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Abstract

Given the spectral characteristics defined in the body of the paper, it is possible to construct a complete sel-adjoint
eigenvalue problem in the finile interval (0, ) associated with a 2 x 2 matrix differential system. The solutions of
the differential system so constructed satisfy certain prescribed boundary conditions at x =0 and x = .
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1. Introduction

In spectral theory, it becomes sometimes necessary to ascertain certain spectral data that
determine (possibly uniquely) a differential operator and then to develop 2 method by
which it may be possible to construct the operator from the data. The involved problem
is an inverse problem associated with a differential operator. Inverse problems were first
formulated and investigated way back 1929 by Ambarzumyan®, and then since 1945 by
Borg, Levinson, Marchenko, Krein, Gelfand, Levitan, Gasymov, and recently by Hochstadt
and others. In 1951, Gelfand and Levitan? gave a method of reconstructing a second-order
differential equation from its spectral function p(l) by reducing the problem to certain
linear integral equations. Gasymov and Levitan®; by adopting the same technique, solved
inter alig an inverse problem for a finite interval from given spectral characteristics, i.e.,
from the sequence of eigenvalues and the normalizing constants for the eigenfunctions
associated with a second-order differential equation of the Sturm-Liouville type. For works
on inverse Sturm-Liouville problems, reference may also be made to Levitan® and
Marchenko®. In a recent paper, McLaughlin® presents a survey of the last forty years (till
1983) of researches on the methods and properties of these methods for recovering
coefficients of differential equations from spectral data. Results are at first presented by
invoking mathematical models for physical problems involving (i) a vibrating string with
variable density but constant tension, (i) propagation in the vocal tract, {iii) propagation
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24 N K CHAKRAVARTY AND SUDIP KUMAR ACHARYYA

Luropic elestic medium Hke the earth’s crust, the curvature of the earth being ignored,
o the Fuler-Bernouili modeai of transverse vibrations of a beam. Theoretical resuits
¢ the inverse problems with special emphasis on the Sturm-Liouville operator
taen follow, the spectrai data to be chosen being motivated by the physical examples

considered earlier. Specially interesting is the consideration by the author of the inverse

25V

moh!.m for the fourth-order equation

).e‘-'—r _'_QA}.(:)):&:_}_ B_‘;’—-—/:y =G, 0<x< 1’
= ‘\.;2)‘(“ =0 )"J'{O) + a(‘.(i){o) —_ b}-(O) -
RO+ b+ AT H Q=

S

The prebiem is o sei-adjoint eigenvaiue problem when 4(x), B(x) are rezl-valued and a,b,¢
2re real constants. By adopting the Gelfand-Levitan technique® of integral equations and
1 transformation operator which maps solutions of a known problem on to solutions
of d}: 1 be derived problem. A{x), B(x) and a,b,c are determined from the spectral data
comprising the sequence of eigenvalues, the spectral matrix for the fourth-order differential
equations and the norming constants defined in the paper. Theoretical results obtained by
the author are interspersed with pertinent remarks on a number of variations of the problem
presented by some other authors. The paper ends with a rich and extensive bibliography
on inverse problems on differential equations over a finite interval. The inverse problem
involving fourth-order equations has not been considered as extensively as that involving
the Sturm-Lieuville operator

Cn eliminating v, say. from our system ie. the system (1) with boundary conditions (2),
{3) tsection 2 below) we obtain a fourth-order differential equation in u with coefficients
containing the parameter 4 with boundary conditions at x =0, x = n also containing the
parameter ., Our problem is therefore entirely different from the type of fourth-order
equations considered by McLaughlin. The method of solution of inverse problem invelving
fourth~order equations with coefficients as well as the boundary conditions containing the
parameter A does not appear to be quite well known; but if the same problem can be
reduced to a second-order system as the one considered by us by some transformations,
it may be possible to apply the Gelfand-Levitan technigue and a transformation operator
as we huve done Jike McLaughlin, to solve such inverse problems.

The inverse problem associated with the Dirac system was initiated by Levitan and
Gasymov in 1966, but very littie work on the inverse problem appears to have been done
for the system ‘LY = MY, consisting of m equations each of order n. Only in 1981, Ray
Paladhi” deait with an inverse problem associated with a special case of the system, i.e.,
the systern we are going to investigate. By defining a spectral matrix and adopting the
Guasymov-Levitan method, he constructed the differential system from the spectral matrix.
But his conclusion regarding non-unicity of the solution as made by him” in the last line
of his theorem 5 (p. 191) appears wrong, the example cited in support on page 190 of the
article being erroncous. We investigate the inverse problem for a finite interval from spectral
characteristics to be defined for our system. The investigation appears important in view
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of the fact that a special case of our system, e,

YL Y =(Vix)F6xTAP Y. O<x <,
- . oy .
where $'(x) is 2 2 x 2 Hermitian matrix and £ = & 06 i is derived from the Schrodinger
Vs

cquation for a deuteron {in its ground state) when tensor interaction forces arc taken into
account.

ft is interesting to note that the inverse problem was studied almost exclusively by
mathematicians in the 1ISSR, but elsewhers almost exclusively by physicists.

