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Abstract 

A brief ovenview of the newly emerging field of neural networks 1s presented from the perspective of a 
condensed matter physicist. The basic ingredients of neural network modeling are described and the 
principles governing the function~ng of symmetric and feed-forward networks are outlined. A survey of 
some o i  the Important results obtamed from neural network rescarch in the fields of neuiobiology, 
physics, computer science and engmeenng is given. 
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1. Introduction 

The subject of neural networks has received a great deal of attention during the last 
few years. Kescarchers from a wide variety of disciplines such as neurobiology, cog- 
nitive science, computer science, electrical engineering, physics and mathematics are 
currently working in this area. In this article, I shall attempt to provide a brief 
overview of this rapidly developing field. The interdisciplinary nature of this field 
makes the task of providing a comprehensive review rather difficult. I, therefore, 
mention at the beginning that this review is from the point of view of a physicist 
interested in the statistical mechanical aspects of neural network modeling, a n d  my 
notion of what is important and interesting in this field would probably differ consid- 
erably from that of neural network researchers from other disciplines. 

The rest of this article is organised as follows. The basic ingredients of neural 
network modeling are described in Section 11. In Section 111, the working principles 
of symmetric (Hopfield-type) and feed-fonvard networks are explained. Section 1V 
is devoted to a description of some of the important developments which have taken 
place in this field during the last few years. 

" Text of lecture delivered at the Annual Faculty Meeting of the Jawaharlal Nehm Centre for Advanced 
Scicntific Research, on November 23, 1990. 
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2. Basic ingredients of neural network modeling 

A neural network may be defined as a large, highly interconnected assembly of 
simple computing elements (model neurons). These networks exhibit non-trivial com- 
puting abilities emerging from the collective dynamics of the constituent neurons. 
The model neurons used in most neural networks are highly simplified versions of 
their biological counterparts. They are characterized by a sigmoid input-output rela- 
tion similar to the one shown in Fig. 1. In some models, the input-output relation 
issimplified further by approximating the sigmoid function by a step function shown 
by the dotted line in Fig. 1. A model neuron with such input-output relation may 
be considered to be a two-state threshold device. If the net input (u,) to the ith 
neuron exceeds a threshold value u,,, then the neuron is in the 'on' state for which 
the output v ,  = 1; if the input u, is less than u,,, the neuron is in the 'off' state with 
v, = 0. Model neurons of this type, first introduced by McCulloch and Pittsl in 1943, 
are called digital neurons and those with a continuous input-output relation are called 
analog neurons. Each neuron in the network receives inputs from and provides out- 
puts to a large number of other neurons. The connectivity of the network is specified 
by the synaptic interaction matrix J. The element J ,  of this matrix represents the 
input provided by the jth neuron (if it is in the 'on' state) to the ith neuron. Thus, 
the net input to the ith neuron is given by 

Connections with positive values of J,i, which act to increase the input to the 
receiving neurons, are called excitatory and those with negative values are called 
inhibitory. A common feature of all neural network models is the property that the 
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computations to be performed by the network are encoded in the synaptic matrix J. 
The time evolution of such a nctwork is govcrned by an assumed dynamics which 
specifies how the state of each neuron, denotcd by the value of the output variable 
v ,  is updated. The updates, which take place in parallel. can be synchronous or 
asynchronous. In most models, the update rule is assumed to be deterministic, i.e., 
the output state of each neuron is uniquely determined in terms of the net input 
received by it. In some models, a stochastic (probabilistic) update rulc is used. The 
network is started off irom an initial configuration in which the output state of each 
neuron is specified. The network then evolves in time in accordance with the as- 
sumed dynamics until a time-persistent state (a fixed point or a limil-cycle attractor 
of the underlying dynamics) is reached. This final state of the network represents 
the result of the computation performed by the network. 

There are several I-easons behind the current interest iu models of this sort. At a 
highly simplified level, these systems serve as models of some of the collective com- 
putational properties of biological networks. The simple two-state ncurons used in 
most neural network models resemble, although in a highly schematic way, biological 
neurons which fire (i.e., send a pulse of electric potential along the axon) when the 
sum of the membrane potentials received from the qynaptic inputs exceeds a 'firing' 
threshold. Also, the 'parallelism' inherent to neural network models is !mown to be 
an essential clement of biological computatlon. Thus, it is hoped that studies of 
simple neural network models, some of which are amenable to mathematical analysis, 
may shed some light on the principles underlying computations in biolo@al systems. 
At a more practical level, neural networks provide a new paradigm of parallel com- 
puting, with numerous applications in pattern recognition and combinatorial optimi- 
sation problcms. The parallel processing performed by neural networks may also be 
uscd in dcsigning fast gmeral-purpose computers. Another attractive feature of these 
systems is their robustness. Since the computation to be performed is coded in a 
large number of interconnections, the performance of the system is not degraded 
much if a small fraction of the interconnections are corrupted. This fault-tolerance 
capability arising from the distributed nature of the coding in neural networks is not 
present in conventional digital computers. 

