Short Communication

Square root of the Boolean matrix $J-I$

K. RaGHAVAN
Department of Mathematics, National College, Tiruchirapalli 620001, India.
Received on December 5, 1990; Revised on February 6, 1991.

Abstract

Kım (Boolean matrix theory and applications, 1982, Marcel Dekker) studied the square root of Boolean matrix $J-I$ and stated the necessary and sufficient conditions for its existence. In this paper, the actual square root is found out if the order $J-I$ is $p \geqslant 7$ where p is a prime number of the form $4 k+3, k \geqslant 1$. A more general case is also studied if the order is $2 p+2$.

Key words: Quadratic residue mod p Boolean matrix, i th row set S_{b}, and the j th column set S_{j}^{\prime}.

1. Introduction

We assume familiarity with the concept of Boolean algebra. In the next section, we introduce a quadratic residue mod p, matrix and in the last section we examine the actual square root of $J-I$. We follow the definitions given by Smeds ${ }^{1}$.

2. Quadratic residue notation

Let p be a prime number of the form $4 k+3$ and $k \geqslant 1$. The numbers $1^{2}, 2^{2}, \ldots,((p-1) / 2)^{2}$ reduced to $\bmod p$ are called quadratic residue or simply residue and are written as q_{i}, $1 \leqslant i \leqslant((p-1) / 2)$.

Construction of the matrix Q_{p} is based on residues on $G F(p)$ and $Q_{p}=\left(q_{i j}\right)_{p \times p}$. We describe its entries in terms of the symbol x which is defined on the elements of $G F(p)$ as follows

$$
\begin{aligned}
& \chi(0)=0 \\
& \begin{aligned}
\chi(i) & =1 \quad \text { if } i \text { is a residue; } \\
& =0 \quad \text { if } i \text { is non-residue. }
\end{aligned}
\end{aligned}
$$

Let $q_{i j}=\chi(j-i)$. As an example we write Q_{7}

	0	1	2	3	4	5	6
0	0	1	1	0	1	0	0
1	0	0	1	1	0	1	0
2	0	0	0	1	1	0	1
3	1	0	0	0	1	1	0
4	0	1	0	0	0	1	1
5	1	0	1	0	0	0	1
6	1	1	0	1	0	0	0

Each row except the first is a cyclic shift of the previous row as $q_{i j}=q_{i+1, f+1}$, addition in $i+1, j+1$ being taken over modulo p.

Definition 1. ith row set S_{i}. For the i th row R_{i} of Q the set $S_{i,} 0 \leqslant i \leqslant p-1$ is defined as $S_{1}=\left\{j: q_{1 j}=1\right\}$ and in the above case $Q_{7}, S_{5}=\{0,2,6\}$.

Definition 2. j th column set S_{j}^{\prime}. For the j th column C_{j} of Q the set $S_{j}^{\prime}, 0 \leqslant j \leqslant p-1$ is defined as $S_{j}^{\prime}=\left\{i: q_{i j}=1\right\}$. For $Q_{7}, S_{s}^{\prime}=\{1,3,4\}$.

Theorem 1. If $q_{i}, 1 \leqslant i \leqslant(p-1) / 2$ are residues $\bmod p, p-q_{i}$ are non-residues.
Proof: Since no prime number of the form $4 k+3$ can be written as sum of two squares ${ }^{2}$ the result follows.

The above theorem is restated as follows:
Theorem 2. For the matrix Q_{p}
(i) $q_{i j}=0$ if $i=j$;
(ii) at least one $q_{i j}, q_{j i}$ is zero for each i, j.

Theorem 3. The set S_{t+k} can be set from S_{i} by adding k to every element of S_{i} (addition is done over modulo p), $1 \leqslant k \leqslant p-1$.

Proof: If j belongs to $S_{i}, q_{i j}=1, q_{i+k, j+k}=1$ as $\psi(j+k, i+k)=1$, which implies $j+k$ belongs to S_{i+k}.

