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Abstract 

A Monte Carlo-type srocha\tic alpunthm lo]. adze detection is presented Ir takes a suirable monotone decreasing 
functmn ot the nor") ot g~aihenr of a low-pa\\ filtered muge as 'cost' and qeekc thc 'valleys' 01 tlie aswciated land- 
scope Smulalio~i s i u d m  and ntalhrmalical annlysls are przsenred. 

1. Introduction 

Computational Vision is often classified into two stages - low level vision and high-level vi- 
slon. Low-level vision techniques abstract features or properties from a digital image chat may 
be used as an input Lo a higher-end system. The main lequirements of low-level visual process- 
ing is that it be uniformly applicable to as large a class or images as possible. One of the impor- 
tant tasks of a low-level visual processing system is edge detection. 

Ideally an edge detector should extract features that facilitate detection of object boundaries 
and figure-ground separation. Design of all edge detectors is based on the fact that object 
boundaries show op as sharp changes in the 2D intensity function represented by the image. 
Most edge detectors attempt to find object boundaries through detection of maxima in the gra- 
dient of Lhe intensity function (or detection of zero-crossings in the second derivative). How- 
ever, intensity changes in an image may occur due to a variety of other canses such as shadows, 
noisc, Lexture etc thus giving rise to spurious boundaries. One way to avoid spurious edges is to 
imposc additional constraints, corresponding to regularization. Most techniques of regulariza- 
tion involve either approximating the intensity function by polynomials, splines or other piece- 
wise smooth  function^"^ or optimising an energy functional corisistiug of suitable regularizing 
tcr,ns""." In addition to gradient of the intensity. The latter mcthod is attractive because it allows 
an ordering among solutions a id  several constraints may be imposed simultaneously. Unforlu- 
nately, the energy functionals turn out to be usually highly non-convex and requi~e computa- 
tio~ially expensive methods such as Simulated Annealing for good pedonuancz. 

In this paper, we propose an algorithm which has far less computational complexity in com- 
parison to stochastic techniques snch as S~mulated Annealing. This has been achieved through 
defining a pixel-based cost rather than a configuration-based cost. The solntion is then not a 
single point in the configuration space but a set of points on the pixel space which have a rela- 
tively low value of the cost function. This solution set is tracked by means of a dynamical sys- 
tem moving over the pixel may. This approach combines both local and global characteristics. 
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?be local nature of computations reduces computatio~~al complexity while the global tracking 
pvovides immunity against noise. 

We model edges as points corresponding to a relatively high value of IV$ where E is the im- 
age function I(x, y) filtered with a 2-0 Gaussian mask G(x,y). Filtering is donc to partially corn- 
pcnsate for noise-induced rapid spatial variation of intensities, though this also results in the 
loss of some edges. Edge points, however, need not correspond e~ther to local or global maxima 
of lVj?, since there may be slight variations in the value of lVj2 along the edge, though they are 
still relatively high w.r.t. points off the edge. Hence t11is is not a conventional optimisatio~~ 
prohlen~ and standard gmdient techniques cannot bc applred. 

The algorithm presented here tracks e d ~ c  points by meam of a stochastic process which 
spends a relatively large fraction of time at points corresponding to higher valocs of l~fl'. We 
also propose an equivalent parallel algorithm wh~ch overcomes some of the limitations of the 
sequential algorithm. 

2. The sequential algorithm 

A time-homogeneour Markov chain X(t), t 2 0 1s defined on the Ytate space of pixel array 
S = ( ( i ,  7) : 1 < i 5 N, 1 5 j < N } .  A nelghhourhood structure N(.)  is d e h e d  on the state space o f  
pixel array S such lhdt the set of neighbours N(i, j )  01 pixzl ( i ,  j )  is L11e 3 x 3 neighbourhood 
( ( m ,  n)I((m - i)' + ( n  - j)'))'" < 2, (m, 1 2 )  # (i, j ) ]  

Thus a typical ncighbourhood looks as in Figure 1 wherc we have assumed that the pixel 
lattice is ernbeddcd on a toms in such a way that the top and bottom edges as well as the right 
and left edges are adjacent, while prererving the orientations. 

g : S x S + [OJ] is a selectiou PI-ohability function satislying 

1. &m,7zlE s g[(i , j ) ,  (nz, n) l= 1 

gL.1 is constrained to be syrmnelric, i.e., g[(i, j) ,  (m, n)]  = g[(m, n ) ,  ( i , j ) l .  