3. Working principles of neural networks 

The most commonly studied neural network models may be divided into two classes: 
networks with symmetric interconnections and feed-forward networks. The basic 
principles underlying the functioning oI these two classes of networks are describcd 
in this section. 

3 .1 .  Networks with symmetric bzterconnections 

In this class of models, the synaptic interaction matrix J is symmetric (J,, = Jji for 
all i + j). The Hopfield model2 is the most well-known example of this class. It is 
a model of associative or content-addressable memory. A system behaves as an as- 
sociative memory if it can retrieve patterns stored in it from 'hints' representing a 
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knowledge of the stored information. To understand how a neural network with 
symmetric connections may act as an associative memory, it is useful to define an 
energy function E in the following way: 

The most commonly used dynamics, which is asynchronous and deterministic, corres- 
ponds to updating the neurons one at a time in a random sequence. The ith neuron 
is updated according to the rule 

where t represents a discrete 'time' label. It is easy to see that this update scheme 
corresponds to the rule that the state of a neuron is changed only if the energy 
defined in eqn (2)  is decreased in the process. It then follows that every configuration 
corresponding to a local minimum of E (i.e., every configuration of the set of binary 
variables {v,} with the property that a change of any one of these variables increases 
the energy E) represents an attractive limit point of the assumed dynamics. Any 
configuration close to such a local minimum converges to it under the dynamics and 
the system remains in that configuration for all subsequent times. This property of 
a network of this type allows it to be used as an associative memory if the interaction 
matrix is chosen so as to make each pattern to be stored and associatively recalled 
(which is represented in this scheme as a binary string) correspond to the configura- 
tion at a local minimum of the energy function E. An initial state close to such a 
local minimum, representing partial knowledge of the stored information, converges 
to the local minimum under the collective dynamics of the network, thus retrieving 
the complete information. Such a network also functions as a pattern classifier. All 
input configurations lying within the basin of attraction of one of the stored patterns 
are classified by the network as belonging to the same category. 

To construct such a model of associative memory, it is necessary to find a 
prescription for the construction of the synaptic matrix J which ensures that the 
states representing the memories to be stored in the network correspond to local 
minima of the associated energy function defined in eqn (2). Such a prescription 
for constructing the synaptic matrix is called a learning rule. Many different learn- 
ing rules have been proposed over the years, the most frequently used among 
them being the Hebb rule3 and its variants4 and the pseudo-inverse rule5. Analytic 
studies and numerical simulations of models using these or other learning rules 
have demonstrated that networks of this type are indeed capable of storing and 
retrieving a large number of patterns. 
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3.2. Feed-forward networks 

Most neural networks used in pattern recognition belong to this class. These net- 
works have a layered structure (see Fig. 2) in which neurons in the first 'hidden 
layer' receive their inputs from the neurons in the input layer, and in turn, provide 
inputs to the neurons in the second 'hidden layer', and so on. The information thus 
flows forward and the computation performed by the network is a mapping of the 
state of the input layer on to that of the output layer. The single-layer perceptron7, 
consisting of only the input and the output layer, is the simplest example of such a 
network. Although interest in tbe perceptron diminished in the 1960s after demonst- 
ration by Minsky and Paperts that the class of problems which can be solved by such 
a network is severely restricted, interest in feed-forward networks, containing one 
or more hidden layers, has been revived in recent years as new studies have de- 
monstrated that these systems are much more powerful (see Rumelhart et a19 for an 
introduction to the theory and applications of feed-forward networks). One of the 
most interesting features exhibited by these networks is the ability to learn from 
examples and to generalize what it has learnt. To illustrate this aspect, let us consider 
a pattern classification problem in which the network is supposed to correctly classify 
a group of binary patterns {gk}, i = 1,2, . . . , N ;  j = 1,2, . . . , M, and 
k = 1,2 . . . , p .  Here, N is the number of neurons in the input layer, M the number 
of distinct classes which is also the number of neurons in the output layer, and p 
the number of patterns in each class. The problem is to find a set of synaptic cou- 
plings which ensure that when a pattern belonging to the jth class is presented to 
the input layer, the corresponding output has only the jth neuron in the 'on' state 
and all other neurons in the 'off' state. In most cases, it is not possible to give an 
explicit prescription for finding the right couplings. However, in many cases, it is 
possible to 'teach' the network to carry out the required task by using a suitable 
'learning algorithm'. Many such algorithms have been proposed (see Hintonlo for a 
review), the simplest among them being the so-called supervised learning scheme. In 
this scheme, a fraction of the patterns to be classified is used to teach the network 
the rule underlying the classification process. The training process consists of present- 
ing patterns which are known to belong to particular classes to the network one by 
one. If the network classifies the input pattern correctly, then the couplings are left 
unchanged. If the pattern is not classified correctly, then the couplings are changed 
according to a prescribed algorithm (such as the popular back propagation al- 
gorithm9). This procedure is continued until all the patterns in the training set are 
classified correctly, or until the average error in classifying these patterns drops 
below a specified limit. In most cases, there is no guarantee that the learning proce- 
dure will converge to a solution. However, it is found from experience that by 
adjusting the number of hidden layers and the number of neurons in each hidden 
layer, it is usually possible to design a network for which the training procedure 
converges to a solution. It is also found that if a pattern not belonging to the training 
set is presented to the trained network, then the network can classify it correctly 
with a high probability. These networks, thus, exhibit the ability to learn from exam- 
ples and the capacity to generalize what it has learnt to perform non-trivial compu- 
tational tasks. Networks of this type have been used during the last few years in a 
variety of practical applications, some of which are described in the next section. 
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4. Survey of recent developments 

