
Journal of the Indian Institute of Science  VOL 91:3  July–Sept. 2011  journal.library.iisc.ernet.in 383

Reviews

The Fluid Dynamics of Swimming 
Microorganisms and Cells

Ganesh Subramanian1 and Prabhu R. Nott2

In this review, we describe the fluid mechanics of swimming microorganisms, with an 

emphasis on recent developments. We begin with the mechanics of individual swimmers, and 

describe the requirement for a non-reciprocal cyclic swimming stroke for net displacement 

in the absence of inertia. We discuss Purcell's three-link swimmer and other artificial 

models as simple pedagogical examples. Thereafter, we consider the swimming of real 

microorganisms, which may be classified into ciliates and the flagellates. In addition to the 

stroke kinematics, we examine the nature of the fluid velocity field around a swimmer, which 

governs the hydrodynamic interactions between swimmers. We then consider the large-scale 

hydrodynamics in a suspension of swimmers, our efforts motivated primarily by experimental 

observations of coherent motion. The theoretical analyses fall into two categories: the first 

considers coherent motion that arises from the coupling of gravity with the density difference 

between the swimmer and the suspending fluid.   The second category is more recent, and 

examines the smaller-scale coherent motion, in the absence of buoyancy forces, that is driven 

by the anisotropic orientation distribution of the swimmer force-dipoles. We then describe 

a variety of discrete simulation methods, wherein the motion of every swimmer is tracked in 

time. The continuum theories and simulations reveal fundamental differences in the collective 

dynamics between suspensions of pushers, pullers and squirmers; only suspensions of pushers, 

for instance, are predicted to be linearly unstable.  Despite the successes of the theoretical and 

computational methods, significant issues remain unexplained, some of which are highlighted 

towards the end of the review.
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1. Introduction
The motility of living organisms is an important 
factor in determining their evolutionary survival. 
While its importance is intuitively obvious in the 
case of large animals—they have to go in search 
of food for sustenance—it is an equally pressing 
problem for our evolutionary ancestors, namely 
microscopic organisms. This is because the rate of 
supply of nutrients, on length scales of the order 
of the size of a microorganism, is controlled by 

molecular diffusion. While this is adequate in a 
nutrient-rich medium, typically each organism 
competes with several others in its neighborhood. 
Motility is thus essential to escape from the local 
environment and seek other more favorable 
regions. Motility of cells in most higher organisms 
too is of the essence for the survival of the species, 
the swimming of spermatozoa and the crawling 
of macrophages towards invading pathogens 
being two examples. This review is confined to the 
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swimming of microorganisms and cells in a fluid 
medium. We discuss the ingenious ways in which 
nature has evolved mechanisms for motility, and 
its close relation to the mechanics of the ambient 
fluid. We also discuss the collective motion caused 
by a suspension of interacting swimmers, and 
the interesting phenomena that result. Only a 
small portion of this review pertains to original 
work of the authors—rather it relies heavily 
on many previous reviews, monographs and 
archived research articles on the fluid dynamics of 
swimming microorganisms.

2.  Swimming at Low Reynolds Number
The size L and swimming velocity U of most 
swimming microorganisms are such that the 
Reynolds number Re = ρu

0 
L/η is very small.82,100,118 

Here, ρ and η are the density and viscosity of the 
fluid medium. This means that the fluid motion 
is in the creeping flow regime, governed by the 
Stokes equations

 −∇ + ∇ = ⋅ =p u uη 2 0 0, ∇∇  (1)

where p and u are the pressure and velocity fields in 
the fluid, respectively. For instance, the bacterium 
Escherichia Coli has a length L of about 10 µm 
(including both head and tail, see fig. 1), and swims 
at a speed of about 10 µm/s; this leads to Re ∼ 10−4. 
In this regime, the inertia of the fluid and the 
swimmer play no role, and hence, propulsion does 
not come from bursts of acceleration generated 
by ‘pushing’ the fluid back, as in the swimming of 
fish and flying of birds. Indeed, the overdamped 
dynamics in the limit Re  1 implies that the 
coasting distance on account of any momentum 
gained from the transient action of the propulsive 
element would be of the order of Angstroms! Thus, 

for a density-matched Stokesian swimmer, the net 
force and torque must always be zero, implying 
that the propulsive force (thrust) instantaneously 
balances the drag.82,118

An important point to be made in the context 
of low-Re-swimming is the absence of an obvious 
separation between the resistive (drag) and 
propulsive elements since both act via viscous 
stresses. In the inertial realm (Re  1), there is 
often a clear separation between the two. This is 
exemplified, for instance, by aquatic swimmers 
belonging to the order percomorphi who have 
adopted a Carangiform mode of propulsion with 
the propulsive element (a large crescent-shaped 
tail) being well separated from the streamlined 
body (that contributes the primary resistance) by a 
narrow neck.82 As pointed out by Taylor,118 this must 
be contrasted with the low Re scenario wherein 
such a separation would result in sub-problems of 
a very different character. For instance, although 
the problem of a two-dimensional Stokesian 
swimmer is a well-posed one, a separation into 
thrust and drag sub-problems would lead to 
the well-known Stokes paradox80 (the ability of 
a translating cylinder to move fluid infinitely 
far from it). Although not as dramatic in three 
dimensions, the difference between the rates of 
decay of the velocity field due to a particle moving 
under an imposed force (u ∼ O(1/r)), and that due 
to a force-free swimmer (u ∼ O(1/r2)), nevertheless 
leads to enormous differences in the volume of 
fluid displaced.42 This aspect has aroused interest 
in recent times with regard to a possible biogenic 
source of ocean mixing.114

A fundamental constraint on the stroke 
kinematics of Stokesian swimmers arises from the 
(dynamic) reversibility of the Stokes equations. 
Simply stated, the principle of reversibility implies 
that ‘reversing the motion of all (rigid)134 boundaries 
reverses time’ This then leads to the famous Purcell 
scallop theorem: a scallop, a mollusk that opens 
and closes its shell periodically (see fig. 2), cannot 
swim at zero Re.78,100 The alternate opening and 
closing motions lead to no net displacement over 
a cycle, since the asymmetry between converging 
and diverging flows is absent in the inertialess 
limit (a real scallop belongs to the inertial realm). 
Note that since time does not appear explicitly in 
the Stokes equations (1), any change in the rates of 
opening and closing is irrelevant. The conclusion 
then is that the stroke kinematics at zero Re, 
although cyclic, have to be non-reciprocal to result 
in a non-trivial stroke-averaged velocity. This in 
turn requires the swimmer to have at least two 
configurational degrees of freedom (the scallop 
has one).

Flagellar
bundle

Cell

12 µm

2–3 µm1 µm

Figure 1: A schematic of a swimming E.Coli. Reproduced in part from 
'Collective hydrodynamics of swimming microorganisms', Koch, D.L. and 
Subramanian, G., Annual reviews of fluid mechanics, 2011, 43, 637-659.

E. coli is a rod-shaped 
bacterium (a prokaryote 
– single-celled organisms 
lacking a membrane-bound 
nucleus or specialized 
organelles) that is commonly 
found in the lower intestine 
of warm-blooded organisms. 
It swims by rotating a helical 
flagellar bundle.

Carangiform locomotion 
refers to a propulsion 
mechanism in several fish 
species and aquatic mammals 
wherein thrust is generated by 
an oscillation of the tail with 
little deformation of their 
frontal parts.
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There have been many efforts at examining 
non-reciprocal kinematics, motivated both from 
a fundamental point of view43,64,73,79,91,110 and from 
the desire to design simple micro-machines.41,66,81 
Herein, we only illustrate two of the simplest 
swimming protocols involving the minimum  
needed (two) degrees of freedom. The first is the 
so-called Purcell’s swimmer (fig. 3a), originally 
proposed by Purcell.79,100,117 It is a two-hinged body 
composed of three rigid links where the terminal 
links rotate alternately, and in opposite senses, 
relative to the middle link. The non-reciprocity 
leading to a net drift arises from the dependence 
of the swimmer resistance tensor on the relative 
inclinations of the links. The second is the 
trumbbell-swimmer (fig. 3b) proposed more 
recently by Najafi and Golestanian,49,91 and wherein 
the non-reciprocity arises due to the differing 
inter-sphere spacings, and the resulting differences 
in hydrodynamic interactions; the trajectories of 
the two swimmers in the relevant configuration 
spaces is also shown in fig. 3 to illustrate the 
non-reciprocal character of the deformation. A 
reasonably straightforward analysis leads, in the 
limit of small amplitudes (and with the added 

assumption of slender links for Purcell’s swimmer), 
to the following expressions for the stroke-averaged 
swimming velocities at leading order:
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where Ω and U are the angular speed of the link 
and the translational speed of the spheres (each 
assumed constant) for the Purcell and Najafi-
Golestanian swimmers, respectively, and T is 
the duration of a single stroke in the latter case; the 
remaining symbols are defined in figure 3. For the 
assumed constant velocity scenario, the calculation 
is just as easily extended to arbitrary stroke 
amplitudes; for the Najafi-Golestanian swimmer, 
the resulting swimming velocity is given by.49
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with an expansion in the limit UT/R  1 leading 
to (3).

While the swimming protocols described 
above are important from the pedagogical point 
of view, as will be seen in the next section, real 
micro-organisms have largely adopted a travelling-
wave motif as the prototypical non-reciprocal 
deformation. The above protocols above may, in 
fact, be interpreted as ‘sections’ of a travelling wave 
deformation (Purcell: transverse wave, Najafi-
Golestanian: longitudinal wave);7 the swimming 
velocities, given by (2) and (3), are thus of the same 
general form as that obtained when a travelling 
wave deformation drives the swimming motion 
(see § 3). Before examining the principal modes of 
swimming in microorganisms, we summarize the 
various physical effects that lead to a breakdown of 
the reversibility constraints inherent in the scallop 
theorem. One source of irreversibility is associated 
with the rheology of the swimming medium—a 
time-reversible stroke kinematics would in general 
lead to a net drift in a viscoelastic medium both due 
to the non-linearity in the constitutive equations 
and the existence of an intrinsic relaxation time 
scale.77 Accounting for the elastohydrodynamic 
coupling between the swimmer arms and the fluid 
medium in the original scallop model would again 
allow for a net drift, since the deformed arms would 

Figure 2: The reciprocal motion of a hypoethetical (two-dimensional) scallop 
will not lead to swimming at Re = 0. Although the reversible protocol depicted 
would appear to lead to a swimming motion with the hinge in front, for any 
finite Re, the actual (3D)-scallop, in fact, does the reverse; it swims with the 
hinge at its rear.
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prevent an exact retracing of the configurations in 
the reverse stroke.100,130 Hydrodynamic interactions 
provide another route to non-reciprocity (a version 
of which appears in the trumbbell swimmer above); 
thus, a collection of interacting scallops can swim 
if the individual reciprocal motions are suitably 
staggered in phase.76

