, = 0. Hence the lemma follows. 

We now have the following theorem 

Theorem 6.2. The sequence of constants {b,,), rank (b,) = 2, ~atisfying (6) having been 
gwen, the relation 

implies that $,(x,i , l)  satisfies the boundary conditions (3) at r = n, by suitably choosing 
the boundary condition vectors at the point. 

This is an immediate consequence of lemma 6.1 
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Theorems 5.2, 6.1 and 6.2 taken together allow us to construct the eigenvalue problem 
(1) with (2) and (3) from the given spectral characteristics, i.e., the sequence of eigenvalues 
{in), the sequence { A , )  of normalizing constants, and the sequence {aj,), j = 1,2,3, when 
certain asymptotic relations are known. The problem so derived is necessarily unique since 
K ( x ,  t), which plays a vital role in the construction, is unique by theorem 5.1. 

We note that the condition (70) on aij can be waived, iff  satisfies the relati_on (3) at 
x = n for given b,, along with (4), (6)-(8). In this case, (71) takes the simpler form C. = 2°C. 
and the rest of the analysis follows as before. 
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