2. Preifiminary results

The differential system under consideration is
~D*+p r

. _p M), D*=d¥dx? $=fu).olx)y (1)

Lp=4if, L= (
where p,g.r are real-valued C,_ (0, n)-class functions, {k=0,1), summable on {0,7). By
Cyla, fi-class functions we mean sets of functions {real or complex) which are k-times
differentiable on {x, B), the kth derivative being continuous in the interval 1 is the eigenvalue
parameter.

The probiem is one of the finite interval (0, 7} and the boundary conditions at x =0 and
at x = x are, respectively,

a,, u(0) + a,,u'(0) + a;30(0) + a,,0'(0) =0 (2)

by ulm) + by () + byzv(m) + by v'{m) =0 3)
where q,, b;, are real-valued constants (independent of A} satisfying the following conditions:

) rank (q;)=rank (b)) =2, i=12 j=1234 (4)
where at least one of

a;, a; a o

MY el S R

) g a0, + 230 =0, jh=12 (5

(i) by byy ~biabyy + 03030~ by by =0 (6)

(i) bpay + bpa =0, byau+bpa.=0, jk=12 (7

(V) bypaya+ bady #0. (8)
The system

Fufdx® +du=0;, divfdx*+v=0 9)
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satisfying the same boundary conditions (2) and (3)at x = 0, x = n, a,;, b;; satisfying conditions
{4)-(8), is the Fourier system corresponding to {(1).

Let ¢;, ¢,.{= 1,2, = 3,4 be the boundary condition vectors at x = 0, x = x (i.e,, solutions
of {1j which together with their first derivatives take prescribed constant values out of a;,
b;; in the boundary conditions (2), (3) at x=0, x=m). For example, we can choose
Gilemo = U010 A = — (a1, 83 )T, Brlo = $1(O1%, Mamo = B(010, 2) = 2. @10)". Sirmilarly,
for @;lx=r» jle-n in terms of by;.

Then the boundary conditions (2) and (3) can be put in the form [U, ¢,3, =[U, ¢;1, =0,
where U = (u,v)7, [-] being the bilinear concomitant defined for two vectors o= (a,, §,)7,
B=1(25,8,)" by.

B BZJ

Xy azl
P

E4 3‘2£ 181 ﬁzl

The relations (5) and (6) represented by [¢1, ¢, 1, =0, [P3, ¢4 ], = 0 are the self-adjointness

conditions {see Chakravarty®, p. 138). The wronskian is

W(ky=[d;,¢.1[¢2. 031 —[d1. 31 s, du]

and the eigenvalues are the simple or double zeros of W(A). In view of our observations®
(p. 82), we can proceed with the assumption that the eigenvalues 4, are the simple roots
of W{i), which may be taken to be all positive. In particular, let the boundary conditions
satisfied by the solution (w,v)T be the Dirichlet U(0)=U{n)=0 or the Neumann:

V0= Ux)=0 and p>0, pg—r2>0, so that 0 = (p r) is positive definite (i.e., the
rq

corresponding quadratic from is positive definite). Then it is easy to show that the
eigenvalues 1, are positive by considering the Dirichlet integral D(f, g) = [ F(z)dz, where
S=U )9 =01,42)7 FO) = f14) + f205 + Py +1(f1d2+ f291) + af2g2,20d [,
exist and are continuous in (0,7) (see Chakravarty and Sen Gupta'?),

Let {4,} be the eigenvalues associated with the system (1) with (2) and (3); define A% = g,,
>0, n20and i} = —pu,, 4, >0, if n <0,

Then
H=ntam+0(im), j=1,2 (10)

where «; are constants depending on the coefficients in the boundary conditions at x =0
and x = 7 and p, g,r which occur in the differential system. For derivation of the exact form
of a; we require the conditions (7) and (8); the vector (x,, «,)" is the boundary characteristic
vector of the given problem? (pp 81-83).

Let

R cyj(x, A% ;2008 AFx 4 a;, sin A%
e ahy= (WS EN)_ (Gacostixapsnd ()
(%, 4%) a;, cos A x + a5 sin A x

K(x,1)= (K“(x,t) sz(x’l))’

Koy x,t) Kyalx,t)
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K, = Kj. a2 x 2 matrix {symmetric) having continuous partial derivatives up to the order
two with respect to each of ¢ and x, K(x,f)=0 for t>x, K{(0,0)=0. Then putting
= c,{t i)

G0, A2y = (%, A5, by, AT
= (% A0) + JXK(x, Hefods, j=1,2 12)

o

satisfy the system (1) with boundary conditions (2), if and only if the conditions (3.6)-(3.9)
of Ray Paladhi” (Theorem 1, p. 175) are satisfied. Hence,

B0 21, 0x, A3),

where

nqu(.v,zs)n%a,n:f"w»,de
0

Jj=1,2, are two linearly independent sequences of normalized eigenvectors corresponding
to the eigenvalue 4, of the given differential system. ¢;, j = 1,2, therefore, form a basis of
the vector space of eigenvectors, any element of which is of the form a, ¢, (x, 43) + b, ¢ (x, 1),
where a,, b, are any two constants independent of x. The linear combination

W%, ) = (1%, ) V20l 20T = 0102 (x, A2) — 02,90, (x, £F)
is therefore an eigenvector chosen to correspond to the eigenvalue 4, of the system under
consideration® (pp 140-143).
Let

A= 0y 0,0, + 0y — 223,), (13)
where

2y = j (6505 22), b x, 24))dx.