Finally, we return to the factor that is, by 
definition, absent in the Stokesian realm: fluid 
inertia. A reciprocating scallop, on account of its 
inherent asymmetry in shape, will swim at any 
finite Re, albeit with a vanishingly small velocity in 
the limit Re → 0. A more interesting scenario arises 
when the sequence of swimmer configurations 
traced during a single cycle remains fore-aft 
symmetric, since such a symmetry would, in 
principle, preclude directional motion even at finite 
Re. Childress and co-workers.1,31,32,86 have addressed 
the intriguing question of a possible transition to 
a flapping mode of swimming, with increasing 
Re

f
 , via a symmetry-breaking bifurcation of the 

Navier-Stokes equations—a bifurcation that would 
then be the means of connecting the Stokesian and 
inertial realms; here, Re

f
 is a Reynolds number 

based on the flapping frequency that characterizes 
the reciprocating motion. The authors showed that 

a net translation arises as the non-linear saturated 
state of a finite Re

f
 instability of a reciprocal flapping 

protocol. That such a bifurcation must occur may 
be argued based on earlier work by Karman and 
Burgers who showed that a transversely oscillating 
plate (a fore-aft symmetric configuration at all 
instants) immersed in a free stream develops a 
thrust in the inviscid limit. Since a stationary plate 
(Re

f
 = 0) must exhibit a drag instead, the force on 

the plate must evidently vanish at a finite Re
f
 .31 

Evidence for the onset of a flapping mode beyond 
a critical Re

f
 has been found for Clione antarctica, 

a mollusc capable of both a non-reciprocal ciliary 
mode of propulsion (at lower speeds and a reciprocal 
flapping motion at higher ones).32 It is worth 
noting that although the appearance of swimming 
via a bifurcation requires the complete absence of 
any spatial asymmetry, the phenomenon continues 
to be relevant in the presence of such asymmetries 
(as for the scallop above) when there would be a 
net swimming motion at any finite Re

f
 (a continous 

breakdown of the scallop theorem, so to speak).75 
The existence of an underlying bifurcation should 
manifest as a rather abrupt increase, at an O(1) 
value of Re

f
 , from a small value proportional to any 

spatial asymmetry to an O(1) value related to the 

Figure 3: An illustration of the non-reciprocal stroke kinematics for the (a) Purcell and (b) trumbbell swimmers. The figures illustrate the 
changing internal configurations in a reference frame that translates and rotates with the swimmers; as a result, the central link in the 
Purcell swimmer and the central sphere in the trumbbell swimmer appear stationary. The translations or rotations of the swimmer as a 
whole arise as a consequence of the force-free and torque-free constraints. Depiction of the changing configurations in a lab reference 
frame requires a detailed analysis.79
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non-linear interaction between the reciprocating 
swimmer and the shed vorticity.

3.  The Motion of Individual Organisms 
and Cells

As mentioned in the earlier section,  
microorganisms have circumvented reversibility 
constraints by largely adopting a travelling wave 
motif. Swimming occurs due to rotating or 
waving thin filaments called flagella and cilia, 
though there are several exceptions.135 Based 
on a hydrodynamical point of view (the stroke 
kinematics, nature of the surface deformations, 
hydrodynamic interactions between individual 
filaments etc.), the swimming mechanisms may 
be conveniently classified into flagellar and ciliary 
propulsion.30 In the former case, swimmers exploit 
the motion of one or a small number of filaments 
on the cell; ciliary propulsion, in contrast, occurs 
by virtue of the non-reciprocal motion of a large 
number of such filaments (an interacting array 
that often completely covers the swimmer surface). 
With a few interesting exceptions,136 ciliary 
propulsion is confined to the larger eukaryotes (eg. 
Opalina, Paramoecium). The smaller eukaryotes, 
for instance, the Spermatozoa and the algal species 
Chlamydomonas and typical prokaryotes (bacteria 
such as Escherichia Coli, Salmonella typhimurium, 
Bacillus subtilis) exhibit a flagellar swimming 
mode. The swimming velocity resulting from a 
travelling wave deformation has the general form 
U ∼ c(A/λ)2, in the limit of small amplitudes, where 
c is the wave speed and A and λ are, respectively, 
the wave amplitude and wavelength.30 From 
(2) and (3), the swimming speeds of the Purcell 
and Najafi-Golestanian swimmers are seen to 
be of the same general form: U L TPurcell ~ ( / ) ,θ0

2

U
trumbell

 ∼ (a/R)(R/T )(U
s
T)2 where U

s
T and θ

0
 are 

a measure of the linear and angular amplitudes; 
the additional factor of O(a/R) in U

trumbbell
 reflects 

the strength of the hydrodynamic interactions that 
make the configuration changes non-reciprocal.

From the point of view of ultrastructure and 
physiology, the eukaryotic cilium and flagellum 
are virtually identical (the cilia tend to be shorter 
than flagella, but this distinction is superficial), and 
differ profoundly from the prokaryotic (bacterial) 
flagellum. The latter is a hollow helical filament,137 
about 20 nm in diameter and composed of the 
protein flagellin, that generates propulsion by 
rotating about its axis. This rotation (at a typical 
frequency of O(50 Hz)) is accomplished by a 
remarkable motor-stator apparatus at the base of 
the head (see fig. 4) powered by the flow of H+ 
or Na+ ions through ion channels at the base of 
the flagellum. Cilia (and eukaryotic flagella) are 

much thicker, about 200 nm in diameter, and 
have a more intricate protein structure. As shown 
in fig. 5, a configuration called the axoneme, 
composed of nine microtubule doublets arranged 
in a circle around a central pair, is enclosed by an 
extension of the cell membrane, and swimming 
occurs by the propagation of bending waves, 
planar or helical, from head to filament-tip. 
Unlike the prokaryotic flagellum, the cilium is 
not a passive structure and relies on a distributed 
actuating mechanism wherein an elastic bending 
wave is caused by ATP-driven dynein motors that 
force the (inextensible) tubules to slide relative 
to each other (interestingly, Machin (1958), from 
the observed beating patterns of sperm flagella, 
whose amplitude increases from head to tail, had 
already concluded that the driving mechanism 
cannot be localized at the head, but must instead 
be distributed along the flagellum). It needs to be 
emphasized that the rotary joint in a bacterium 
allows for a relative rotation of the flagellum and 
the head; the head and tail must then rotate in 
opposite senses (the head with a smaller angular 
velocity on account of its larger resistance) in 
order to conform to a torque-free constraint. On 
the other hand, the tail in a flagellated Eukaryote 
is rigidly attached at the base of the head; any 
rotation of the cross-section about the local 
centerline (during helical wave propagation) can 
only occur due to head-rotation in the same sense. 
The basic mechanism of flagellar propulsion relies 
on the drag anisotropy of an elongated body. 
The original resistive-force theory of Gray and 
Hancock (1955) predicts the swimming speed 
of a flagellated swimmer to be proportional to
( )||ζ

ζ⊥
− 1 , where ζ

||
 and ζ⊥ are, respectively, the 

local resistance coefficients for transverse and 
longitudinal translation. When the wavelength or 
pitch characterizing the flagellar motion greatly 
exceeds the the flagellum radius, the local motion 
may be regarded, at leading order, as that of a long 
cylinder with an identical cross-section. Viscous 
slender body theory yields ζ⊥ = 2ζ

||
 + O(ln κ)−1 

for a fiber of an arbitrary cross-section, κ  1 
being the fiber aspect ratio.3,35 Figure 6 shows how 
a net translation arises, due to a rotating helical 
flagellum, as the cumulative drift of differential 
elements (each equivalent to an inclined slender 
fiber with the longitudinal and transverse 
directions being defined with respect to the local 
flagellum axis) in a direction transverse to the 
imposed rotation. Evidently, when ζ⊥ > ζ

||
, the 

direction of swimming is opposite to that of wave 
propagation. It is often the case that the helical 
propeller is not just a single flagellum, but instead 
a bundle of many. The swimming motion of 

Eukaryotic cells are 
evolutionarily more 
advanced than prokaryotes, 
having a membrane-bound 
nucleus (that holds the 
genetic material) and other 
specialized membrane-bound 
organelles.
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peritrichously flagellated bacteria (i.e., bacteria 
with several flagella projecting in different 
directions) such as E.Coli, the species most often 
used in experiments that demonstrate collective 
motion in microorganism suspensions, is driven 

by a rotating (helical) bundle. In E.Coli, the basal 
motor driving the flagellum can rotate both ways. 
For counterclockwise rotation (as viewed from 
the flagellum tip), the individual (left-handed) 
flagella come together138 and interactions, both 

Figure 4: The bacterial flagellum: the left-hand-side figure is a schematic of all the parts of the flagellum; 
the prefix Fl denotes proteins associated with the flagellum, while Mot denotes an association with the 
basal motor. The right-hand-side figure is an (rotationally averaged) electron micrograph of the basal body, 
comprising the stator, rotor, rings and the hook.12 Reproduced from 'Motile behavior of bacteria', Berg, H.C., 
Physics Today, 2000, 53, 24-29.

Cilia and Flagella Structure
Dynein
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Dynein
Arms

Outer
Microtubule

Doublet
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Spoke Central

Microtubule
(Axoneme)

Plasma
Membrane

Basal Body (Kinetosome)

Figure 5: The structure of the eukaryotic flagellum; see text for explanation.



Journal of the Indian Institute of Science  VOL 91:3  July–Sept. 2011  journal.library.iisc.ernet.in 389

The Fluid Dynamics of Swimming Microorganisms and Cells

hydrodynamic and elastic, eventually drive 
them towards forming a single bundle.71,105 The 
rotation of the bundle causes the bacterium to 
swim, on average, in a given direction—this is 
referred to as a run. Runs are not perfectly straight 
and the orientation fluctuations during a run 
resemble a rotary diffusion process. The motors 
intermittently change from a counterclock-wise 
to a clockwise rotation. A reversal of any one 
motor causes the individual flagella to come apart, 
causing the cell to rotate erratically—this is called 
a tumble. Resumption of the counterclockwise 
mode drives the bundling process in a different 

orientation, and the cell sets off on an another run 
in a different direction that is (weakly) positively 
correlated to the original run;11 see fig. 7. Such 
a run-and-tumble motion effectively leads to 
the bacterium executing a random walk in three 
dimensions; the phenomenon of chemotaxis 
(see boxed description on page 13), results from 
a concentration-dependent modulation of the 
random walk parameters. For long times and in 
the absence of chemotaxis, the motion is purely 
diffusive, and for weakly correlated runs, the 
diffusivity is given by D U

Dr r
=

+

2

1
26( ) where U is the 

(average) swimming speed, τ is the mean-interval 

Figure 6: The top figure shows why an inclined fiber, on account of the drag anisotropy, translates along a 
direction intermediate between its own orientation and that of the applied force (for instance, gravity). For a 
swimming bacterium, the imposed force distribution arises from the axial rotation of the helical flagellum, and 
the bottom figure shows how the induced velocities always point in the same direction.
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between tumbles and D
r
 is the rotary diffusivity 

characterizing the small-amplitude orientation 
fluctuations during a run.