This section contains a brief survey of some of the interesting results obtained during 
the last few years from neural network research in the fields of neurobiology, physics 
and computer science and engineering This survey is certainly not complete; the 
intention here is to provide some indication of the kind of developments which have 
taken place in neural network research in these fields during recent years. 

4.1. Neurobiology 

The question of whether neural network models of the type described above are 
relevant to real biological networks such as the brain has been the subject of much 
debate in recent years. Some researchers, mostly neurobiologists, argue that these 
models are much too simple to be of use to the study of brain functions. It is indeed 
true that the model neurons used in most neural network models are highly 
simplified versions of their biological counterparts, which are highly complicated cells 
requiring a large number (- 40) of variables for a realistic description of their be- 
havior. Thus, neural network models using simple model neurons are not expected 
to provide much insight into neurobiological phenomena in which properties of indi- 
vidual neurons play an important role. However, many other researchers in this 
field, mostly physicists, believe that details of the functioning of individual neurons 
may not be crucial in understanding some of the collective computational properties 
of biological networks. These researchers have concentrated on the development of 
models which mimic some of the simpler aspects of the functioning of the brain. 
Some of the developments taking place in this line of research during the last few 
years are listed below. 

a) Models of short-term memory: The Hopfield model described above is the simplest 
one in this class. The behavior of this model is now almost fully understood (see 
below). More recently, many researchers have investigated the effects of incorporat- 
ing some of the known neurobiological facts on the functioning of the Hopfield 
model. The features which have been incorporated in the modeling include the pre- 
sence of static synaptic noise, less-than-full connectivity of the network, limited 
analog depth of the synaptic connections, low average level of the activity of the 
network, asymmetry of the synaptic connections and synaptic specificity (see Amit" 
for a description of these models). A very interesting result has emerged from the 
study of these models. It has been established that the basic functional features of 
the Hopfield model remain, to a large extent, unaffected by the incorporation of 
these neurobiological details. This result lends some support to the viability of this 
class of models. Another interesting development in this field has been the construc- 
tion of models of 'memory palimpsests' I2,l3. These are networks exhibiting a selec- 
tive erasure ('forgetting') of old patterns stored in the memory as new information 
is memorised. Nearly all available models of memory use the Hebbian learning 
scen&o of synaptic modifications for the storage of the memorised information. 
Although there exists a lot of evidence indicating that learning causes synaptic mod- 
ifications in biological networks, the details of this process are not understood yet. 
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b) Central pattern generators: Many biological systems exhibit central pattent 
generators which are neural groups repcatedly gcnerating a specific temporal sequ- 
ence of patterns. These neirral circuits control the muscles involved in a wide variety 
of rhythmic functions such as breathing, locomotion, swimming and chewing (see 
e.g.,  rata an'"). These systems have been modcled by neural networks which can 
store and recall temporal seqnences of patterns. These models make use of either a 
time-delay m e ~ h a n i s m ~ ~ . ' ~  or the presence of dynamic synaptic noise" to generate a 
passage of thc network through a specified pcriodic sequence of patterns. Numerical 
simulations of these rietworks have reproduced several features exhibited by biolog- 
ical central pattern generators. Networks of this type can also be used for the recog- 
nition of temporal sequences of patterns'' and for performing abstract computations 
such as counting the number of chimes of a clock18. 