0

Then by the Schwarz inequality and the condition (4),

to be called the normalizing matrix, is positive definite and therefore A, > 0and W, (x, 15 )/4%
is the normalized eigenvector corresponding to the eigenvalue 4, of our system. {4,} are
termed the normalizing constants. The sequence of eigenvalues {4,} together with the
sequences {a;,} and {4,} may be called the spectral characteristics of our boundary-value
problem (compare Levitan and Gasymov?).

The Parseval theorem corresponding to our system is
J (1) 90 dx =3 1/A,.J (), wn(x,li))dXJ (g7 ¥ (1) dr (14)
o n= 0 [\

for two vectors f = (f,(x), f3(x))" and g = (g, (x), g,(x))7 each &L,(0, 7).
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Let £, j = 1,2, be two unit vectors on R x Rand let x,1, x # t be given. In {14) put f = g,
for 0 < =< x and =0, otherwise and g = ¢ for 0 <z <, =0, otherwise. Then

~r

minfe,d, = Y 1/A, J Wyt 24} J Yl d)de, k=12 as
0 4

Py

where d;, is the kronecker delta.

3. Some asymptotic formulae

In (12} {with j = 1} put
A,(‘x,t‘) st =( Fiz s K{x,t) and integrate by parts the integral
Xaxt) Yale ) i1 @3

on the right. Then in view of the relations” (p. 175) X,{x,0)=0, Y,{x,0)=0 and the
asymptotic estimate (10), we obtain

, Ly )5 COS IX + @y, Sin uX @y, 8IDAX — a4 COSNX
Gi(x,45) = . — o, x/n .
Q44 COSMX + @y 3 Sint X ay48inhx —a;,¢08 nY

Y X {x, x)sinnx — X, (x, xjcos nx
in s
" Yy {x,x)sinnx — Y,{(x, x)cos nx

)+0(1/n)

where %, are the constants which occur in (10}. Similarly, for ¢,(x, A%).

Then substituting for X,(x,x), Y,(x,x) by the relations {3.6)—(3.9) of Ray Paladhi’, we
obtain after some reductions

= 1,05 28)1? = 4nla, * + O(l/n) (19)

where
laf =a}, +af, +aj +aly for vectors a;=(a;,,a;,853,8;,),j = 1,2 (17
%y =47|a,|* + O(1/n) (18)
=4n(a;,a;)+O(1/n) 19

where (a;,a:) is the inner product a,,a,; +ay,4,, +d,3d53 + Q14024 It may be noted
that the restrictions on a,; as imposed in {4) are needed in the asymptotic evaluation of
% i=1,23

Since rank (g;,} =2, it follows that

Dy=n*f8la,1*lay P la; —ay 2 > 0. 20}
Then from (13), (16}, (18), {19) it follows that

A, =D+ O(1/n). @n
Put

d,= Dt~ Dyay, j=1,2 @2)
where

=2 Da P, k=12
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and
d2+di=di+di=1 2%
d,d;y +d,d,=0. (24)
Let
{43 dpds
=2{ = L 2
A (d:@ : > {25)
a2 d,d;\ B
= ¢ N 26
s=(an, 9
o iy (ersbe, Ay~ cr e 22N\ (2, iy )
el \Calx, A8 = €20 (% 23/ \%2n 04 e
c*(x,n)»—(cu(m n)— ¢y, n)) > 28)
Ca2 (%, ) —Ca1 (X, 1} N
and
clx, 25, Agy = 1/ Az c(x, A}). (29

Then the series

x

IF{x, 1) = Z c(x,}.j,Aﬁ)cT(t,if,Aﬁ)—A/ﬂ:-1/7!: f' c*x,m)e*T(t,n)  (30)

{where the accent denotes that the term 7 = 0 is omitted) is uniformly convergent for x,1 > 0,

and either x<n, t<n—¢gor t<n, x<n—¢ >0, X1, as can be seen by using the
asymptotic relations (10), (16)—21) and the uniform convergence of the series E kx/k*
{alternatively written: X cos kx {resp. sinkx)/k*) fora>1,iff —co <x<w andfor0<a<1,
if 0 <eg<x <€ 2n—e It can be further verified that under the stated conditions the series
obtained by term-wise differentiation of (30) is also uniformly convergent in the intervals
stated before.

4. Derivation of integral equations satisfied by F(x,9)
Let M{x, 1) be the matrix

Mll
M21

M(x,0) 5 0and M{x, t) satisfy the reiations (4.6)-(4.9) as given by Ray Paladhi” (p. 177). Then

M(x, )= {M,;{x,1)) = ( AA;I”) such that M(x, 1) =0 for 1> x,
22

cilx, 43) = ¢ylx, 25— J: M{x,0¢ s, Ay de (€29]

where $; and ¢; are those given in (12) and (11) (see Ray Paladhi’, p. 176). In view of (12)
and (31) the kernels K(x,t) and M(x,?) are reciprocally related. We establish the following
theorem.
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Theorem 4.1. F{x,t) defined in (30) satisfics the equation

F(x,t)= — M(x,s)+ f M(,sMT(t,s)ds, f0<t<x < (32)

o

Flx, )= —MT(x,9)+ J‘M(x,s)MT(z,s)ds, fo<x<t<m (33)
0

F{x, t) admits second-order partial derivatives, continuous with respect to x, ¢ in [0, 7] x {0, x]
and F(x,0) #0, 8/8tF(x,t)], =0 =0 for x&[0,n].