The rotating helical flagellum of a bacterium 
drives fluid motion in a direction opposite to 
swimming while the head drags fluid along in the 
same direction. On sufficiently large length scales, 
the velocity field induced by a swimming bacterium 
like an E.Coli appears therefore as that due to a 
force-dipole with forces directed outward along the 
swimming axis (see fig. 8). Such swimmers are termed 
‘pushers’. Eukaryotes such as spermatozoa that swim 
by propagating an elastic bending wave from head 
to tail-tip are again pushers. There are organisms 
which exhibit the reverse anisotropy (ζ⊥ < ζ

||
) too, in 

which case the swimming occurs in the direction of 
wave propagation. Eukaryotes such as Ochromonas 
have a flagellum with transverse rigid projections 

called mastigonemes that enhance the resistance 
to longitudinal motion relative to a transverse one 
(the longitudinal motion of the flagellum would 
imply a transverse one for the mastigonemes). Such 
swimmers would again act as force-dipoles on large 
scales, but with the forces directed inward, and are 
termed ‘pullers’. Another example of a puller is the 
algae Chlamydomonas, referred to above and often 
used in the early experiments on bioconvection,68,70 
that swims via the non-reciprocating breaststroke- 
like motion of a pair of anterior flagella (see fig. 9); 
the nature of the flagellar beat is similar to that of 
individual cilia to be discussed next.139 It is worth 
noting that the dependence of a net translation on 
the drag anisotropy associated with a local motion 
of a two-dimensional character is not exclusive 
to the Stokesian realm. The local character of the 
resistance coefficients can be extended to higher Re 

Flagellar
bundle

Cell

12 µm

2–3 µm1 µm

Figure 7: A schematic of the run-and-tumble dynamics typically exhibited by peritrichously flagellated 
bacteria; the parameters given here correspond to E.Coli.
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in the limit that the wavelength of the undulatory 
swimming mode greatly exceeds the swimmer’s 
transverse dimensions, as was originally done by 
Taylor (1952); the linear scaling with the ambient 
velocity, of course, no longer holds at non-zero Re. 
Interestingly enough, even examples of a reversed 
anisotropy (again due to transverse appendages) 
exist in the inertial realm; polychates worms, for 
instance, swim by way of a ‘reverse’ undulatory 
mode.84

As the name suggests, the swimming motion 
of ciliates is driven by the polarized beats of 
individual cilia. The beat is similar to the one 
in Chlamydomonas (fig. 9) in that there is an 

effiective stroke primarily responsible for a net 
displacement and then a recovery stroke where 
the cilium retreats to its initial position in a 
‘low’ resistance mode. The drag anisotropy is 
again exploited here since the motion during the 
effective stroke is largely normal to the cilium axis, 
while that during recovery is mostly tangential 
(see fig. 10). In many cases, recovery may happen 
out of the plane of the effective stroke, leading 
to a three-dimensional beat. Furthermore, 
non-trivial phase differences between the beats of 
neighboring cilia often result in the propagation 
of metachronal waves (the travelling wave thus 
occurs as a secondary motif in ciliates). The 
direction of wave propagation may have almost 
any orientation relative to the plane of the 
effective stroke. When the wave propagation and 
the effective stroke are in the same direction, one 
refers to it as symplectic metachronism; if they 
are in opposite directions, one has antiplectic 
metachronism. If the directions are normal to one 
another, it is termed diaplectic; either dexioplectic 
or laeoplectic depending on whether the sense 
of rotation in going from the metachronal wave 
direction to the stroke direction is clockwise or 
anticlockwise. Opalina and Paramecia are examples 
of ciliated protozoa that exhibit symplectic and 
dexioplectic metachronism, respectively.24

The simplest theoretical investigation of ciliary 
propulsion was Taylor’s original analysis118 of the 
swimming of a (transversely) oscillating infinite 
sheet; the analysis has since been generalized to 
include both transverse and longitudinal degrees 
of freedom,23,124 and extended to a cylindrical 
geometry.17 A similar analysis for finite-sized 
(spherical) objects was initiated by Lighthill83 
and later extended by Blake.18 Such analyses come 
under the category of envelope models where the 
detailed swimming microstructure (cilia) is not 
explicitly accounted for. Instead, the collective 
motion of the cilia is modelled by an impenetrable 
wavy surface. This is a reasonable approximation 
only for symplectic metachronism where the cilia 
tips stay close together through the entire stroke 
cycle. A second category, complementary to the 
first in the sense of attempting to account for the 
detailed cilia dynamics, comprises the sublayer 
models first proposed by Blake (1972). Herein, 
each cilium is modelled using slender body theory,3 
and accordingly represented as a superposition 
of fundamental Stokes singularities along its 
centerline (a valid approximation since the typical 
inter-cilia spacing of O(0.3−3 µm) is greater than 
the cilium diameter of O(0.1 µm)); the dynamics of 
the moving centerline are prescribed apriori, and 
depend on the particular form of metachronism. 

Figure 8: A bacterium like an E.Coli acts as a pusher on large length 
scales. Reproduced in part from 'Collective hydrodynamics of swimming 
microorganisms', Koch, D.L. and Subramanian, G., Annual reviews of fluid 
mechanics, 2011, 43, 637-659.
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The flow in the cilia sublayer is then determined 
by summing the individual cilium velocity fields 
(in the infinite plane approximation), where 
the strengths of the singularities that drive the 
individual velocity fields are determined in a 
self-consistent manner from the time-and-space 
averaged relative velocity evaluated along a cilium. 
There has been a later attempt to ‘patch up’ the 
envelope and sublayer solutions in order to obtain 
the complete velocity field around a finite-sized 
swimmer.18 Brennen (1974, 1975) has, however, 
rigorously analyzed the problem of a finite-sized 
swimmer, in the limit that the relevant length 
scales—the inter-cilia spacing, the metachronal 
wavelength (see top right of fig. 10) and the size of 
the organism—are well separated, via the method 

of matched asymptotic expansions. It is shown 
then that the flow around a ciliate consists of two 
parts: an inner solution, determined by either an 
envelope or a sublayer model and that describes 
the oscillatory flow induced by the cilia in a thin 
boundary layer as a function of the (slowly varying) 
metachronal wave parameters; and an outer steady 
Stokes flow solution on length scales of the order 
of the organism size.

In the Lighthill-Blake envelope model above, 
we note that although the original analysis allowed 
for an arbitrary surface velocity profile, the simplest 
most intuitive case is where the deformations of the 
swimmer surface are purely tangential, and further, 
the surface velocity variation is axisymmetric and 
characterized by a single spherical harmonic (the 
first Legendre polynomial). The resulting ‘spherical 
squirmer’ acts as a force-quadrupole on large 
length scales (see fig. 10 and §4). The Lighthill-
Blake squirmer model has been used in recent 
times by Pedley and co-workers60–63 to examine 
both pair-hydrodynamic interactions and large-
scale collective motion in suspensions of squirmers. 
The version of the original (general) model used 
in these studies has a purely tangential surface 
slip induced by a combination of quadrupole and 
dipole singularities (at the squirmer’s center). 
For sufficiently large magnitudes of the dipole 
contribution, the surface velocity reverses sign 
leading to a region of recirculating streamlines 
in the bulk. As expected, and pointed out in 
sections 5 and 6, the results obtained with regard 
to pair-trajectories,63 diffusion,61 rheology60 and 
mass transfer (nutrient uptake; see87) remain 
sensitive to the ratio of the quadrupole and dipole 
coefficients. The physics leading to a reversal in 
the squirmer surface velocity, in a stroke-averaged 
scenario, and its relevance to real ciliates, appears 
unclear. The surface slip velocity for a swimming 
Paramoecium caudatum (a slender spheroid with 
an aspect ratio of about 3) has been measured 
using particle imagine velocimetry, and exhibits a 
slight fore-aft asymmetry without any reversal in 
direction.59

4.  Fluid Motion Due to Individual 
Swimmers

Keeping in mind later sections that deal with 
numerical simulations and continuum theories 
of swimmer suspensions, we highlight the key 
features associated with an individual swimmer 
that underly such efforts. As stated above, on 
sufficiently large length scales, a flagellated 
Stokesian swimmer appears as a force-dipole; a 
passive particle driven by an external field such 
as gravity acts as a point force instead. Both 

Figure 9: The algae, Chlamydomonas nivalis acts (in the stroke-averaged 
sense) as a puller on large length scales.

A force-dipole is formed by 
placing two point forces of 
equal magnitude but opposite 
direction separated by a small 
distance.  The magnitude 
of the dipole is the force 
multiplied by the separation.
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point-force (O(1/r)) and force-dipole (O(1/r2)) 
velocity fields lead to long-ranged hydrodynamic 
interactions. The latter interactions have been 
shown to destabilize a quiescent suspension of 
neutrally buoyant Stokesian swimmers (see § 5). 
Results based on far-field interactions may 
be argued to have a universal character, being 
independent of the details of the swimming 
mechanism. Short-ranged interactions between 
swimmers, that dominate at higher concentrations, 
are likely to be more complicated, however. 
The velocity field on scales comparable to the 
swimmer size will be sensitive to the unsteady 
nature of the stroke kinematics, and thus, differ 
from one species to another. Recent experiments 
by Guasto et al. (2010) have used particle image 
velocimetry on confined films of Chlamydomonas 
reinhardtii (which swims in a manner similar to 
C. Nivalis above), and found that, while the time-
averaged velocity field decays as O(1/r) in the 
far-field (corresponding to a two-dimensional 
stresslet), and is consistent with that induced by 

the force-dipole of a puller, it also has a richer 
structure (including an anterior stagnation 
point) on scales comparable to the swimmer size; 
this is consistent with other independent time-
averaged measurements.40 Further, measurements 
of the instantaneous velocity field show that 
deviations from a stroke-averaged picture are 
quite close to the swimmer, and include the onset 
of  flow-reversal during the recovery stroke. 
Theoretical analyses of pair-hydrodynamic 
interactions of model Stokesian swimmers99 have, 
in fact, shown that the nature of pair-trajectories 
(attractive, repulsive, oscillatory) depend crucially 
on the relative phases of the swimmer stroke 
cycles; the phase differences between the swimmer 
strokes manifest as contributions that are higher-
order in relation to the force-dipole.

As noted in §3, the simplest model ciliate, 
a ‘spherical squirmer’, induces an O(1/r3) 
disturbance field (equivalent to a degenerate 
Stokes quadrupole); an identical flow field is 
encountered in the phoretic migration of charged 
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Figure 10: Ciliated eukaryotes are expected to act as force-quadrupole singularities on large scales. 
Reproduced in part from 'Fluid mechanics of propulsion by cilia and flagella', Brennen, C. and Winet, 
H., Annual reviews of fluid mechanics, 1977, 9, 339-398.
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passive spheres, under an applied electric field, 
in the limit of a vanishingly thin Debye layer;2,107 
drops migrating as a result of Marangoni effects, 
due to an imposed temperature gradient, induce 
a similar velocity field.80 The O(1/r3) disturbance 
field is weaker than the O(1/r2) force-dipole field 
induced by a model flagellate. It may, in fact, be 
shown that a swimmer whose stroke kinematics 
remain invariant under a combination of time-
reversal (t ↔ −t) and parity transformations 
(r ↔ −r) will act as a force-quadrupole singularity, 
rather than a force-dipole, on large length scales.99 
The Purcell and Najafi-Golestanian swimmers, 
discussed in §3, belong to this category for the case 
where the stroke amplitudes remain identical for 
the individual swimmer elements. The issue of an 
O(1/r2) versus an O(1/r3) velocity disturbance in 
the far-field is expected to be crucial with regard 
to the nature of the resulting hydrodynamic 
interactions.

Just as a swimmer causes motion of the fluid 
around it, it is also influenced by the fluid motion 
induced by other means. Apart from being advected 
by the local flow, the most important influence is 
on the swimmer orientation; since this determines 
the swimming direction, as also the contribution 
of the intrinsic force-dipoles to the bulk stress (see 
§5). Theoretical models of swimmer suspensions 
assume an active swimmer to orient, in response 
to an ambient shearing flow, in the same manner 
as a passive particle. A spherical swimmer is then 
expected to spin at a constant rate about the 
ambient vorticity axis. However, most bacteria are 
elongated and are expected to respond to both the 
ambient rate of strain and vorticity. For a passive 
axisymmetric particle, the orientation dynamics 
in an ambient linear flow is governed by the 
equation:

 p p E p p E pp= Ω ⋅ + ⋅ −F( )[ ( : )],κ  (5)

where F is a function of the particle aspect ratio;72 
for a spheroidal geometry, F = −

+
K
K

2

2
1
1
. According 

to (5), axisymmetric particles move along closed 
orbits (Jeffery orbits)65 in simple shear flow. In 
the limit of large aspect ratios, a passive particle 
remains nearly aligned with the flow axis for an 
extended period of time; there are intermittent 
rapid flips (lasting only for a fraction O(κ−1) 
of the orbit period) between (nearly) aligned 
orientations. There is, as yet, little evidence for the 
orientation dynamics of individual prokaryotes. 
Recent experiments with Chlamydomonas 
reinhardtii101 have, however, shown significant 
differences between the orientation dynamics of 
active (live cells) and passive particles (dead cells). 