c) Neurological disorders: An interesting example of research in this area is the 
modeling of a mental disorder known as prosopagnosia. Persons suffering from this 
disorder can recognise only the generic class to which an object belongs, not the 
specific object itsell. For example, a patient may know that a lace is a face, but 
would not be able to recognise whose face it is even if it is the face of a familiar 
person (see e.g., Daniasio et all')). This disorder has been modclcd by a hierarchical 
network which stores correlated memories belonging to different categories, and their 
'ancestor' patterns representing various categories. It is found that if this network is 
subjected to random synaptic corruption or to a high level of synaptic noise, then it 
can recall the ancestor patterns representing different categories, but not the indi- 
vidual patterns belonging to the selected category2'. This behavior is quite similar to 
the symptoms of prosopagnosia. Another neurological disorder for which neural net- 
work models are being developed is epilepsy2'. 

Although the models described above look quite promising, the real test of tbeir 
viability will come from experimcnts probing nenral processes at thc individual 
neuron level. Work in this area is just beginning, and many new and interesting 
developments are expected in the coming years. 

4.2. Physics 

At a basic level, ncural networks described above are dynamic systems involving a 
large number of interacting variables. Such systems are rather common in condcnsed 
matter physics, and the branch of physics known as statistical mechanics has been 
developed specifically for the study of such systems. Thus, it is perhaps not surprising 
that a large number of physicists have become involved in ncural network research. 
Many interesting results about the properties of neural network inodcls have heen 
obtained by physicists from the application of the concepts and methods of statistical 
mechanics. Some of these developments are summarised below. 

a) Equilibrium s~utisticul mechanics: Methods of equilibrium statistical mechanics are 
readily applicable to the study of neural network models with a symnletric sy-naptic 
interaction matrix J. As mentioned before, one may define an energy function for 
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such networks. The binary variables {vJ which specify the states of a network consist- 
ing of digital neurons can be readily transformed to variables {u~), each of which 
can have the values + 1 and - 1 [u, = 2 v, - 11. Thus, the energy function can be 
written in terms of these new variables {u,} , which are called Ising spins in studies 
of magnetism. Neural network models with digital neurons and a symmetric J may, 
therefore, be looked upon as Ising models with a Hamiltonian (energy function) 
defined in eqn (2). A similar formulation for models with analog neurons is also 
possible. It can be shown that the most commonly used stochastic update rule for 
the neurons generates a set of network configurations which are distributed according 
to the Boltzmann distribution in which the probability of occurrence of a state {u,i 
is proportional to exp ( - E{uJIT), where T is a parameter (the temperature) that 
specifies the degree of stochasticity in the dynamics (the T = 0 limit corresponds to 
the deterministic case). The average properties of the states generated by the 
dynamics may, therefore, be calculated by using methods of equilibrium statistical 
mechanics which have been developed for the calculation of average properties of 
systems described by the Boltzmann distribution. The statistical mechanics of Hop- 
field-type models turns out to be quite similar to that of a class of models used to 
describe certain disordered magnetic systems known as spin glasses. These spin glass 
models have been the subject of intense study during the last two decades, and a 
number of analytic methods have been developed by physicists for dealing with the 
equilibrium statistical mechanics of these systems (see Mezard et alZZ for a review of 
spin-glass physics). The application of these methods to the analysis of neural net- 
work models was pioneered by Amit et alZ3. Since then, a wealth of information 
about the behavior of Hopfield-type models has been obtained by physicists from 
similar studies. The issues addressed in these studies include the storage capacity of 
models of associative memory, the average fraction of errors in the retrieval of stored 
information, the effects of fast synaptic noise on the performance of the network, 
the relative merits and demerits of different learning rules, the effects of incorporat- 
ing neurobiological facts in the models and the performance of models using hierar- 
chical structures for the storage of correlated memories. Extensive numerical simula- 
tions have established the validity of the results obtained from these analytic calcu- 
lations. A comprehensive account of the work in this area performed during the last 
few years may be found in the book of Amit". 

b) Dynamics: The methods of equilibrium statistical mechanics cannot be used in 
the study of models with asymmetric connections or time-delayed interactions. A full 
analysis of the dynamics is necessary for understanding the behavior of such models. 
Neural network models form a class of general dynamical systems known as cellular 
automata which have been used extensively by physicists as models of complex sys- 
tems. Some of the methods developed for the study of these systems and the insight 
gained from such studies may be used in the analysis of the dynamics of neural 
networks. However, the methods for the study of the dynamics of complex systems 
are not as well developed as those of equilibrium statistical mechanics. Consequently, 
not many analwc calculations on the dynamics of neural network models have been 
carried out. There exist a few specially constructed models (see e.g . ,  Derrida et 
al") whose dynamics can be solved exactly. One has to rely on numerical 
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sunulations lor intormation about the dynamic behavior of nearly all other models. 
This is an area where more research is needed. 