Put
Yialn 25, AR Yalx A, A*))
x, A3, Ab) = P 34

Yoo di) (ebzn(x,z;,A;) Ul 34 A3) G4
where ¥,,(.), ¥,,() are the components of the normalized eigenvectors.

Walx, A5, A3y = 1/ A%, (x, A2) defined before (see section 2).
Then from {27), (29) and (31), we have

o, 2 ",A*)~x/z(x,ﬂ.;f,A3>—f M, 00 (t, 44, A2)dt. 35)

o

Since term-wise integration is permissible in (30} on account of the uniform convergence
of the series involved, we have

X 1
ZJ J. F{u,v)dudp = Z j f c(u,v, 23,45 )dudv — Axt/n
0 4 JO

Wi
) x t
-1z Yy’ f f *(u, v, n)dudo (36)
a=— Jo Jo
where
w0, 4,48 = c(w, A, A ) (v, 23, 4F),
c*u,n,n)=c*u,mc*T(o,n)and 0<u<x,0<Kv< L.
That is

x 't
ZJ f F{u,0)dudv=1— Axt/z — J, say.
o Jo

On substitution from (35), it follows that

w© X T u
f Yo, i3, A dudo— Y, f j j M, s)(s, 22, 43)ds
n=-—aw Jjo JOoJO

n=—x

X U (v, 2, A2 dudp _i J Jdudvlﬁ(u,iz,Az)jv(M(v,s)
X (5,23, AN ds + Z j J‘duva‘ MQus) (s, A3, Af)ds

n="00

% j (Mo, (s, 23, AR ds= 1, + I, 4 I3+ I, say, 37
o
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where '
Yl v, A5, AF) = Y, AF, A5 (0, 4, A3).
From (34) and the relation (15} it follows that I; = 2min (x, 1) E, where E is the 2 x 2 unit
matrix (Cl) ?) By utilizing a modified version of the Parseval relation (14) with f = (M ;, M, ;)*
J=1,2, the column vectors of M(x, ), where M{x,£)=0for t>x and g =¢, for t <x and
= (), otherwise, it follows that

X t
12=——2f duJ M(u,s)ds.
0 °
Similarly,
t X
I;=—2 [ va MT(@,s)ds
JO o
and
x T "
I4=2f duj duf M(u, s)M7(v,s)ds.
o Q o

Therefore, forall x#:in 0<t,x< =,

x (1 13 x
]=2min(x,t)E-—2J' duf M(u,s)ds-zf dvf MT(v,s)ds
o o o Jo

X t "
+ 2J‘ duJ‘ va M(u, ) M7 (v,5)ds. (38)
[+] 0 [
Put
d, d, sinnx sinnx
D= , Hegn)=
<d4 d;,) bom) (1 ~cosnx 1-—cos nx)
and
A i1 A 1 2)
=DH(x,n)HT(x,n)D7.
( Ay Ay, (x,WH"(x,n)
Then, substituting for ¢*(x, n) by (28) and simplifying we obtain

3 A A
J=1 . 2f A1 12}
/ﬂ"; @ n <A13 A14> 9

If x>t,34;, =(d,sinnx+d, (1 — cosnx)(d,sinnt + d, (L — cosnt)). Similar results hold
for A;,,A4;, and A4,; and also for x <t. Then

n;_’m Ay /n* = 2(zminft, x) — txd2 + 1/37*d3) (40)
by (23) and the formulae

keod 20
3" cosnBn* =2y cosnf/n®=2(n*/6—nb/2+6%4), 0<O<=x
w n=1

and
o
37 sinnf/n® =0.
@0
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Similarly,
$ Ay fn? = 2wmin(, x) — txd} + 72 d3/3).

n==~

Also by using the condition (24)

n=-

20 kel
S A= Y A/t = —2ixdyd, +207d; dy/3.

Altogetber, from (39)

i dz  d,d, 2 ([ d} d.dg
lemm(t,x)E—th/n(dsz @ +§7c dd, a2

=2min (¢, x) E ~ Axt/n + 2Bn/3. (41)
Hence, from (36), (38) and (41), it follows that
x 't X T £’
f J F(u,p)dudy= J‘ du‘f va‘ M(u, s)M™ (v, s)ds — =B/3
o 1] 0

¢ Jo
x 't T x
-J dujM(u,s)ds—f duj MT7(v,s)ds. (42)
0 [ o 0
Now, operating with §2/3xdt both sides of (42) and then integrating by parts as and when
necessary, we obtain after some reductions
+
F(x,t)= — M(x,t)~ MT(t,x) + j Mx, ) M7 (t,s)ds. 43
0

Since by definition M(t,x)=0 for x> ¢, the relation (32) follows from {(43). Again since
M{x,t)=0 for t > x, the relation (33) also follows from (43).

Since M(x, t) has continuous second-order partial derivatives with respect to x, t, in [0, 7],
Fix,t) has also so for 0<x, t<m, x#t Also since M(x,0)%#0, and M(x,t)l,=0=0,
F{x,0) %0 and F(x,)},=¢ =0 for all xe[0,7n]. The theorem therefore follows.