While the latter tumble at almost a constant rate 
corresponding to a nearly spherical particle, the 
former seem to actively resist the flow; such a 
resistance, likely mediated by the moving flagella, 
leads to an increased effiective viscosity at the same 
concentration (presumably due to both an intrinsic 
stresslet and an additional ‘spin’ contribution to 
the bulk stress).

4.1. Chemotaxis
In §3, we had described the run-and-tumble 
dynamics of peritrichously flagellated bacteria 
such as E.Coli. Of particular interest is the 
manner in which the parameters of this stochastic 
motion are modified in response to a changing 
chemical environment to enable the bacterium 
to move towards nutrient-rich regions (positive 
chemotaxis), or move away from toxic chemicals 
(negative chemotaxis). In a homogeneous 
environment, the statistics of the run-and-tumble 
motion are well approximated by a Poisson 
process, so that the probability of occurrence of 
exactly κ tumbles in a time t is P e t

k

t
k

( ) ( / )
!

κ =
−τ τ0 0 . In 

particular, the interval between successive tumbles 
is exponentially distributed with a mean τ

0
; for 

E.Coli, τ
0
 ∼ O(1s). The actual tumbling events 

have a much shorter duration (about 0.1s), and 
may be regarded as instantaneous. As discussed 
in §5 (see equation (13)), a tumbling event may 
then be entirely characterized by a transition 
probability density, K(p|p′), where p and p′ denote 
the pre- and post-tumble orientations. Perfectly 
random tumbles correspond to an isotropic 
transition probability (K(p|p′) = 1/(4π)) and a 
mean-angle between successive runs of 90 degrees 
(〈p ⋅ p′ 〉 = 0); the tumbles in E.Coli have a weak 
forward correlation with the mean re-orientation 
accompanying a tumble being about 68 degrees.11

An environment rendered heterogeneous by 
the gradient of a chemical (referred to as a chemo-
attractant or a chemo-repellent) engenders a 
tactic response in the bacterium. The response is 
bi-phasic; that is, pronouncedly asymmetric for 
small chemical gradients, the asymmetry arising 
from a difference in threshold for increasing and 
decreasing attractant concentrations.19 The runs 
are extended when the bacterium heads up the 
gradient, while remaining almost unchanged when 
it happens to swim the other way.27 The previously 
constant mean-free time is now a function of 
the orientation of the bacterium trajectory (p) 
relative to the attractant gradient (ζg), and may be 
generally written as τ = τ

0
 + F (ζg ⋅ p)[1 − H(g ⋅ p)] 

with F > 0; H(z) here is the Heaviside function.114 
The anisotropic response results, on average, 
in the bacterium migrating towards attractant-

The Debye layer is a measure 
of the thickness of the 
layer of counter-ions that 
preferentially surround a 
charged particle dispersed in 
an electrolyte solution.  This 
cloud of counter-ions acts to 
screen the electric field due to 
the (particle) surface charge.

Marangoni effects refer to 
flow phenomena arising from 
a variation in the interfacial 
tension. An interface, with 
a varying tension, supports 
a jump in the tangential 
stresses. The pattern 
formation seen in the cooking 
pan is often driven primarily 
by Marangoni effects (Benard-
Marangoni convection); the 
temperature inhomogeneities 
at the free surface, due to 
bottom-heating, lead to 
corresponding variations in 
surface tension that support 
convective cells.
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rich regions (a chemo-repellent has the opposite 
effect). Note that the other parameters of the run-
and-tumble motion, for instance, the transition 
probability characterizing the tumble events, 
remain virtually unaltered. In this sense, E.Coli 
and other similar bacteria do not perform true 
chemotaxis since their swimming motion is not 
directly correlated to the direction of the chemical 
gradient. Indeed, the stochastic nature of the 
biased response implies that the chemotactic 
drift velocity is only about 10% of the bacterial 
swimming speed.128 This must be contrasted with 
typical eukaryotes that actively steer towards 
favorable regions by modulating their angular 
velocity components (leading to a modulation of 
the axis of helical motion); a mechanism known 
as helical klinotaxis.36,37 In both cases, however, the 
tactic response is the outcome of a temporal rather 
than a spatial sensing mechanism.140 Thus, an 
E.Coli compares, with appropriately signed weight 
factors, the current attractant concentration with 
those a few seconds previously, and then ‘decides 
whether to tumble or not’;26,109 note that the 
decision-making is only useful if it occurs in a time 

less than that taken for the direction of the run to 
de-correlate due to rotary diffusion, and this is the 
case since τ

0
D

r
 < 1 (see §5).

5.  Continuum Models for Collective 
Swimming

The discussion on continuum theories may be 
broadly divided into two classes. The first category 
in which work, both experimental and theoretical, 
started much earlier, concerns the phenomenon 
of bioconvection. The term was originally coined 
by96 to refer to observations of pattern formation 
in suspensions of motile microorganisms129 that 
bore resemblance to traditional Benard convection 
arising from an adverse temperature gradient. 
The second class of theories attempt to examine 
more recent observations of collective motion, at 
higher concentrations38,133 and on smaller scales, 
mainly in suspensions of swimming bacteria.115 
The division is a natural one based on the 
underlying physics, since bioconvection patterns 
are the result of a density difference between the 
(heavier) swimmers and the suspending fluid 
coupling with the gravitational field; the means 

The Biochemical Machinery for Chemotaxis
The modulation of the tumbling frequency in response to a changing attractant concentration 
essentially involves altering the bias between the clockwise (CW) and counterclockwise (CCW) 
states of motor rotation. This is achieved by a rather elaborate intracellular machinery, that exhibits 
a remarkably high gain—enough for the bacterium to perceptibly respond to a fractional change 
in the occupancy of membrane-bound receptors as small as 1/600).13 Further, it allows the cell to 
respond to attractant concentrations ranging over several orders in magnitude. A schematic of the 
chemotaxis circuit is shown in fig. 11 and consists of two principal pathways.89 The first involves four 
proteins (CheA, CheW, CheY and CheZ) and communicates between the receptors (known as methyl-
accepting proteins -MCP’s) and the flagellar motor. The second is responsible for cell adaptation 
and involves a pair of enzymes—a methyltransferase (CheR) and a methyl es-terase (CheB). The 
dimeric membrane-spanning receptors (shown as paired black wrench-like objects in the figure) 
form a ternary complex with two CheA and two CheW polypeptides and stimulate the autokinase 
activity of CheA (CheA → CheA-P; autophosphorylation). CheA-P transfers the phosphate to CheY, 
and CheY-P in turn interacts with the motor-switch complex to enhance CW flagellar rotation. 
Finally, the accumulation of CheY-P is prevented by CheZ, leading to an equilibrium in the absence 
of the attractant; that is, a baseline-bias between the CW and CCW states. Attractant binding inhibits 
the formation of CheA-P; the resulting dip in CheY-P levels suppresses CW rotation, leading to an 
increase in τ. In the adaptation pathway, CheR is responsible for receptor-methylation, while CheB-P, 
activated by phosphotransfer from CheA-P, removes methyl groups from the receptors. Thus, reduced 
CheA activity decreases the CheB-P level and the resulting increased methylation counteracts the 
attractant-induced inhibition. The time scales for ligand-binding and kinase (CheA) response are, 
however, much smaller than that characterizing receptor methylation (a few seconds). The inability of 
the methylation kinetics to (precisely) keep up with a continuously changing chemical environment 
manifests as a change in the fraction of bound receptors, leading to changed probabilities for the 
CW and CCW states. This lag manifests as the memory function characterizing the chemotactic 
response; one that may be determined from an impulse-response experiment. This has been done 
experimentally by Segall et al. (1986), and the resulting response function shown in fig. 12 underlies 
the temporal comparison (made by the bacterium) described above.
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by which such a density difference leads to large-
scale fluid motion could be any of geotaxis, 
gyrotaxis, phototaxis or chemotaxis. On the other 
hand, collective motion in bacterial suspensions 
is thought to arise due to the de-stabilizing 
effects of the intrinsic force-dipoles associated 
with individual swimmers at sufficiently high 
concentrations.

Figure 13 shows steady-state bioconvection 
patterns in a shallow suspension of motile algae 
viewed from both above and from the side.95 One of 
the earliest theories33 analyzed bioconvection as an 
overturning instability due to the adverse density 
gradient induced by heavier upward-swimming 
cells; see fig. 14. The upward swimming, an example 
of negative geotaxis, arises due to an asymmetric 
mass distribution—the algal cells (C.nivalis, Euglena 
gracilis, Tetrahymena pyriformis etc) are bottom-
heavy and the resulting gravitational torque leads 
to an upward alignment of the swimming axis in 
the absence of a bulk flow. An exponential (algal) 
concentration profile is set up wherein convection 
due to upward swimming balances the downward 
diffusion; this base-state is (linearly) de-stabilized 
when the Rayleigh number, defined as Ra = l3(φ∆ρ)
g/(µD), exceeds a threshold value. Here, φ is the 
algal volume fraction, ∆ρ is the density difference 
between the alga and the suspending fluid, g is the 
gravitational acceleration, µ is the suspending fluid 

OM

Peripiasm

IM

WW

A A

P P
Y

B

Adaptation Excitation

B

R

-CH3

+CH3

M

N

G
Y

Z

PP

Figure 11: A schematic of the intracellular chemotactic signalling pathway. Reproduced from 'Bacterial 
locomotion and signal transduction', Manson, M.D., Armitage, J.P., Hoch, J.A. and Macnab, R.M., J Bacteriol, 
1998, 180, 1009-1022.
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Figure 12: Impulse response to attractant in wild-type cells. The nature of 
the above response function may be understood as follows: The attractant 
concentration, in the vicinity of the bacterium, increases to begin with, raising 
the CCW bias of the flagellar motors, and stimulating receptor methylation. 
After the short but finite duration of the (experimental) pulse, the attractant 
concentration drops rapidly, and the still elevated methylation level causes 
the CCW bias to drop below pre-stimulus levels. In turn, this stimulates 
demethylation and the signal finally returns to its pre-stimulus level. Reproduced 
from 'Temporal comparisons in bacterial chemotaxis', Segall, J.E., Block, S.M. 
and Berg, H.C., Proc. Natl. Acad. Sci., 1986, 83, 8987-8991.
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viscosity, and D is a measure of the cell diffusivity 
(of an athermal origin); the length scale l would 
either be the height H of the vessel in the limit of 
shallow layers, or the intrinsic length scale, D/U, 
characterizing the base-state stratification for 
sufficiently deep layers. An earlier effort by Plesset 
and Winet (1974) did recognize the driving force 
as being the unstable stratification induced by 
upward swimming; the analysis, however,39 was 
along the lines of a Rayleigh-Taylor instability of an 
unstably stratified base-state with the dynamics of 
the swimming microorganisms not being explicitly 
accounted for. A second mechanism, relying 
on gyrotaxis rather than geotaxis, and acting 
to de-stabilize a homogeneous suspension, was 
proposed by Pedley, Kessler and co-workers.54,93,94 

Gyrotaxis refers to the directed swimming of a 
micro-organism under a balance of gravitational 
and viscous torques. As shown in fig. 14, an imposed 
density perturbation (a Fourier mode) induces 
a corresponding velocity perturbation since the 
fluid in the denser regions descends while rising 
in the ligher regions. The equilibrium orientation 
distribution arising from the resulting balance of 
viscous and gravitational torques drives a transverse 
gyrotactic flux of the heavier microorganisms into 
the denser regions, reinforcing the original density 
perturbation and leading to exponential growth.141 
A uniform unbounded suspension of gyrotactic 
swimming algae is always unstable to sufficiently 
long wavelength perturbations; the longest 
perturbations grow the fastest in the inertialess 
limit although, with inertia included, the growth 
rate attains a maximum at a finite wavenumber. 
For a bounded domain with a dimension H, an 
instability arises only when the critical wavenumber 
is greater than O(H−1). This may be written in 
dimensionless terms as the threshold value of a 
gyrotactic Rayleigh number defined as Ra

g
 = H2(UB)

(φ∆ρ)g/(µD), where B = µ/(2ρδ l g) is the time scale 
for alignment by the gyrotactic torque (δ l here is 
the separation between the center of mass and the 
center of resistance, and varies from 1–5% of the 
characteristic cell dimension).68 As to which of the 
two instabilities will occur in practice depends on 
the time scale on which the unstably stratified base-
state (with a super-critical Ra) develops vis-a-vis 
the time scale on which a homogeneous suspension 
de-stabilizes due to gyrotactic fluxes. In either case, 
the actual sedimentation velocity of the algal cell 
due to the density difference is about two orders 
of magnitude smaller than the swimming speed, 
and may be neglected; this implies that the relative 
motion between an algal cell and the fluid occurs 
solely due to swimming.