The one-step transition probability pl.,.] of the Markov proccss X(i) is given by 

P [ ( ~ , I ) ,  (m,  4 1  =PIX@+ 1) = (m,  n) I X(r) - ( i ,  j ) ]  

= gKi,j), (m, n)l expl-(dm, n)  - d i ,  j ) )+/T) 

 id (i,j)l = 1 - &,,o. N,,,,, pKi, j), (m, n)l 
* * * 

FIG. 1. . point under consideradon *: nctghbuuung poinu. 
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Here expi- (c(m, n) - c(i, j))'lT) is the probability that the neighbouring state (m, n) will be 
accepted conditioned on its selection and c(i, j )  is the cost associated with state ( i , ~ )  where c(i, 
j) =-lvf12(i, j). Thus, points corresponding to relatively high values of the gradient function 
correspond to relatively low cost values. It is clear from the graph of the Markov chain that for 
every pair of stales (i, j), (p, q) E S, %jd,  (4, jl) ,... Xi,,, .j,J E S, (in, j ~ )  = (i, j); (i,i, j,,) = @, q) 
such that p[(4, j~) , ( i i  + i, JL ,)I > 0, k = 0, 1, ..., n - 1. Hence the chain consists of a single com- 
municating class. Moreover, there is at least one stale (i, jJ E S (e.g. the point of minimum value 
of the cost function) such that p[(i, j), (i, j)] > 0. Hence the chain is aperiodic. 

X(t )  is thus an aperiodic, irreducible Markov chain. The unique stationaty distribution n(.) 
where 

n(i) = lim Pr{X(t) = i] 
I+- 

of such a chain exists' and can be obtained from the global balance equation 

A sufficient condition for (1) is the detailed balance equation which implies the global balance 
equation. From the detailed balance 

and the assumption that g[.,.] is symmetric, 

where 

It can be seen that at a given temperature T, 

if c(i, j) < c(m, n). Since the limiting distribution z(.) also gives the long-run mean fraction of 
time that the process X(t) spends in a state, 

I 
n(i, j) = -x I { x ( ~ )  = (i, j)] 

T 1-0 

for large T. Thus, a higher value of n(.) for a state implies that the state is visited more often 
than other states by the process. 

Thus the algorithm sequentially "tracks" the edges independent of the starting point. 
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2.1. Effect of Ternperolure 

Let TI, T, he any two tcmpcraturcs, TI > T:. Thc stationzry disllibution at ?', and T? are 
given by 

and 

respectively, where Z(T,) is the normalising factor. Let (i, j] ,  (m. 17)  he such that i ( i .  / )  < c(m, n). 
Then 

Thus, a1 lower temperatures, the slationary dlsClibution has relatively higher peaks a1 points of 
lower cost. Hence the process will spend less time at points of relatively high cost (.; non-edge 
points) a1 lower temperatures. However, since the probability or an uphill transition being ac- 
cepted is low at lower temperatures, the chain will require a longer time to converge to its equ-  
librium behwiour. 

A1 higher temperalures, the chain moves faster over the state space, but thc relative differ- 
ence between the probability assigned by the invaiant measures to points of higher and lower 
costs (= non-edge points and edge points ) is lower. Hence a trade-off between the two is re- 
quired. 