Theorem 4.2. The kernels K(x,t) and M(x,) are connected by the equation
t
—~MT(x,0)= F(t,x)+ f K{t,u)F(u, x)du (44)
[}
where F(x,t) is defined by (30).

The proof is a simple repetition of the arguments of Ray Paladhi’ (pp 185~186) with
our function F(x,t) in place of E(x,t) defined by him by the relation (I) on p. 184, and
hence omitted (sec also Gasymov and Levitan®, pp 18--20, lemma 1.5.1.). The kernel M(x, )
is the reciprocal of the kernel K(x,1).

Theorem 4.3. If 0<t <x <, the kernel K(x, ) associated with (12) satisfies the integral
equation

Flx, )+ K(x, )+ J K, $F(s,)ds =0 45)
o

where F(x,1) is given by (30). There is a similar relation for 0< x <t <.
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It follows from (12}, (27), (29) and (34) that
Yiu, A ARy =clu, A5, A + .[ K{u,t)e(t, A%, AF)dt. (46)
0
Multiplying (46} by ¢7 (s, 4, A) and making use of (35) we obtain

x M £
J J dudy 3 ;b(u,u,,l;,A},)—J fdudu ¥, A5, A2)
oJo PEy=rs =

re
xJ YT, it AF)MT (5,5)ds
0

x 't ES x T o0 u
=j J dude 3 c(u,v,l,%,A},‘H—J duf dv ¥ f K(u,s)c(s,v, A%, 4%)ds
0 Jo A= - 0 0 s¥-w jo
@7

where c(u, v,...) and ¥(4, v,...) have the same meaning as in (36) and (37). By a modification
of the Parseval theorem (14) as in the case of evaluation of I, and the relations (37), (38)
and (42), we have from (47),

X v t fx
2/37B + 2J J Flu,o)dudp + zf va MT(s,5)ds +Q=0 (48)
o Jo 3 0
where

x T 0 4
=f du'[ dv z K(u,s)c(s, v, A, A)ds.
Substituting for c(v, if, A%) and c(s 73, A%) by (35), we have
j duf do Z f (u, )W (5,0, 4%, 4%) ds—j duJv dv

x 3 ( f “K(ws)ds f M(s,p)w,zz,mdp)ww,i 43)

f du f do (f K(u,sw(s,iz,Az)ds)
o\ Lo
x(j wf(p,;.j,Az)MT(u,p)dp)+rdufdu i <qu(u,S)ds
o 0 o »=—w\Jo

x f "M DU Af,As)dp)( f "W, ADMT(, p)dp)
0 0

=Jy+J,+J5+ ], say. 49)

By suitable modification of the Parseval relation (14), as before, we obtain

Jy =2J du'[ K(u,s)ds
) 0

x u '
Jy= ~2j‘ duj K(u,s)dsf M(s,p)dp
0 (] 0
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Ji=o2 j ’duf va K(n9)M7(@.5ds
Q ()

o

fx ] u $
J4=2J duj duf K(u,S)dS[ M(s,p)M™ (v, p)dp-
o o

0 0

Hence, from (48) and (49), on substitution of the values of J,, k=1,2,3,4, and application
of the operator 3%/0x31 on both sides of the resulting refation, we obtain
Fle,t)+ K1)~ (Jx K(x,8)/(M(s,1) + M"(t,5) — j M(s,pyM"(t, P)dp)ds) =0,
0 0 50)
where we have used M(z,x) =0 for 0<t < x €=, by definition. That is
F(x, 1)+ K(x,1) = R, say. (51)
In view of M(s, 1) =0, for 0 <5 <t, M(£,5) =0, for 0 < t <s and the relations (32) and (33),

Re J Kix, s)(MT(t,S) - J Mis, M, p)dp>ds
(]

0

+ J e s)<M(s, H- rM(s,p)MT(s, p)dp)ds
T 0

=— J‘r K(x,s)F(s, t)ds — ‘rK(x,s)F(s,t)ds= — JXK(x,s)F(s, £)ds.
¢ T Q

The required integral equation then follows from (51).

5. The inverse problem
Let{D)ay;,i=1,2,j = 1,2,3,4, be a sequence of real-valued constants satisfying the conditions
(4) and (5);
(i) {e;},J=1,2,3, be a sequence of real numbers such that
(a) ( n %"> is positive definite;
A3y Oy
{(b) «;, have the asymptotic values as given in (16), (18) and (19);

{iii) {4,} be a steadily increasing sequence of distinct positive real numbers with asymptotic

estimates A} = n +a;/n + O(1/n), where «; is a constant. A} is interpreted in the same way
as in (10).

Then, A, == %,0,(01,, + ¢t5, — 213,) > 0 and has the asymptotic estimates as in (21).