The above analyses have since been extended in 
several different directions. For instance, the original 
analysis specified the upward swimming rate and the 
translational diffusivity in an ad-hoc manner. Later 
efforts attempt to rigorously relate these transport 
coefficients to the underlying orientation dynamics 
using generalized Taylor dispersion theory;53,88 
the flow-induced anisotropy in the translational 
diffusivity is found to affect linear stability predictions. 
The set of continuum field equations that support 
the aforementioned instability mechanisms, in their 
simplest form, may be written as:

 ∇ ⋅ =u 0,  (6)

  
 

ρ ρDu

Dt
p nV g= −∇ + ∆ +∇( ) 2u,

 
(7)

Figure 13: The top figure shows a steady-state labyrinthine pattern developed 
in a suspension of D.teriolecta, 6.8 mm deep, viewed from above; the cell 
concentration is about 2 x 106cells/cm3. The bottom figure shows steady-state 
bioconvection, with bottom-standing plumes, in a deep (15 mm) suspension 
of C.nivalis, with a concentration of 106cells/cm3 viewed from the side. 
Reproduced from 'Hydrodynamic phenomena in suspensions of swimming 
microorganisms', Pedley, T.J. and Kessler, J.O., Annual reviews of fluid 
mechanics, 1992, 24, 313-358.

The Rayleigh-Taylor 
instability arises when 
the unstable equilibrium, 
involving a layer of heavier 
fluid above a lighter one, is 
perturbed. The instability 
results in the formation of 
plumes of the heavier fluid 
moving downwards through 
the lighter fluid.

Taylor dispersion, named 
so after the British fluid 
mechanic G. I. Taylor, refers 
to the enhancement of the 
effective diffusion of a solute 
in a fluid due to coupling with 
a shear flow.
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where n(x, t), u(x, t), and p(x, t) are the averaged 
number density, velocity, and pressure fields, 
respectively, g is the gravitational force per unit 
mass, and V is the volume of an 3 individual 
swimmer. The orientation-averaged swimming 
velocity, U〈p〉 = U ∫ pΩ(p, t) dp, that appears in 
the conservation equation for the number density, 
(8), may be determined from a knowledge of the 
orientation distribution function (Ω(p, t)) which, 
for gyrotactic algae, satisfies:

 
∂Ω
∂

+∇ ⋅ Ω = ∇ Ω
t

DrP Pp( ) . 2  (9)

Here, D
r
 is a rotary diffusivity that incorporates 

the intrinsically imperfect locomotion of the 
cells;9 the convection in orientation space is 

given by the sum of the gyrotactic and viscous 
contributions:

p k k p p p E pp= − ⋅ + Ω ⋅ + ⋅ −
1

2B
E P P[ ( ) ] ( )[ ( : )]F κ  

  (10)

The calculation of D in (8) is more complicated 
and involves determining the long-time spatial 
dispersion arising from the (orientationally averaged) 
dynamics in a primitive (x, p) phase space.

Experiments on bioconvection8,69 show 
that the steady bioconvection patterns that are 
set up eventually have a considerably smaller 
wavelength than those characterizing the incipient 
instability. In general, the dominant length scale 
decreases with time with a concomitant change 
in the pattern topology; the length scale of the 
incipient pattern is closer to the predictions of the 
linear theory. These obserations have motivated 
non-linear extensions of the original analyses.10 

Figure 14: A schematic illustration of the two principal instability mechanisms leading to bioconvection 
patterns. The top figure illustrates the overturning instability arising due to negative geotaxis, while the bottom 
figure depicts the mechanism involving gyrotactic fluxes, in a direction transverse to gravity, that destabilizes a 
uniform suspension.
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Simulations have attempted to capture the 
structure, evolution and instability of gyrotactic 
plumes, in the fully developed regime, both in 
two and three dimensions.45–47 Finally, it is worth 
noting that, in many cases, bioconvection patterns 
are the result of heavier cells undergoing photo or 
chemotaxis rather than geo or gravitaxis. In other 
words, the unstable stratification is set up due to 
gradients of a chemical (oxygen) or light intensity. 
The mechanistic details are different in these cases, 
and often more complicated.55,56 In the case of B. 
subtilis, where the adverse density gradient is the 
result of oxytaxis (the slightly denser bacteria swim 
up an oxygen-gradient towards the free surface), 
an analysis would have to account for the coupling 
between the bacterial number density and oxygen 
concentration fields, since the oxytactic drift 
is, at leading order, proportional to the oxygen 
concentration gradient.67 A second complication 
arises due to the bacterial cells being rendered 
inactive below a crtical oxygen concentration, 
leading to qualitative differences between the 
dynamics of shallow and deep layers. There have 
been similar attempts to analyze bioconvection 
resulting from phototaxis,127 and a combination of 
both gyro- and phototaxis.131

The origin of the more recent work in the 
dynamics of suspensions of ‘active’ swimmers, 
in the absence of an external field (gravity), 
may be traced to the numerical simulations of 
Vicsek et al.,126 described in §6; experiments with 
bacterial suspensions, demonstrating the existence 
of coherent motion in such active systems came 
later.38,133 The simulations were a dynamical 
generalization of the classical XY model (with 
applications to superfluids and hexatic liquid 
crystals),28 wherein each swimmer updates its 
orientation depending, in an averaged sense, 
on those of its nearest neighbors; much like the 
individual spins in the original equilibrium model. 
However, unlike the spins, the swimmers in Viscek’s 
simulations also translate and thereby, sample 
a constantly changing environment. The most 
intriguing result to emerge from these simulations 
was the existence of a (continuous) order-disorder 
transition when the noise amplitude decreased 
below a critical level. The result is non-trivial 
because the simulations were restricted to two 
dimensions, in which case the Mermin-Wagner-
Hohenberg theorem28 prohibits the emergence 
of long-ranged order in the corresponding 
equilibrium model with a continuous order 
parameter.142 Thus, the transition observed was 
believed to be characteristic of a system out of 
equilibrium. A later continuum theory by Toner 
and Tu121,122 succeeded in predicting its occurrence. 

However, this effort and many others thereafter15,50 
are motivated by the need to characterize systems of 
active swimmers (which may range from microbes 
to birds!) in terms of appropriate non-equilibrium 
phase diagrams; the various phases arise, in a 
manner reminiscent of equilibrium systems, from 
short-ranged interactions between swimmers 
often specified in an ad hoc manner. Such analyses 
often have little to do with the fluid mechanics of 
a suspension of microorganisms interacting via 
long-ranged disturbance velocity fields.

Simha and Ramaswamy (2002) were the 
first to recognize the importance of long-ranged 
hydrodynamic interactions in a suspension of 
Stokesian swimmers, and via an appropriate set 
of continuum field equations, showed that such 
interactions would act to destabilize ordered ‘active’ 
phases. Thus, there can be no active analogs of the 
liquid crystalline nematic phase since, as shown in 
fig. 15, the perturbation flow driven by deviatoric 
active stresses act to enhance the amplitude of 
small-amplitude orientation fluctuations, leading 
to an exponential instability.103 More recently, 
Saintillan and Shelley (2008ab) have shown that 
an isotropic swimmer suspension is again linearly 
unstable; crucially, an instability is predicted 
only for pushers, a fact that has been confirmed 
in simulations.108,125 The instabilities of both 
ordered and isotropic phases owe their existence 
to the intrinsic force-dipoles associated with the 
swimmers.

While the above efforts highlight the intrinsic 
instability of active matter in general, relaxation 
mechanisms specific to most Stokesian swimmers, 
that could lead to a possible stabilization, were not 
included. The derivation of a threshold condition, 
similar to that obtained for bioconvection above, 
was first accomplished by Subramanian and Koch 
(2009) who obtained the critical concentration 
for the onset of collective motion in an isotropic 
bacterial suspension in terms of parameters (U,τ, 
D

r
, K (p|p′); see the description of run-and-tumble 

dynamics in §3) that characterize the swimming 
motion of a single bacterium.

The set of continuum field equations for a 
bacterial suspension may be written as:

 ∇ ⋅ =u 0,  (11)
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where the additional stress in (12) equals the 
density of force-dipoles.143 This stress includes 
both an active contribution proportional to the 
orientational anisotropy of the intrinsic dipoles 
(this dipole has a magnitude of O(µUL2) with a 
numerical pre-factor, Ĉ (say), dependent on the 
detailed swimming mechanism) responsible for 
the instability, and the familiar passive contribution 
arising from the resistance of the swimmers to 
the local extensional action of the flow (the one 
that leads, for instance, to the enhanced viscosity 
of a suspension of passive fibers).25 Equation 
(13) is the conservation equation for the phase-
space probability density where the convection 
of probability in physical space due to swimming, 
and in orientation space due to rotation by an 
imposed flow field (the rotation rate being given by 
(5)), balances the relaxation processes of tumbling 
and rotary diffusion. The latter is modelled by an 
orientational Laplacian and denotes the gradual 
de-correlation due to small-amplitude orientation 
fluctuations during a run; in contrast, the large-
amplitude tumble events appear as a non-local 
integral term. The effect of an instantaneous tumble 
is equivalent to a linear collision process—as in the 
kinetic theory of gases,29 there is a change in the 
probability due to both ‘direct’ and ‘inverse’ events. 
The former denote a decrease in probability due to 

a tumble that causes a bacterium to leave the phase 
space interval of interest; for a Poisson process, this 
rate of departure equals 1/τ. The inverse events 
represent the increment in probability due to all 
tumbling events that lead to the final orientation 
of the bacterium lying in the interval of interest. In 
(13), the inverse events have been modelled using 
the transition probability density K(p |p′) that 
was introduced in §4 4.1, to allow a non-trivial 
correlation between the pre-tumble (|p′) and post-
tumble (p) orientations.

A stability analysis using (11)–(13) in the dilute 
limit with an active stress contribution of O(nL3) 
(n being the bacterial number density), and about 
a quiescent isotropic base-state uB B

n= Ω =0
4

, ,π  
leads to the following expression for the threshold 
bacterial concentration:115
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where F( ) ( )r r

r
= −

+

2

2

1

1
 characterizes the orientation 

dynamics of an axisymmetric swimmer of aspect 
ratio r in a homogeneous shearing flow, and 
the function G(r) is a measure of the bacterium 
inextensibility; with K p p( | )

sinh
( )p p e′ = ⋅ ′β

π β
β

4  with 
β > 0 accounting for the weak forward correlation 
observed in E.Coli.11 Thus, for nL3 > (nL3)

crit
, the 

quiescent state is susceptible to exponentially 
growing perturbations. Since tumbling typically 
dominates the orientation de-correlation of a 
swimming bacterium (τ D

r
 < 1), and the correlation 

between pre- and post-tumble orientations is 
quite weak, a suspension of random tumblers 
( , ( | ) ; )β π= ′ = =0 01

4K Drp p  constitutes an 
important limiting case. The critical concentration 
in this limit is given by
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A suspension of slender-bodied straight 
swimmers (D

r
 = 0, τ → ∞) is thus always 

unstable ((nL3)
crit

 → 0). The above thresholds are 
entirely determined by the longest wavelength 
perturbations which are the most unstable.