I1 has been shown that iic(i) < c(j) iu~d TI >T2, 

At T= -, x(i) = xfi) = 4 ' d l ,  j.. For any finite T < m, points of "relat~vely lower cosl" will 

have a value of n(.) > dr and points of "relatively htgher cost" a valuc of n ( ) < i  in order to 
Y~ 

maintain a total probability of 1. Thus is a reasonable threshold for identification of points 

of "lelatively low cost". In terms of the count at a point, the thesl~old equals [$length of the 

run of the Markov chain]. 
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2.3. Discussion 

In order to enhance the performance of the edge detector, some modifications were made: 

I. The cost as defined is unbounded and hence~esults in thick edges2. Any linear scaling of 
the cost function is equivalent to a mere change of temperature. However, a non-linear 
scaling of the cost function which emphasizes large differences of cost while suppress- 
ing small differences smooths out smaller local minima in the vicinity of the larger 
midima. The function lVj'i2 was linearly scaled between 0 and a value close to n'12 and 
its tangent was taken as the cost function. This value will henceforth be referred to as 
cost[.]. 

2. g[.,.] was formulated such that the neighbours were not chosen with equal probability, 
hut neighbours of lower cost were given a higher probability of selection. Maximum 
probahility was assigned to the direction of minimum cost. The minimum probability 
was ass~gned to the pixel in the direction opposite to this, and intermediate values were 
assigned to other directions. The actual values chosen were as in Figure 2 where @, q) is 
such that cost@, q) = rniq,,,, ,,, . N(,, ,, cost(m, n). Moreover, the neighhourhood structure 
was not embedded on a toms, hut on a rectangular grid so that the cardinality of the 
neighbourhood is 3 for a comer point and 5 for a non-comer edge point. In such a case, 
the selection probabilities of the points deleted from the neighbourhood are added lo that 
of the (edge or comer) point (m,n), which is therefore selected with a non-zero prohahil- 
ity. This violates the symmetry condition of g[.] imposed for theoretical analysis; how- 
ever, this preferential selection of neighbours aids movement along the edge rather than 
either movement away from it or a slow diffusion along it. 

3. A limit on the count at a point is set and if this count is exceeded, the point is marked as 
an inhibited point. If the process goes to an inhibited point, it is perturbed to one of its 
neighbours. This is done so that the process does not detect only a part of an edge due to 
the presence of a non-zero gradient along the edge. The count at which points are inhib- 
ited is determined as a percentage of the total number of iterations. 

4. Since the starting point is chosen arbitrarily, this point might well have been chosen very 
far from an edge contour and a large number of iterations are required to reach the edge 
contour. Also, only the edges in the vicinity of the stahng point may be detected in a 
single run of the algorithm. This can he rectified by starting the process simultaneously 
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at more than one point. T h ~ s  issue has been discussed again in the parallel algorithm in 
the next section. 

3. A parallel algorithm 

A better performance than that of the sequential algorithm is achieved by an asymptotically 
equivalent parallel algorithm wherein we start one such chain at each pixel. Two or more chains 
coalesce when they meet (i.e., when they make transition into the same pixel at some instant) 
and from then on move together. 

We describe this algorithm by adopting the following notation. 

Let M = N~ where N' = IS1 (=number of pixels) and let 5,) = s*' (= S x S x . 2  S, M times). 
Thus, a typical point in S, is x = [ X I ,  x2 ,..., xM], x ,  E S for all i. Let h. pz ,..., phi) be an enu- 
meration of pixels. Let X(t) = [Xl(t), X2(t), ..., XM(t)], t = 0, I,... be an S,,-valued process de- 
scribed as foliows: 

X,(O) = p ,  for 1 5  i < M. (Thus, the i'" component of X(.) 1s an S-valued process starting at 
p,). At each t 2 0, the following occurs. 

At each pixel p,, a neighbour pJ is selected from N @ , )  according to prescribed selection 
probabilities.(We use the uniform probability for this selection.This satisfies the detailed bal- 
ance at all points except the boundary points. We neglect the boundary effects caused by the 
imbalance.) 

Next, pJ is "accepted" with probability exp{-(cb,) - c@,))+/T}. If pJ is "accepted", the 
processes X&), 1 5 k S M such that X&) =p,, move to j?, at time t + 1. If not, they remain at p,. 
The selection and acceptance at distinct pixels is performed in a statistically independent man- 
ner.Thus, for a fixed i, {X,(t)} is a copy of the process defining the serial version described ear- 
lier, stating at p,, and therefore exhibits the same asymptotic behaviour. {X,(.)}, howeverwe 
not independent. In fact, they are highly correlated as will become clear later. The following 
theorem suggests that the intuition behind the serial version which justifies its use for edge- 
detection, carries over in toto to the parallel version. 