In the following we construct a boundary-value problem (1) with (2) and (3) when {4,},
{?:,-,,}, {4,} are given. {4,}, {a;n}. {4,} together constitute the spectral characteristics of the
eigenvalue probiem to be constructed by us.
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We begin by establishing the following lemma.
Lemma 5.1. The set of vectors (cos A%z, sin 2 1)T is linearly independent and is complete in
L on the interval [0, 7], if 4, satisfies the asymptotic relation as assumed in (iii) above.
Since A, # 4,, when ms£n, the linear independence of the system follows from those of
{cos Aft} and {sinifr} in [0,7]. The completeness of the system in L(0, =) is established
by showing that
j (f{x)exp(iifx) + g(x)exp(— A x))dx =0 (52)
o
for all large 1, implies that f =g =0 almost everywhere on {0, %), if (f, g)"eL(0, n).
If possible, let (£, )T # 0 in (0, 7) and (52) hold. Put

Flwy= J"fexp(iulzx)dx+ ngexp(—— iw?x)dx.
0 )

Since each of {cosnx}, {sinnx}, n=0, £ 1, +2, £3,..., is complete in (0, n), (exp (inx),
exp(— inx))T is also complete in (0, ). Thus, F(w) cannot vanish at all points w? =n, n=0,
+1, +2,.... F(w) is therefore an entire function which does not vanish identically. The
validity of the lemma is now established in the same way as Levinson!? (pp 3-5).

Let us construct the matrix F(x,t) in the form (30) by making use of the conditions
(1)—(iii) and the conditions (22)-(26). Then, F(x,t) is uniformly convergent in the domain
specified in (30). The following theorem is now established.

Theorem 5.1. The homogeneous integral equation
g7 (1) + j gT(S)F(s,5)ds =0 (53)
o

where g(1) = (g;,4,)" is continuous in ¢ and g(t) = 0,t > x, has only the null solution for
g(t) for every x&(0, n).

Taking the scalar product of (53) with g() integrate with respect to ¢ between the limits
(0, x) and replace F(s,t) by its series expansion (30). Then, on reduction

’ —1/2n J.x Jx gT(s)Ag(t)dsdz
0 Jo

[[roswas; £ |[ rooenaa
0 n=—w Q
2

—12% ¥ ‘ f T Ot de| =0 (54
n=— o ]

where
=143 ff=(0).
In view of the conditions (4)~(7), it is easy to deduce that
e o) = (clj(x, n)) - (ajz cos nx + ay, sfn nx
cy4(x,m) 4 008 X + ayy sinnx
of the Fourier system (9).

>, j=1,2, are the eigenvectors



252 N. K CHAKRAVARTY AND SUDIP KUMAR ACHARYYA

Then, D; ¢,(x, n) — D¢, (x,n), where D; are those defined in (22) is also an eigenvector with
I Dyea(x,m)~ Dycy(x,m)||* = in((DYa,[* + Dila,|* — 2D, D,(ay, a,))

where a; are the vectors which occur in (16) and (17) and (a,,a,) is the inner product of
a, and a,. Substituting for |a;}? (4,,4,) in terms of D;, D, as obtained in (20) and (22) and
simplifying, it follows that

I1D1catx,my = Dacy (x,m))> = .

Thus, (D, ¢,(x, n) — D¢, (x,n))/n? is a normalized eigenvector fot the Fourier system (9) with
boundary conditions (2} and (3).

Since g(t) = 0 for t > x, we have by the Parseval formula
£ 3 X @ X 2
L 9T (g =j g g(dr=1/m 3 (_( g7 @)D, c, () —chl(t,n))dt>
o n="-a [+]
@ x 2
=1z ¥ (J.o P GIORN AR N A n))dt>

x 2
+ lz'ﬂ(J‘ 97D, ¢, (1. 0)— Dyc4 L, 0))dl>
0

x 2 fx rx
=12z 3 f gT(OcH L, n)dt| + I/ZnJ J g7 () Ag(r)dsdr

eolJo oJo

where 4 is the matrix defined in (25) and g =(g,,9,)7eL,(0, 7). 63)
If further f =(f}, f)7eL,(0,7), we have, more generally,
f rrogwa=1pe 5[ f FTS)e (5.6, mg ) de
0 A== J0 JO
+1/2n f f FT(s)Ag(t)dsdt (56)
o Jo

where ¢*(s, t, ) = c*(s, n)c*(t, n) as before.

From (54) and (55), we, therefore, have

2
=0, forn=0, £1, £2,....

f g7 (et A3, 43) de
0
From this, since 4, >0, we have
J‘ 97Ot A de =0, j=12n=0,+£1, +2,...
[+

Therefore, by lemma 5.1,
a5:9;(8) + a;39,() =0,
829, () + @e g, (6) =0,
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where j=1,2 and k=1,2; from these it follows that g, =g, = 0 for x&(0,n), by {4). The
theorem therefore follows.

The following lemma is only an extension to matrices of the Gasymov-Levitan lemma?,
p. 14, lemma 1.3.1.

Lemma 5.2. Let the matrices g(z,a), h(z,a) and H(t, s, a) be connected by
[l
alt, &) =hit, )+ J Bit,s,a)h(s,a)ds
0
where g and H are continuous in s and r. If for a = a,, g(t, a,) = 0, and the resulting integral
equation has only the null solution h(z, a0), then in some neighbourhood of a,, h{t, a) is
continuous in ¢, a. Also h{t, a) has continuous derivatives of order m > 1 with respect to a,
if H and g have so with respect to a.

The following theorem is now proved.

Theorem5.2. Let F(x,1),0 <1 < x < 7 be defined by (30) and satisfy the following conditions.