The complete unstable spectrum for a 
suspension of straight swimmers is shown in 
fig. 16. The corresponding spectrum for random 
tumblers is obtained by merely displacing the 
 straight-swimmer spectrum by an amount 1/τ 
along the growth-rate axis; the spectrum with the 
inclusion of rotary diffusion instead of tumbling 

Figure 15: The instability of an active nematic phase to a bend perturbation; 
the black arrows indicate the reinforcing flow induced by the orientation field 
perturbation.
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has been obtained by Hohenberg and Shelley 
(2010). For straight swimmers, owing to the 
absence of any intrinsic time and length scales 
(other than the obvious microscopic ones: L/U 
and L), dimensional considerations lead one to 
conclude that the range of unstable wavenumbers 
must be O(nL2) with the corresponding growth 
rates being O(nUL2).

Figure 16 shows that there exist a pair of unstable 
stationary modes (modes 1 and 2 in fig. 16) in 
the wavenumber interval κ < κ

m
 = 0.17ĈnL2. The 

growth rate along one of these branches (Mode 2) 
is vanishingly small in the interval κ → 0; the 
branch owing its existence crucially to the non-
local nature of the swimming stress. In contrast, 
the growth rate of mode 1 remains finite in the 
limit of a vanishingly small wavenumber. This 
mode determines the threshold for instability 
in the presence of relaxation processes, and the 
underlying physical mechanism is depicted in 
fig. 17—an imposed (long-wavelength) velocity 
perturbation (Fourier mode) causes an excess 
(deficit) of swimmer orientations in the vicinity 

of the local extensional (compressional) axis. The 
disturbance flow associated with pushers in these 
orientations reinforces the original perturbation, 
leading to instability. Since the translation of the 
swimmers may be neglected in relation to the 
perturbation wavelength for κ → 0, the resulting 
active stress is local and linear in the imposed 
velocity gradient. Thus, the dominant long-
wavelength instability in a suspension of pushers 
may be interpreted in terms of a negative viscosity. 
For straight swimmers, the bacterial stress always 
exceeds the stabilizing viscous stress, associated 
with the suspending fluid, for sufficiently long 
wavelengths; leading to unconditional instability. 
In the presence of orientation de-correlation 
mechanisms, the amplitude of the bacterial 
stress is limited by the correlation time, either τ 
or Dr

−1, and instability requires a critical bacterial 
concentration. Although numerous experiments 
have demonstrated coherent fluid motion in 
bacterial suspensions, fewer have attempted to, 
either directly or indirectly, isolate a threshold 
concentration. One such experiment is by Wu and 

Figure 16: The unstable spectrum for a suspension of straight swimmers. The shaded region in the $\hat{\
alpha}_i-k$ plane denotes the neutrally stable continuous spectrum modes. The mode 1 branch denotes the 
dominant instability in the limit of small wavelengths. Reprinted with permission from Subramanian, G., Koch, 
D.L. and Fitzgibbon, S.R., Physics of fluids, 23, 041901, 2011. Copyright 2011, American Institute of Physics.
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co-workers132 who measured a large increase in the 
translational diffusion coefficient above a critical 
bacterial concentration in both suspensions of 
wild-type bacteria and smooth swimmers (that 
rotary diffuse but do not tumble); presumably due 
to additional convection of a swimming bacterium 
by the bulk fluid motion. Even in the stable regime, 
the bacterial suspension viscosity must decrease 
with increasing concentration (the threshold 
corresponding to a zero net viscosity) in sharp 
contrast to passive-particle suspensions; a fact 
originally pointed out by Hatwalne et al.(2004), 
and recently verified in experiments.113

Stationary unstable modes only exist for 
κ < κ

m
 = 0.17Ĉ nL2; at κ = κ

m
, with κ

m
 = 0.027ĈnL2, 

they bifurcate into a pair of oscillatory modes in 
the range κ κ κm m< < ′  with κ

m
′ = 0.57ĈnL2. The 

existence of oscillatory modes (overstability) is 
important since, in practice, the domain is never 
infinitely large. In simulations, for instance, a lower 
boundon the wavenumber is provided by the box 
size, and for box sizes smaller than 2π κ/ ′m , one 
expects the onset of instability via an oscillatory 
mode. The physical interpretation of the instability 
is the simplest in the long-wavelength limit when 
the stationary orientation wave is out-of-phase 
with respect to the velocity wave; further, as 
shown in fig. 17, a single such wave suffices since 
the ‘shape’ of the orientation perturbation at all 
points in space is an ellipsoid with its major axis 

aligned along the local extensional axis. For any 
finite wavelength, however, one has a continuum 
of such orientation waves, each centered around 
a particular orientation, and with a unique phase 
difference with respect to the velocity wave that 
depends on the distance covered by a swimmer with 
the chosen orientation (in a time of the order of the 
inverse growth rate) in relation to the wavelength. 
As a result, there exist regions of space with subsets 
of force-dipoles acting in opposition to the local 
extension. When these regions become sufficiently 
large in extent, one expects oscillatory behavior 
since the force-dipoles would be in opposition 
to the local extension over a certain phase of the 
cycle; the analysis shows the critical wavenumber 
for oscillatory dynamics to be 0.57ĈnL2. The 
spectrum terminates at κ κ= ′m  when growth rate 
is identically zero, and the discrete modes merge 
with the continuous spectrum (see below). The 
complete absence of modes beyond κ κ= ′m  has 
to do with neglect of fluid inertia, and therefore, 
of momentum relaxation processes not directly 
driven by stress perturbations; these would 
otherwise decay on a time scale of O(nκ 2)−1.

Although the analysis above predicts a dilute 
suspension of straight swimmers to be unstable, 
it turns out, rather interestingly, that the inclusion 
of pair-hydrodynamic interactions allows, in 
principle, for a stabilization to long wavelength 
perturbations. Such a non-trivial stabilization, at 

π

Figure 17: The long-wavelength instability of an isotropic bacterial suspension due to the coupling of velocity 
and orientation field fluctuations. Reproduced from Subramanian, G. and Koch, D.L., 2009, with permission 
from Cambridge University Press.
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O(nL3),144 is particularly relevant to simulations 
of swimmer suspensions almost all of which 
have focussed on straight swimmers (see §6). The 
possibility arises because time scale of the instability 
is O(nUL2)−1, being inversely proportional to the 
(intrinsic) dipole density, while the relaxation, 
on account of a pair-interaction induced rotary 
diffusivity of O(nUL2), also proceeds on the 
same time scale145 It was shown by Subramanian 
and Koch (2009) that the stabilizing effect of 
pair-interactions is too small for high-aspect-
ratio swimmers. However, the amplitude of the 
de-stabilizing active stress weakens (slender-bodied 
swimmers are the most sensitive to the orienting 
effects of an ambient extensional flow) and the 
rotary diffusivity increases with a decrease in aspect 
ratio (pair-interactions are logarithmically weak 
in the slender body limit). There must eventually 
be a balance for a critical aspect ratio, greater 
than unity, when a dilute suspension of pushers 
becomes stable. According to this argument, a 
suspension of spherical swimmers, those examined 
by Pedley and co-workers, is certainly stable. A 
spherical squirmer responds solely to the ambient 
vorticity, and an isotropic distribution of squirmer 
orientations remains undistorted in the presence 
of an imposed velocity perturbation. Thus, it 
appears as if the pattern formation observed in the 
simulations of Pedley and co-workers requires an 
alternate explanation; one that likely relies on the 
nature of the detailed interactions in the near-field 
rather than the universal picture, based on far-field 
dipole interactions, described above.

A remarkable feature of the mechanism 
depicted in fig. 17 is that it allows for an instability 
arising from the favourable coupling of velocity 
and orientation fields alone. The corresponding 
number density field remains spatially 
homogeneous! This is, of course, in sharp contrast 
to bioconvection patterns where the unstable bulk 
motion is driven by gradients in the algal number 
density; the concentration within falling gyrotactic 
plumes in the fully developed state is often an 
order of magnitude higher than its average value 
of O(106 cells/ml). Although, for exceptional 
initial conditions, a bacterial suspension would 
remain homogeneous for all times while still 
supporting an exponential instability, a natural 
question arises as to what happens of the number 
density (concentration) fluctuations, on length 
scales larger than microscopic (bacterium length), 
that are present in, or derive from, a general initial 
condition. This is also an important question in 
light of the results of Sain-tillan and Shelley (2008) 
obtained from simulations of the field equations 
in the non-linear regime. In stark contrast to the 

linear stability analysis, the simulations reveal 
large-scale concentration inhomogeneities. While 
the observed concentration fluctuations may 
have a non-linear origin, an understanding of the 
evolution of such fluctuations in the linearized 
setting is nevertheless essential. This may be 
achieved by considering the complete eigen-
spectrum of a bacterial suspension rather than 
focussing on only the unstable spectrum in fig. 16. 
For a suspension of straight swimmers, the discrete 
spectrum consists solely of the unstable modes 
which are spatially homogeneous; the evolution 
of the number density field is thus governed by 
neutrally stable propagating singular modes that 
make up the continuous spectrum. Despite a finite 
relaxation time, a singular continuous spectrum 
persists for random tumblers now comprising 
stable modes that decay on a time scale of O(τ ). 
The singularity arises because any orientational 
anisotropy, regardless of angular scale, decays 
on the same time scale (τ); using K( | )p p′ = 1

4π  
in (13), τ is seen to be an infinitely degenerate 
eigenvalue. The existence of a continuous spectrum, 
and the associated non-normality, implies that 
even linearized concentration fluctuations may 
exhibit transient growth although the individual 
eigenmodes are stable;146 the transient growth, for 
sufficiently amplitudes, might eventually trigger 
non-linearity.

The analysis leading to the critical 
concentrations ((14) and (15) above) is valid 
only in the dilute limit, when each bacterium 
responds to an imposed perturbation flow 
independent of its neighbors; the imposed flow 
must itself be regarded as the consequence of 
the long-ranged dipole fields of distant bacteria. 
At the concentrations relevant to experiments 
(n ∼ 109 cells/ml; with L ≈ 10 µm, the hydrodynamic 
volume fraction nL3 ≈ O(1)), however, one expects 
hydrodynamic interactions between neighboring 
bacteria to assume significance. As for passive 
suspensions, the dilute non-interacting scenario 
must arise, at leading order, in an expansion in nL3 
in which successive terms account for interactions 
between increasing numbers of particles.58 The 
first correction is due to pair-interactions, a 
consequence of which was already examined in 
the context of straight swimmers above. One may 
quantify the effects of such interactions in terms 
of a pair distribution function that would depend 
on the microscopic swimming mechanisms and 
on the nature of the relaxation processes. For 
instance, the pair-interactions are expected to 
differ essentially in suspensions of pushers and 
pullers as evidenced in recent simulations.108 A 
calculation of the pair distribution function would 
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mirror, in a conceptual sense, similar efforts for 
passive-particle suspensions where Brownian 
motion serves as the relaxation mechanism,4,5,21 
and will thereby allow a comparison of active 
and passive systems on the same footing. At the 
present time, however, computations of the pair-
distribution function only exists for the case of 
spherical squirmers61 and flagellates90 based on the 
detailed pair-trajectories.