Let N,(t) = cE,I{x,(~) = p,},] 

Clearly, N,(O) = 1 for all i. 

Z i S M. Thus, N,(t) = number of processes at pixel p, at time t. 

Original image 

FIG. 3. Train image. 

Sequential Algorithm Parallel Algorithm 
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Original image Sequential Algorithm 

PIG 4. Tcun image corrupted wNh n o w  (0 = 20) 

Parallel Algorithm 

Theorem 1: a, = lim, ,- E[N,Im exists for all i and is proportional to XI$,). 

Proof 

lim,, a EtN0)I 

=rim,, ,=E[C:~;, I { X ,  ( t )  = p,}] 

= l i m l ,  p{Xh ( t )  = p t }  

= C E ,  lim,,, p{X,(t) = P,} 

= C L  

since each Xh(f) has the same asymptotic behaviour as in the serial version. 

a, = MNP,), 

i.e., a, is proportional to rr(p,) 

The following theorem shows that the serial and the parallel versions are asymptotically 
equivalent. 

,. .- , 

Original image Sequential Algorithm Parallel Algorithm 

Fro 5. U n ~ x  image. 
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Original image Sequential Algorithm Parallel Algorithm 

FIG. 6. Unix mmge cormpled w ~ t h  n o m  (o =20) 

Let 3; c Sp be the set { x  = 1x1 ,..., XM] E S,, I x, = X I A ~ }  

Theorem 2: 1. s,: is an aperiodic communicnting class of states. 

2. All states in s,,\s~ are transient. 

Proof 

1. From the explicit construction, it is clear that if X, (td = X I  (to) at some random Ill de- 
pending on j, it remains so for all t t to. Thus S; is closed. Once in s,:, all components 

of X(.) move together as a block and exhibit the same dynamics as that of the send ver- 
sion. Hence 1 follows. 

2. For any x E s,\s~, it is clear that the probability of X(.) hitting s!, in finite time after t, 

conditioned on X(t) = x, is strictly positive. Hence the second claim. 

Remark 1: Theorem 2 automatically implies Theorem 1. We hove established the latter sepa- 
rately because the convergence of distributions therein seems to occur much faster (Le.,  within 
a typical run of the algorithm) than the coalescing of processes implicit in the fonner. In fact, 

Original image Sequential Algorithm Parallel Algorithm 

FIG. 7 Peppers image. 



Parallel Algonthin 

~ i v e n  that the parullel version ernploy sirnpk illreslzulding fur idenfifiing e d ~ e  points, it i~ nof 
desimble to wuit tdl ullprocesses coalesce. 

Following the same argument as in the sequential version, poinls of "relalively highcr cost" 
have an expecled value ol. count a(i) < N'+. Hence, the heshold on alpha is La(i)l= 0. 

The paallel algorilhm has the following advantages over the sequential algonthm: 

1. No ad hoc modifications are required to take care of initial conditions or non-zero gradi- 
cnt along the edge ( since (he pwallel algori,hn starts a sequential Markov chain at cvcry 
pixel). 

2. No explicit counl is required to be maintained w.r.t. time. 

3. The threshold on the number of processes has been set to 0. This simplifies the threshold- 
ing operation in the neural network implementation, to be discussed in the next section. 

OnghaJ  image 

Ro. 9 lnsrilute imagc. 

Parallel Algorithm 
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Original image Sequei~tial Algorithm Parallel Algorithm 

Fir. LO. Tnrtliute image corrupted w ~ d i  n o m  (o = 20). 

4. A Neural Network Implementation 

The dynamic process described in thc earher sections has been cast here In the framework of a 
neural network. The network consists of three layers - an input layer u(. )  an output layer w(.) 
and an intermediate hidden layer v(.). Each layer consists of an m a y  oi"N x N nodes. 