(a) F{x, 1) admits continuous sccond-order partial derivatives with respect to x, ¢ in [0, z];
(b) F(x,0)5£0, F,(x,1),=q =0 for xe[0,x].

Then,

(i) the integral equation (45) has a unique solution for the symmetric kernel K(x,1),
O<t<x<n and K(x,t)=0 for t>x; K(x,t) is a continuous function of x,t having
continuous second-order partial derivatives with respect to x,t in x, te[0,7], x % ¢

(ii) @y(x,4%),j = 1,2, defined in terms of the matrix K (x, ¢) and g, ;7 by the relation (12), satisfy
the system (1) along with the boundary conditions (2) at x =0, where

2K (x, %) = (‘r’ ;)

The first part of the theorem is an immediate consequence of theorem 5.1 and the iteration
process. The continuity and differentiability of K{x,t} follow from lemma 5.1 in the same
way as in Gasymov and Levitan® (p. 15). The proof of the second part follows verbatim
from the arguments of Ray Paladhi” (pp 183-185) with F(x, 1) in place of his E(x,?) and
hence is omitted. (See also Gasymov and Levitan®, pp 15-18 and p. 26 for the classical
Sturm-Liouville problem.)

6. Investigation of the eigenvectors for the inverse problem

Put
Yl A3) = (1000 43), W2 (%, A1) = 026 AF) — 00 1 (3, A3) (57)

where ¢; are defined as in theorem 5.2 (ii) iu terms of K(x,t), the unique solution of (45)
and the g;;, the given sequence of real-valued copstants. Obviously, i,(x) satisfy the
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differential system (1} with 1 =4, and the boundary condition (2) at x = 0. We prove the
following theorem.

Theorem 6.1. {Y,(x, 2¥)/AE} is a complete sequence of orthonormal eigenvectors associated
with the system (1), (2) and a suitable boundary condition fixed at x =7, {1,} being the
eigenvalues for the system.

Put
Gy(4,)=1/4} J‘xfr(x)'h(x,i?)dx, F={f1,£2)"eL2(0, )
o
Gy(d)=1/43 [ gT ()%, )%, g=(g1,92) &L (0, )
w0
and
Glip) = Gy (4,) G2 (Ay). (58)
Then, from the definition of ¢; in terms of K(x, ) by (12} we have
Ve ) = colx, 28+ j " K(ndeolt, )t (59)
o
where
Colx, AF) = 21,85 (%, AE) — o504 (x, ). (60)
Let
B = 70+ f rreK s Dds 61
h ) =g"()+ ( g7 (s)K (s, 1) ds. 62)
Then, since

f fT¢jdx=f' fT<c,+f K(x,x)cjdx)dmf KTc,dt,
Q o o Q

by a change in the order of integration, with a similar relation involving g7 and h,, it
follows that

.

Gin) =174 | Ch@eol 2)dr, j=1,2

o
Therefore, by (30) and (56),
£ con=} £ [ [ moes s aere s i
=0 r="w Jo Jo
= rj By () F(x, ydxhI(f)de + J " h kT dr. (63)
0 Jo 0

Here, c(x, Af, 4f) is the matrix 1/4}c(x, A2).
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Substituting for h,(x) by (61), and changing the order of integration, we have

'rhl(x)F(x, tydx = fnfT(x)(F(x, )+ IXK(JC, u) F(u, t)du>dx
o 0 o

= (j, + J“>fT(x)(F(x, 0+ fo(x,u)F(u,t)du)dx
Q T o

- (thT(x)MT(t, x)dx + J-lfT(x)K(x, t)dx) 64)
by (44) and (45). ’ l
From (62)
K0 = g(x) + L"Kf(z, ¥g@)d 65)

which is the Volterra integral system, giving
glxy=hi(x)— j MT(t, x)hy (1) de (66)

where the kernel M7(t,x) is the reciprocal of the kernel K7(t,x). (see Whittaker and
Watson'?, p. 218). Hence, from (61), (63)—(66)

5 I/Anfﬂ(x)wn(x, #)dx j T O A de
n=— 0 [

= j"hx(t)hzr (Bde+ Lﬂf T(x) g0 — Al (x))dx —~ J-:(hx(t) ~ fTenhi(de

- J e dx. ()
o
(compare Gasymov and Levitan®, pp 20-21).
Let
C,= l/AnJ FTCWRx F)dx, f=(f1,/2) Ly (0, 7).
0
Then, if

Foy= 5 Cob(n i)
is uniformly convergent is {0, 7], we have for any vector g(x)eL,{0, 7},
J g Fx)dx= ¥ C, J gT Yl Ad) dx = J‘ g7 (x)/ () dx, by (67).
1] n=-o 0 o

Thus, F(x) = f(x} a.e. on [0,7]. Hence, for any vector fe L,(0, %), we obtain formally the
expansion formula

S6= 3 Canm i ©)
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The uniform convergence in [0, z] of the series on the right of (68) is proved as follows. Let
= ~fi+efi+rfs

(x)=Lf = < »
4 s —fa+rfi+dfs
let f(x) satisfy the boundary condition (2) at x=0. Then, since f and ¥, satisfy the
boundary conditions (same) at x=0, [ f,¥,]o=0, [.] being the bilinear concomitant

of the vectors f and y,. Since i, satisfies the differential system (1) with 1= 1,, we have
by Green’s theorem

)M,,C,l - 6,, = 1,/An[fs 'I/n]n

)sLZ(O, n), where f=(f},f)7eL,(0,7). Also,

where .