Although beyond the scope of the present review, 
it is worth noting that recent analyses have begun 
analyzing the dynamics of a bacterial suspension 
in a changing chemical environment. For instance, 
Subramanian et al.116 have examined the onset of 
instability in the presence of an imposed chemo-
attractant gradient that leads to an anisotropic 
base-state. Instability is now predicted to occur at 
a lower concentration with the dominant mode 
continuing to support a spatially homogeneous 
number density field. Motivated by the recent 
experiments of Goldstein (2009), wherein a 
qualitative change in the dynamics was observed, 
in a suspended film of B.subtilis, beyond a certain 
critical film thickness, Kasyap and Koch (2011) 
have examined the instability of a suspension of 
chemotactic bacteria driven by concentration 
fluctuations. In general, however, efforts that 
have attempted to combine chemotactic and 
hydrodynamic fluxes model the former response 
in a rather simplistic fashion.57,116 On the other 
hand, efforts that rigorously examine the role 
of chemotaxis in large-scale pattern formation 
typically neglect hydrodynamics;16,26 particularly, 
the flow driven by chemotactic stresses. It is clearly 
desirable to develop a consistent formulation that 
models both hydrodynamics and chemotaxis at 
the same level of detail. In this regard, we note that 
a system-level description of an E.Coli, acting as a 
bio-chemical signal processor, has been developed 
recently by Berg and co-workers.123

6.  Discrete Simulations for Collective 
Swimming

We have seen in §5 that continuum models are 
useful in understanding the behaviour of swimmer 
suspensions at length scales large compared to 
their size. However, their success depends on 
the accuracy of the relations for the fluxes of the 
number density and swimmer orientation, and 
the suspension stress. For a suspension that is 
dilute enough that the swimmers do not interact, 
the problem simplifies considerably—the results 
discussed in §5 pertain to this limit. The problem 
becomes more complex when the swimmer 
concentration increases to a level that interactions 
may not be ignored. This is indeed the case in 

experiments with bacterial suspensions, since large-
scale coherent motion is typically observed when 
the hydrodynamic volume fraction nL3 is O(1). 
For suspensions of passive particles, interactions 
become important at fairly low concentrations; 
for spherical particles, analytical expressions for 
the stress that account for interactions have been 
given, starting from Batchelor & Green,6 but are 
restricted to pair interactions and are valid only 
for low concentrations. For concentrations of 
swimmers of practical relevance, the difficulty 
of capturing the many-body hydrodynamic 
interactions and the statistics of particle config-
urations make the formulation of exact analytical 
relations onerous, if not impossible. In these 
situations, discrete simulations have the potential 
of providing useful information and insight.

Perhaps the first discrete simulation of 
collective dynamics was the study Vicsek et al.;126 
the theoretical underpinnings of this and related 
continuum models that appeared later were 
discussed briefly in §5. The authors completely 
eschewed detailed hydrodynamics, and proposed 
instead a model in which the positions of the ‘self-
driven particles’ (Vicsek et al. sought to address the 
collective motion of all motile ‘particles’, not just 
microorganisms swimming in a fluid) were updated 
according to a simple set of rules: each particle 
moves with constant speed, and its orientation at 
any time step is the average of the orientations of 
other particles in its neighbourhood in the previous 
time step, with a random noise added. This simple 
model leads to a range of behaviour, including a 
continuous transition from a disordered ‘phase’ to 
an oriented phase with increasing number density 
and/or decreasing noise. The study has led to many 
others that have used it as a model for “flocking” 
and coherence.

In the recent past, several studies have developed 
models for simulating the collective dynamics of 
swimming microorganisms, which take account 
of hydrodynamic interactions to varying degrees of 
accuracy. Figure 18 shows schematic illustrations 
of some of the models. The fundamental relations 
governing the motion of the swimmers in all the 
models are the same, namely that the net torque and 
force vanish on each swimmer. From the linearity 
of Stokes equations (1), these may be written as

A u u Bij i  ij j
j

ij j j−( ) + −( ) =∑ ω ω 0,  (16)

B u u Cij j j
j

ij ji i−( ) + −( ) =∑ ω ωj 0,  (17)

where u
j
, Ω

j
 are the linear and angular velocity 

of swimmer j, and 〈u〉
j
, 〈Ω〉 are the velocity and 
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vorticity of the fluid at the centre of the particle j. 
Here A

ij
, Bij , B

ij
 and C

ij
 are resistance tensors72 

that relate the force and torque on particle i to 
the velocity and angular velocity of particle j. 
The differences between the various models lie 
in the forms of the resistance tensors, due to the 
differences in the shape and construction of the 
swimmers, and the level at which interactions 
are computed. The method of Ramachandran 
et al.102 (fig. 18d) does not determine the swimmer 
trajectories by calculating the resistances, but 
by determining the velocities at every node (see 
below).

Hernandez-Ortiz et al.52 proposed a simple 
model for a collection of self-propelled swimmers, 
wherein each swimmer is a dumbbell comprising 
two spheres held together by a virtual rod that 
imposes the constraint of rigidity. Propulsion is 
effected by a ‘phantom’ flagellum attached to one 
of the spheres. The dumbbells interact through the 
fluid velocity disturbances they cause, which are 
determined by treating the component spheres of 
each dumbbell as point forces, an approximation 
that only holds in the limit nL3  1. They showed 
evidence of the preferential migration of swimmers 

(pushers) toward the walls, in agreement with 
earlier observations for spermatozoa,106 and 
more recent ones for E.Coli.14 Using this model, 
Hernandez-Ortiz et al.51 determined the self 
diffusivity of a collection of swimmers confined 
between two plane walls, the results of which are 
displayed in fig. 19.147 Underhill et al.125 carried out 
simulations for a periodic domain, and highlighted 
crucial differences between suspensions of puller 
and pushers; in particular, the tracer diffusivity in 
a suspension of pushers exhibits a strong system-
size dependence.

A more consistent and accurate method 
for the computation of swimmer interactions 
was introduced by Saintillan & Shelley108 who 
used slender body theory to determine the 
swimmer velocity disturbances and the motion 
of an individual swimmer in response to such 
disturbance fields. They prescribed a force 
distribution on either the fore- (puller) or aft- 
(pusher) portion of the swimmer, while allowing 
for an (unknown) tangential slip—this models 
the propulsion apparatus. A no-slip boundary 
condition was imposed on the remaining portion 
of the swimmer with the requirement that the 

Figure 18: Schematic figures depicting the various swimmer models. The first two are for slender, or rod-like, swimmers, and the next 
three are for sphere-like swimmers. In all the models, the single arrow gives the director, or the direction of swimming of a free swimmer. 
(a) Hernandez-Ortiz et al.52: the arrows indicate the force imparted by the ‘phantom flagellum’ on the upper sphere (outward for pullers, 
and inward for pushers). (b) Saintillan & Shelley108: in the orange part of the rod, a tangential force f

0
 per unit length is applied (as caused, 

for example, by undulating cilia), and a tangential slip velocity is allowed. In the the blue part, the no-slip condition is enforced. (c) The 
squirmer model of Lighthill,83 as applied by Ishikawa et al.63: The red arrows on the surface indicate the direction of the squirming velocity. 
(d) Ramachandran et al.102: The black circles are the lattice points outside the swimmer. The filled red and blue circles are the lattice points 
in the interior of the swimmer, from which momentum is externally injected and taken away, respectively. (e) Mehandia & Nott90: The dot 
inside the swimmer represents the point of action of the fixed stresslet S

0
, that is responsible for propulsion.

d e

S
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net force on the swimmer vanish, so a swimmer 
acts as a force-dipole on large length scales. The 
method exploits the framework of slender body 
theory to leading logarithmic order, and is thus 
accurate to O(log (a/L)−1), where a is the lateral 
dimension of the swimmer and L its length.148 
The formulation provides an accurate description 
provided the majority of swimmer interactions 
occur at separations much greater than a; an 
assumption that is likely to remain valid in the 
semi-dilute regime nL3  1, nL2a  1. The 
simulations showed that an initial configuration of 
aligned swimmers rapidly becomes orientationally 
disordered, thereby confirming the predictions 
of Simha & Ramaswamy112 on the instability of 
ordered active phases. For large times, an isotropic 
state results on suffciently large scales, although 
interactions between neighboring swimmers 
leads to a persistence of local orientational order. 
The authors also determined the rotary and 
translational diffusivities as a function of nL3. 
Rather surprisingly, despite the onset of large-scale 
coherent motion, the two diffusivities were found 
to be related as D

t
 = U2/(6D

r
), obtained from 

Taylor dispersion theory for orientable Brownian 
particles in an otherwise quiescent medium. 
This is perhaps an indication that orientational 
de-correlation due to the fluid velocity gradients 
dominate the dispersion behavior. Further, D

r
 was 

found to be directly proportional, and D
t
 inversely 

proportional to the swimmer concentration, a 
behavior also anticipated from pair-interactions in 
a quiescent medium; however, the numerical pre-
factors were much larger than those obtained from 
a pair-interaction calculation.115

The studies discussed above aimed to simulate 
the collective behaviour of rod-like swimmers 
such as E.Coli. A few methods have also emerged 
to simulate swimmers of other shapes. Ishikawa 
et al.63 used a particular version of the Lighthill-
Blake model to simulate suspensions of spherical 
squirmers (see §III). Assuming a surface motion 
that is axisym-metric (about the axis defining the 
direction of swimming), the boundary condition 
for the tangential surface velocity takes the 
form83:

 u
B

n n
Pn

n
θ θ θ=

+>

∞

∑ 2

10 ( )
sin (cos )′  (18)

where P
i
 is the ith Legendre polynomial, and θ is the 

polar angle measured from the swimming axis. The 
surface velocity in the radial direction is assumed to 
be zero. The solution of the Stokes equations with 
the above boundary condition yields the velocity 
and pressure fields (which we do not reproduce 
here) induced by a squirmer. Simulations have 

been carried out in the dilute regime60,61 assuming 
pair interactions, and in the concentrated regime62 
by a modification of the Stokesian dynamics 
protocol22 (a brief description of which appears 
below)—they determine the effect of squirmer 
interactions on the large-scale dynamics. While the 
method is, in principle, sound, the model used in 
the simulations terminates the series in (18) at the 
second term. For a pusher, this has the undesirable 
feature of a reversal in the surface velocity near the 
rear stagnation point for B

2
/B

1
 > 1 (the reversal, 

for a puller, first occurs at the front stagnation 
point). The results obtained, with regard to the 
diffusion and rheology of a squirmer suspension, 
appear sensitive to the above artifact. Although 
the connection between the particular spherical 
squirmer examined and a real ciliate appears to 
be a tenuous one,59 one may nevertheless use the 
squirmer model, with a varying surface velocity 
profile, to examine the effects of the varying nature 
of (near-field) hydrodynamic interactions on the 
bulk suspension characteristics. This would help 
complement continuum theories that have largely 
been based on far-field interactions.