c) Learning: Thc theory of learning involvcs methods of finding the synaptic connec- 
tions appropriate for a specified computational task. In many cases, the problem of 
finding the right synaptic matrix may be formulated as an optimisation problem by 
defining an appropriate cost function which is a function of the elements of the 
synaptic matrix with the property that every solution of the learning problem corres- 
ponds to a minimum of this function. Recently, a set of analytic methods known as 
'statistical mechanics in the space of interactions' has been deve10pcd~~ to deal with 
various aspects of this optimisation process. The issues which have been addressed 
in studies using these methods include the maximum number of patterns which can 
be classified by a perceptronz5, the convergence time of thc Icarning process2" and 
the ability of a perceptron to generalise what it has learnt'". This line of research is 
very promising, with many potential applications to the theory of feed-forward net- 
works. 

4.3. Computer science and engineering 

Ncurai network research has obvious implications in the area of artificial intclligence. 
Recent developments in neural network modeling have led to the formation of the 
so-called 'connectionist' school of artificial intelligence and a lively debate is currently 
going on between researchers belonging to this school and the proponents of the 
more conventional, rule-based methods of artificial intelligence (see e.g., 
Graubardzs). This issue will not be settled before the capabilities of either approach 
are fully understood. 

Another area ot computer science in which neural network research has had con- 
siderable impact is parallel processing. The parallelism inherent in the functioning of 
neural nets provides a ncw paradigm for the development of parallel processing 
computers. A lot of rcscarch is going on in this arca, and neural networks have 
already found applications in obtaining near-optimal solutions of hard combinatonal 
optimisation problems such as the travelling salesman problem2Y. 

Neural networks have also been successfully used in a large number of applications 
involving pattern-recognition problems. Most of thcse applications use feed-forward 
networks and the back propagation algorithm for training. The number of such ap- 
plications is growing day by day, and it is not possible to list all of them here. A 
representative sampling is given below. 

NETtalk, a network that can pronounce Engl~sh text3' given a movlng 7-character 
window as Input and a phoneme code as output 

Signal prediction: Given a signal x(t)  for times t S to, the network predicts its 
value for times t > tax. This has many applications, from stock market to weather. 
This method is found to perform considerably better than all standard algorithms for 
signal prediction. 
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Protein secondary structure determination: This network takes as input a moving 
window of 13 amino acids in the primary structure and produces as output a predic- 
tion of the secondary s t r u c t ~ r e ~ ~ .  

Explosive detection at airports: In this device, the baggage to be examined is 
bathed in neutrons and the gamma-ray signal produced is fed through a neural net- 
work which is trained to recognise the signatures of common explosives. This device 
has been endorsed by the Federal Aviation Administration of the USA. 

A neural network that tests the quality of products from their acoustic signatures 
has been installed on a production line of electric motors by Siemens in a pilot 
project. 

Recognition of handwritten characters and spoken words: Several companies have 
come up with neural network-based systems for these pattern-recognition tasks. 
There are several defence applications such as target recognition and tracking, detec- 
tion of submarines from sonar signals, etc. 

The success of neural networks in these and other pattern-recognitioniclassification 
problems of practical interest has sparked a lot of research in hardware implementa- 
tion of neural nets. Several chip manufacturers (AT&T, Intel, Philips) have already 
come up with VLSI chips which implement small neural nets. Other possibilities 
such as optical implementation are currently being studied by many groups. 

Although neural networks have been successfully used in a number of practical 
pattem-recognition problems, the theory of the working of feed-forward nets is still 
not well developed. For this reason, the designing of a network for a particular task 
is usually done by a trial-and-error procedure and there is not much understanding 
of what a particular network can do and what it cannot do. More research on the 
development of a theory of the working of these networks would be extremely useful. 

5. Concluding remark 

In the preceding pages, I have attempted to provide an introduction to the rapidly 
developing field of neural network research. This field is still in its infancy and it is 
not clear at this stage what this line of research will eventually lead to. Thus, it is 
too early to ask questions like whether research in this area will some day produce 
a theory of the working of the human brain. This subject, however, shows a lot of 
promise and I believe that an interdisciplinary effort in this field involving researchers 
from neurobiology, physics, computer science and engineering will lead to many 
interesting and useful developments in the future. 
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