The input layer contains the image data, or equivalently, the cost function values. The val- 
ues of the nodes arc given by 

The inteimediate layer contains the values of the number of PI-ocesses N,(t) at site i as de- 
fined in the parallel algorithm 

Each oode (i, j) in the intermediate layer is connected to all nodes in its 3 x 3 ncighbourhood so 
that the configuration of the network evolves as a result of local interactions. The nodes of the 
mtermediate layer are updated in the following manner: 

The value v"' "(i, j )  of node (i, j) at instant ( t  + 1) is given by 

where I{(m, n) -t (i, j ) )  is the indicator of the event that a transition has occurred from node 
(in, n) to node (i, j )  at the instant of evaluation, i.e., I((m,  n) + (i, j ) }  is 1 if this transition oc- 
curs and 0 otherwise. 

The second term on the R.H.S. of Equation 8 corresponds to the processes that enter the 
node in consideration and the third term correspondc to the event that the processes currently at 
the node leave the node. 



EDGE DETECTION THROUGH A TIME-HOMOGENEOUS MARKOV CHAIN 41 

Original image 
FG 11. Reaulta on R E E  glrl Imilge. 

Sequential Algorithm Parallel Algorithm 

v" + "(i, j )  is thus a random variable with conditional Expectation 

where PI.,.] is the transition probability as defined earlier 

By Theorem 1, the expected values of v"'(i, j )  converge to a value proportional to the invari- 
ant measure of (i, j]. 

The output layer contains the edge image, thresholded as before. 

1 if v(i, j )  > 0 
w(i, j )  = 

0 otherwise 

5. Results 

The images were filtered initially with a 5 x 5 zero-mean Gaussian mask of variance $ = 1.0. 
The parameters chosen for the algorithms on 128 x 128 images were as follows: 

0 Sequential Algorithm: 
1. Temperature = 0.25 
2. Length of the run of the homogeneous Markov c h a i o n s  
3. Threshold = 150. 

* Parallel Algorithm : 

1. Temperature = 0.25 

2. Number of passes =Length of the homogeneous chain/ Number of pixels(iage 
size) = 150. 

3. Threshold = 0. 
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-- 

Onginal Image Sequential Algorithm Parallel Algontlm 

FIG 12 Girl image camptcd with nome of a = 10. 

We note that the results obtained by the stochastic algorithm are com~arahle to thosc rc- 
ported in ~ilerature~.~ usms simulated annealing tlnder conditions of no noisc. Moreover, no 
false edges are repo~ted on smoothly shaded surfaces. Thia is due to the Fact Lhal sn~oolhiy 
shaded areas correspond to rclalively smaller local minima which are not detected by our algo- 
rithm. 

Ln tenns of time taken, thc typical time taken 101- a 128 x 128 image is approximately 6 
minutes of CPU time on a CD-IRIS workstation. This drastic reduction of time is due to the fact 
that the cardinality of the solutioir space is much less in case of (hc algorithms presented here 
(from 2'" for sirnulaled annealing to IS1 for our stochastic algorithm, where S is the number of 
pixels in the image may). 

The parallel algorithm offers a furthcr rediiction in compulationd time. Moreover, since 
each pass of the algorithm operates only on pixels having a non-zero value, even a sequential 
implementation of the parallel algorithm is much laster (typically 2-3 minutes on the samc 
computing platform) than the sequential algorithm. 

The algorithms were also vun on 8-bit images corrupted with white Gaussian noise. The 
strength of these algorithms is that they are robust and perform well even in the presence of 
noise. The algorithms wcre mn on 2-I3 images corrupted with white Gaussian noise of standard 
deviation 0 = 10. The values of the parameters chosen were the same as before. Figure 3-10 
show the results of both the scquential and the parallel algorithm on vaious real-world images. 
In Figure 11 and Figure 12, the results of the sequential and parallel algorithms are presented 
along with acornparison by the Cwny edge detector. The iniplementalion of the Canny detector 
used was a matlab implementation by Prof. Perona of Calteeh. 
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