Theorem 4. The sets $\{i\}, S_{i}$ and S_{j}^{\prime} are
(i) disjoint if $i=j$;
(ii) the latter two sets have at least one common element if $i \neq j$.

Proof: The result (i) is true for $i=0$ as S_{0} contains residues and S_{0}^{\prime} contains non-residues. If equal increment k is given to each member of the sets, we get the sets $\{k\}, S_{i+k}$ and S_{i+k}^{\prime}. These three sets are disjoint as $\{0\}, S_{0}$ and S_{0}^{\prime} are disjoint. To prove the result (ii), assume
that there exists no common element between the sets S_{i} and S_{j}^{\prime}. Hence, S_{i} and the set $\{j\}$ $U S$, will have a common element as $\{j\} \cup S_{i}$ is the complement of S_{j}^{\prime}. As $i \neq j, i$ belongs to $\{j\} U S_{j}$ and j belongs to S_{i}. Hence, $q_{i j}=1$ and $q_{j i}=1$ which is a contradiction.

Considering the case Q_{7} we give below the sets $\{i\}=\{j\}, S_{i}$ and S_{j}

$\{i\}$	S_{i}	S_{j}^{\prime}
0	$1,2,4$	$3,5,6$
1	$2,3,5$	$0,4,6$
2	$3,4,6$	$0,1,5$
3	$0,4,5$	$1,2,6$
4	$1,5,6$	$0,2,3$
5	$0,2,6$	$1,3,4$
6	$0,1,3$	$2,4,5$

3. Main result

After the survey of basic principles of the quadratic residue matrix Q_{p}, we now introduce Q_{p} as a quadratic residue Boolean matrix. The definition given below establishes a link between Q_{p} and corresponding Boolean matrix.

Definition 3. By a Boolean matrix we mean matrix over $\{0,1\}$ and arithmetic operations on the elements of the matrix are Boolean operations.

Definition 4. A square matrix Q is called a square root of B if $Q^{2}=B$. Defined by the Boolean rules

$$
\begin{aligned}
& 0+0=0 \cdot 1=1 \cdot 0=0 \cdot 0=0 \\
& 1+0=0+1=1+1=1 \cdot 1=1
\end{aligned}
$$

Theorem 5. For a quadratic residue Boolean matrix Q_{D}
(i) $R_{i} \cdot C_{j}=0 \quad$ if $i=j$
(ii) $R_{i} \cdot \mathrm{C}_{j}=1 \quad$ if $i \neq j$
where R_{i} and C_{J} are the i th row and j th column of Q_{p} and the dots represent the scalar product.

Proof: If $i=j, R_{i} \cdot C_{j}=\Sigma_{k=0}^{p-1} q_{i k} \cdot q_{k i}$ which is equal to zero by theorem 1. If $i \neq j$, let the common element of S_{i} and S_{j}^{\prime} be r. Then $q_{i r}=q_{r j}=1$. Hence, $R_{i} C_{j}=\Sigma_{k=0}^{p-1} q_{i k} \cdot q_{i j}$ which is equal to one as $q_{i r} \cdot q_{r j}=1$.

Theorem 6. If J is a square matrix of order p with all entries 1 , then Q_{p} is the square root of $(J-I)_{p}$.

Proof: Follows from theorem 5.
Kim ${ }^{3}$ studied the nature of the necessary and sufficient conditions for the existence of the square root of $J-I$ and established the following theorem.

The Boolean matrix $J-i$ has a square root if and only if its dimension is at least 7 or is 1 .
The author has found out the exact square root, when the dimension is a prime p of the form $4 k+3 K \geqslant 1$ or when the dimension is $2(p+1), p-4 k+3 K \geqslant 1$.