Ramachandran et al.102 developed a model 
swimmer using the lattice-Boltzmann method 
(LBM) which has already been applied quite 
successfully to Stokesian suspensions of rigid 
passive particles.75 Moreover, LBM has been 
shown to be scalable for parallel computation, and 
is therefore an effective computational tool for 
modern computers. Ramachandran et al. effected 
self-propulsion by removing momentum from 
the fluid nodes on the aft side of the swimmer 
and adding the same amount to the nodes in the 
fore side of the swimmer (but in an asymmetric 
manner), thereby inducing a force-dipole. Llopis & 
Pagonabarraga85 used this model to simulate 
interacting swimmers; however, they choose a 
particle spanning only a few lattice points, making 
the spatial discretization very coarse. As a result, the 
method was unable to capture the hydrodynamic 
interactions at close approach. Further, they 
assumed an elastic collision between particles, 
which differs qualitatively from the dissipative 
nature of short-ranged hydrodynamic interactions 
in the inertialess limit. Choosing a suffciently fine 
grid for computation of the interactions with 
acceptable accuracy increases the computational 
cost beyond current capabilities—this appears 
to be a drawback of LBM for suspensions. 
Nevertheless, LBM is potentially a useful method 
for the simulation of microorganism suspensions, 
as it can be adapted relatively easily to include 
inertia, non-Newtonian fluid rheology and other 
complexities.
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The final method we discuss is that of 
Mehandia & Nott,90 who approximated the 
swimmer as a sphere, and effected propulsion by 
placing a force dipole displaced from its geometric 
centre.149 They modified the Stokesian Dynamics 
method, which is used widely for the simulation 
of Stokesian suspensions20,92,111 to incorporate 
self-propulsion. In the original method, the 
fluid velocity disturbance due to each particle is 
computed as a truncated multipole expansion of 
the force densities on the particle surface about its 
centre. To incorporate the off-centre stresslet in this 
formalism, it has to be translated to the geometric 
centre of the particle—this will, in principle, 
introduce all higher-order multipole contributions. 
To make a simplification that will truncate the 
multipole expansion at the dipole, Mehandia & 
Nott calculated the propulsion velocity of each 
particle as though it was produced by an external 
force; however the velocity disturbance, that would 
govern swimmer interactions, was computed as 
that of a stresslet. This approximation is equivalent 
to the use of the phantom flagellum by Hernandez-
Ortiz et al.52 At high swimmer concentrations, 
this approximation causes an error in the self-
mobility that needs further examination. On the 
other hand, the method computes the near-field 

interactions between swimmers more accurately 
than the other studies discussed above, thereby 
allowing suspension properties to be determined 
even at relatively high concentrations.

Figure 19 shows that the simulations based 
on the diverse swimming models share a 
common feature of the translational diffusivity 
D

t
 of the swimmers decreasing algebraically with 

the number density, and roughly as D
t
 ∝ n−1. 

The actual numerical values for the different 
methods differ widely, due to differences in the 
shapes of the swimmers used and some imposed 
constraints (Hernandez-Ortiz et al.52 confined 
the swimmers between plane parallel walls, 
and Mehandia & Nott90 confined their motion 
to a plane); moreover, the different simulation 
methods capture interactions to varying degrees 
of accuracy, as described above. Now, a decrease 
of D

t
 with n would, in the absence of bulk fluid 

motion, arise due to the absence of relaxation 
mechanisms. This is because pair-interactions 
act to cut-off the ballistic trajectories of straight 
swimmers, and the resulting ‘swimmer mean free 
path’ is O(1/(nL2)) for small n; the corresponding 
translational diffusivity must therefore be O(U/
(nL2)). However, the decrease with n in fig. 19 is 
over a range of concentrations that apparently lie 
in an unstable regime characterized by large-scale 
coherent fluid motion. An inverse dependence on 
n, in this regime, is by no means obvious, and one 
expects the accompanying numerical pre-factor to 
differ from that corresponding to pair-interactions 
in a stable (quiescent) state. That this is the case for 
the simulations of Saintillan and Shelley (2007) 
has already been verified.115 Simulations are, 
however, yet to reveal a transition from the stable 
to the unstable regime as a function of either 
the swimmer concentration or domain size. In 
contrast, experimental observations of swimming 
E.coli.132 on account of intrinsic relaxation 
mechanisms, show that D

t
 increases sharply with n 

before decreasing at much higher concentrations. 
Perhaps a greater deficiency of all simulations 
is that they do not account for the orientational 
relaxation naturally present in most wild-type 
Prokaryotes, namely tumbling. The run-and-
tumble dynamics commonly observed, and even 
quantified for E.coli, has been ignored in all the 
methods. A very recent study104 has attempted to 
redress this deficiency by incorporating tumbling; 
the author’s observation that the diffusivity falls by 
almost an order of magnitude with the inclusion 
of tumbling is consistent with the data of Wu 
et al.132 who found the translational diffusivities 
of smooth-swimming bacteria (that rotary diffuse 
but do not tumble) to be higher than those of 

Figure 19: The self diffusivity as a function of swimmer concentration, 
as determined by four of the simulation methods described in the text. The 
dashed line of slope −1 is given for comparison. The diffusivity is scaled with 
UL/2, where L is the largest dimension of the swimmer (the length for a rod, 
and the diameter for a sphere). All the simulations display a roughly power-
law decay of the diffusivity, but the numerical values differ by two orders of 
magnitude.
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wild-type; the increase of the diffusivity with n is, 
however, not captured.

As elaborated in §4 A, chemotaxis in bacteria 
arises from a modulation of the tumbling frequency 
so as to lengthen the runs up the gradient of a 
chemoattractant. Reddy104 incorporated such a 
modulation using the data of Brown & Berg27 on the 
tumbling statistics E.coli, and conducted dynamic 
simulations over a range of swimmer concentrations. 
It was observed that the chemotactic drift decreases 
with increasing swimmer concentration—as 
the swimmer interactions in the simulations are 
purely hydrodynamic, this result implies that the 
orientation dispersion caused by hydrodynamic 
interactions attenuates the chemo-tactic response 
of individual cells. On the other hand, as shown by 
Subramanian et al.,116 the large-scale flow driven by 
chemotactic stresses may reinforce the instability 
predicted in §5 for a homogeneous chemical 
environment; this might manifest as an increase 
in the swimmer velocity at higher (supercritical) 
concentrations. To our knowledge, experimental 
data on the chemotactic drift as a function of 
bacterial concentration has not been reported.

7. Summary and Conclusion
Given the vigorous research activity in this field 
and many ongoing developments, this review 
necessarily had to concentrate on a few themes. 
Our main intention is to give a flavour of the fluid 
dynamics of swimming microorganisms and living 
cells, and convey the important role that the fluid 
plays both in the motion of individual swimmers 
and in their collective motion as a group.

The first part of the review concentrated on the 
mechanics of individual swimmers. The discussion 
was limited to Stokesian swimmers, for which the 
Reynolds number based on the size and speed of 
the swimmer is vanishingly small; the non-trivial 
effects of fluid inertia were briefly mentioned at 
the end of §2. The constraints imposed by low 
Re were explained in §2, the primary one being 
that the swimming stroke be non-reciprocating; 
a hypothetical low-Re scallop was used as an 
illustrative example of reciprocating motion that 
does not result in swimming. Two simple but 
artificial swimming protocols, namely the Purcell 
and trumbbell swimmers, composed of straight 
links that either rotate about hinges or undergo 
sequential changes in length, were introduced as 
examples of non-reciprocating stroke kinematics. 
The moving appendages that provide thrust in real-
life swimmers are neither straight nor rigid, but are 
flexible elastic filaments, flagella and cilia being the 
most widely prevalent. The details of the structure 
and kinematics of flagella and cilia, and the manner 

in which they generate thrust, were discussed in §3. 
The fluid motion caused by a swimmer, and its effect 
on the orientations of other neighboring swimmers 
were discussed, with a view of their application 
to discrete particle simulations of swimmer 
suspensions. Section 3 ended with a discussion on 
the run-and-tumble dynamics of prokaryotes, and 
how a modulation of the tumbling statistics, in a 
chemically heterogeneous environment, leads to 
the phenomenon of chemotaxis.

The latter part of the review focused on the 
large-scale dynamics in swimmer suspensions. 
Section 5 discussed continuum models in which 
conservation laws are written for the local averages 
of the orientation and number density of the 
swimmers, and the momentum density of the 
suspension. The averaged quantities that appear 
in the conservation equations may in turn be 
determined from an underlying kinetic equation 
for the probability density in position-orientation 
space. Two physically distinct applications of such 
models were elaborated upon. The first concerned 
the phenomenon of bioconvection that refers to 
the intricate patterns that form in shallow layers 
of suspensions of motile microorganisms. The 
continuum models show that these patterns arise 
from large-scale instabilities driven by a coupling 
between tactic responses (mainly a combination of 
gravitaxis and gyrotaxis) and the density difference 
between the swimmers and the suspending fluid. 
The theories offer a good qualitative explanation 
of the observed phenomena, but the predictions 
of the dominant length scales from a linearized 
analysis differ significantly from observations. The 
deviations may be due to non-linear effects, or more 
complicating physical factors in the experiments 
such as a gradient in the oxygen concentration. 
The second application of continuum models 
addressed more recent observations of velocity 
fluctuations and coherent motion on smaller 
scales, in experiments and dynamic simulations 
of (neutrally buoyant) bacterial suspensions. 
These instabilities were shown to result from 
a coupling between the orientation dynamics 
of individual rod-like swimmers in response 
to an imposed perturbation, and the resulting 
reinforcement of the perturbation. Crucially, the 
theoretical prediction of an instability applies only 
to a suspension of pushers, and for concentrations 
above a critical value determined by intrinsic 
relaxation mechanisms.

Section 6 discussed discrete models developed 
for the study of suspensions of swimmers. Each 
swimmer is tracked as a function of time, and 
bulk properties determined by appropriate 
averaging. The equations governing the motion 
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of a neutrally buoyant swimmer are that the net 
force force and torque are zero. The physical 
models and computational methods used for 
discrete simulations are diverse. The simplest 
completely disregards hydrodynamics and instead 
uses simple rules for the evolution of the swimmer 
trajectories,126 motivated by pedagogical models 
originally used to understand phase transitions. A 
variety of methods have since been used that build 
in more realistic models for propulsion, while also 
accounting, to varying degrees of accuracy, for 
hydrodynamic interactions between swimmers 
in a fluid medium.52,62,63,90,102,108 Some of these are 
limited to far-field hydrodynamic interactions 
between rod-like swimmers, and thereby to low 
concentrations.52,125 Others have used slender 
body theory to include interactions between such 
swimmers on length scales of the order of the 
swimmer length, thereby extending the range of 
validity possibly to concentrations in the semi-
dilute regime.108 Other methods62,90,102 account for 
detailed hydrodynamic interactions in suspensions 
of spherical swimmers, at distances comparable 
to the swimmer size, but they suffer from other 
limitations. The main applications and results of 
the discrete models were discussed. The simulations 
of suspensions of rod-like swimmers52,108,125 
qualitatively reproduce predictions of the 
continuum models, such as an instability of an 
initially aligned swimmer suspension, and the 
emergence of large-scale coherent motion for 
pushers from an initially isotropic state. Only one 
very recent study104 has incorporated the effects 
of tumbling and its chemotactic modulation on 
swimmer dynamics, but the authors have not 
studied large enough systems to enable meaningful 
comparisons with predictions of continuum 
theories or experiments.

Perhaps the most important aspect of the 
microorganism behaviour that this review leaves 
out is their social behaviour resulting from chemical 
sensing, which is responsible for phenomena such 
as quorum sensing, the formation of biofilms, and 
cell differentiation in colonies. Even relatively small 
and simple bacteria like E.coli have an elaborate 
array of chemoreceptors on the membranes that 
bind to some sugars, amino acids and a few other 
small molecules. By this mechanism, they seem to 
sense their population density in the suspension—
the sensing of sugars is relevant for chemotaxis 
(see boxed text in page 20), and the sensing 
of endogenously produced molecules called 
autoinducers, is responsible for social behaviour. 
Large strides have been made in understanding 
the biochemical pathways that control the sensing 
and production of the autoinducers, but much 

remains to be done in understanding the kinetics 
of the reactions and their relation to interactions. 
The coupling of the kinetics of these biochemical 
processes with the dynamics of motility may help 
us better understand social behaviour of bacteria.

Received 8 August 2011.
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