C=1/A, | Tt 2)dx (©9)
Let a;, satisfy the additional condition

las PLf, 620 =1a:P L1 ] (70)
Then, it follows from the asymptotic relations (16)—-(18) and the relation (69) that

3 Co Co= 0(1/m). (711)

If G(x, j, /) be the Green’s matrix for the differential system (1) and the boundary conditions
(2) and (3), we have

Ynlx, i3 i) = ~ J Gl 3, (3 74)dy.
o
Hence, by the familiar Titchmarsh argument!? (p. 27),
Z [, (x}i%i(A4, 72} converges boundedly with respect to x in [0, n].

N N N’ —~
;EC#’,}J = ;E)'n Co AW i/t in AR = ;(A?‘ Co+ O(1/M)Y M2 AD
N — N Ed
< (3(2 A,C+ 0(1/"2)>Z!'//jnlz/2314n> s
N N
by the Cauchy inequality and the inequality (a + ) < 2(a® + b2).

Since, by (67), % _ , 4,C2 < co, the uniform convergence of 22 _ ., Coif(x, 42) in [0, 7]

follows as in Titchmarsh!® (p. 27). The series is also absolutely canvergent. In particular,
let F(x) =¥y (x, 4f), so that

ilx, 28) = i I/A,.(JwWf(x,l.?)'//,.(x,l.?)dx)llln(x,lf). 2
n==x 0

. cos , . . ;
Since { sin ij} are two linearly independent sequences, and rank (a;;) = 2, it follows from

{72) that
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Mo
J U AW, A2V dx = Ay, (73)
C

where §,, is the kronecker delta.

Thus, [#,(x,23)} is an orthogonal system satisfying (1) and (2) in L, (0, 7). By Green’s
theorem applied to any two elements /;(x, 4}), j =m,n, m # n, we have

D¥mlx, 22 0nlx, 23Y ], = 0. (74

Define the boundary condition at x = 7 by (74). Then {/,,(x, ¥ )/A%} represents a sequence

of normalized eigenvectors for the system (1), (2) and (74). {1,} is obviously a sequence of

eigenvalues. The relation (67) is the Parseval relation for the system constructed. The system
is therefore complete and the theorem is proved.

We next establish the following lemma which is the converse of a theorem of Chakravarty®
(p. 138).

Lemma 6.1. If two linearly independent vectors U, V satisfy the condition [U, V], =0 with
{¢1.¢2]1=0, where ¢,, ¢, are the boundary condition vectors at x =, then [U,¢;], =
[¥,¢;],=0,j=1,2 and hence U, V satisfy the boundary conditions at = given by (3).

Let 44, #, be two linearly independent vectors connected with ¢, ¢, by the relations
[6,,0,1=0 and {¢,,0,1=36,,, r,s= 1,2, where 6, is the kronccker delta. Evidently, the
choice of 8, 8, in the above way is not unique and in fact three more independent relations
are necessary for complete determination of 8,, &, 0,, 65.

In the P-identity of Chakravarty® (identity 2.2, p. 135), let us identify ¢ =0,, ¢, = 8,,
¢s=U and ¢ = V, where the six vectors ¢;, j = 1,2,..., 6, are linearly independent and
for convenience we write [,, ¢, = — [¢;, ¢:1. = P;;- It then follows from the P-identity,
(since Py =0, Py=0, P,y =0, Poy=0, P,y =1, Pog =0, Py, = 1), that

P25P46—P26P45+PI5P36”-P16P35:'0' (75)

There can be three more relations of type (75) corresponding to three more independent
choices of #. Since #,, #,, U, V are linearly independent, the four vectors of type
(Pys.Psg, Pus, Pyg) arising by considering four linearly independent choices of (4, ,8,) are
linearly independent. Giving these four vectors the values ¢, j = 1,2, 3,4, where g;eR* is
the jth unit vector, we derive from (75), P, s = P,5 = P4 = P, = 0. Hence the lemma follows.

We now have the following theorem.
Theorem 6.2. The sequence of constants {b;;}, rank (b,;)=2, satisfying (6) having been
given, the relation

(%, I (. 35) 1 =0, m£n,

implies that ,(x, A}) satisfies the boundary conditions (3) at x ==, by suitably choosing
the boundary condition vectors at the point.

This is an immediate consequence of lemma 6.1.
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Theorems 5.2, 6.1 and 6.2 taken together allow us to construct the eigenvalue problem
(1) with (2) and (3) from the given spectral characteristics, i.e., the sequence of eigenvalues
{%n}, the sequence {4,} of normalizing constants, and the sequence {a,}, j=1,2,3, when
certain asymptotic relations are known. The problem so derived is necessarily unique since
K ({x, 1), which plays a vital role in the construction, is unique by theorem 5.1.

We note that the condition (70) on a; can be waived, if f satisfies the relation (3} at
x =7 for given b;, along with {4), (6)—(8). In this case, (71) takes the simpler form C, = 4,C,
and the rest of the analysis follows as before.
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