The proof of the above theorem given by Kim runs as follows.
Let Q be a square root of $J-I$ of dimension less than 7. Then all diagonal entries of Q are zero and at least one of $q_{i j}, q_{j i}$ is zero for each i, j and thus for each i the three sets $\{i\},\left\{j ; q_{i j}=1\right\}$ and $\left\{j: q_{j i}=1\right\}$ are disjoint. So one of the latter two sets contains at most two elements. By possibly transposing Q, assume the third set has at most two elements.

If $\left\{j: q_{j i}=1\right\}=\{a, b\}$ then $q_{c i}=1$ and $q_{j i}=0$ for $j \neq a, b$. Moreover, $i \neq a$ and $i \neq b$ since all diagonal entries are zero. Since $Q^{2}=j-I$, we have $\Sigma q_{a x} q_{x i}=1$. But the only non-zero term of this sum is $q_{a b} q_{b i}$. Thus, $q_{a b}=1$. Also $\sum q_{b x} q_{x i}=1$. Its only non-zero term is $q_{b a} q_{a b}$. Thus $q_{c h}=q_{b a}=1$. But this implies $q_{a a}^{(2)}=1$ which is false. Likewise, the case $\left\{j: q_{i j}=1\right\}=\{a\}$ and is equal to 0 is impossible, unless the dimension is 1 . Kim studies the cases when n is odd and at least 9 and when n is even and at least 12 .

Theorem 7. Let $I=\left(I_{i}\right)_{t=1}^{p}$ be a p eiemental frame of order $1 \times p$ of all $1 s$ and $h=\left(h_{i}\right)_{t=1}^{p}$ is a p elemental frame of order $1 \times p$ of all 0 s. The Boolean matrix $Q_{2(p+1)}$ is a square root of the matrix $(J-I)_{2(p+1)}$, where p is a prime number of the form $4 k+3, k \geqslant 1$.

Proof: $Q_{(p+1)}$ is defined as follows
$\left[\begin{array}{c|c|c|c}0 & l & h & 0 \\ \hline h^{T} & Q_{p} & Q_{p} & l^{T} \\ \hline l^{T} & Q_{p} & Q_{p} & h^{T} \\ \hline 0 & h & l & 0\end{array}\right]$
where the top and bottom diagonal blocks are 1×1, the edge blocks are p elemental frame, entirely 1 or entirely 0 as indicated and the inner four blocks are quadratic residue mod p (Boolean). By applying theorem 6 we get the result.

Corollary

$$
\left[\begin{array}{c|c}
Q_{p} & Q_{p} \\
\hline Q_{p} & Q_{p}
\end{array}\right] \text { is a square root of }(J-I)_{2_{p}} .
$$

4. Application of the Boolean matrix Q_{p}

In a Q_{p} where $p+1=2^{n}$, where n is an integer, replace all $0 s$ by -1 and call the new matrix as Q_{p}^{\prime}. Insert Q_{p}^{\prime} in a frame I_{p} of all $1 s$ row vector of order $1 \times p, l_{p}^{T}$ and an edge
diagonal block of order 1×1 containing 1. The matrix $Q_{p}^{\prime \prime}$ so formed is a Hadamard matrix and has many applications ${ }^{4}$. The figure given below will explain $Q_{p}^{\prime \prime}$.

$$
Q_{p}^{\prime \prime}=\left[\begin{array}{l|l}
1 & l_{p} \\
\hline l_{P}^{T} & Q_{p}^{\prime}
\end{array}\right]
$$

References

1. Smeds, P. A.

Line digraphs and Moore-Penrose inverse, Linear Algebra Applic., 1981, 36, 165-172.
2. Herstein, I. N.

Topics in algebra, 1983, Vikas Publishing Co., Madras.
3. $\mathrm{Kim}_{\mathrm{m}}, \mathrm{K} . \mathrm{H}$.
4. MCWilliams, F. J. and Sloane, N. J. A.

Boolean matrx theory and applications, 1982, Marcel Dekker.
The theory of error correcting codes, 1978, North-Holland.

