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Abstract

A Monte Carlo-type stochastic algorithm for edge detectuion is presented. Tt takes a suiiable monotone decreasing
function of the norm of gradient of a Tow-puss filtered tmage as ‘cost” and seeks the ‘valleys” of the associated land-
scape Stmulalion studies and mathematical analysis are presented.

1. Introduction

Computational Vision is often classified into two stages — low level vision and high-level vi-
sion. Low-level vision techniques abstract features or properties from a digital image that may
be used as an input (0 a higher-end system. The main requirements of low-level visual process-
ing is that it be uniformly applicable to as large a class of images as possible. One of the impor-
tant tasks of a low-level visual processing system is edge detection.

Ideally an edge detector should extract features that facilitate detection of object boundaries
and figure-ground separation. Design of all edge detectors is based on the fact that object
boundaries show up as sharp changes in the 2D intensity function represented by the image.
Most edge detectors attempt to find object boundaries through detection of maxima in the gra-
dient of the intensity function (or detection of zero-crossings in the second derivative). How-
ever, intensity changes in an image may occur due to a variety of other causes such as shadows,
noisc, texture erc thus giving rise to spurious boundaries. One way to avoid spurious edges is to
imposc additional constraints, corresponding to regularization. Most techniques of regulariza-
tion involve either approximating the intensity function by polynomials, splines or other piece-
wise smooth functions™ or optimising an energy functional consisting of suitable regularizing
terms**” in addition to gradient of the intensity. The latter mcthod is attractive because it allows
an ordering among solutions and several constraints may be imposed simultaneously. Unfortu-
nately, the energy functionals turn out to be usually highly non-convex and require computa-
tionally expensive methods such as Simulated Annealing for good perfornmance.

In this paper, we propose an algorithm which has far less computational complexity in com-
parison to stochastic techniques such as Simulated Annealing. This has been achieved through
defining a pixel-based cost rather than a configuration-based cost. The solution is then not a
single point in the configuration space but a set of points on the pixel space which have a rela-
tively low value of the cost function. This solution set is tracked by means of a dynamical sys-
tem moving over the pixel array. This approach combines both local and global characteristics.
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The local nature of computations reduces computational complexity while the global tracking
provides immunity against noise.

We model edges as points corresponding to a relatively high value of IVA* where f is the im-
age tunction I(x, y) filtered with a 2-D Gaussian mask G(x,y). Filtering is done to partially com-
pensate for noise-induced rapid spatial variation of intensities, though this also results in the
loss of some edges. Edge points, however, need not correspond either to local or global maxima
of IVf, since there may be slight variations in the value of VA along the edge, though they are
still relatively high w.r.t. points off the edge. Hence this is not a conventional optimisation
problem and standard gradient techniques cannot be applied.

The algorithm presented here tracks edge points by means of a stochastic process which
spends a relatively large fraction of time at points corresponding to higher values of IAfF. We
also propose an equivalent parallel algorithm which overcomes some of the limitations of the
sequential algorithm.

2. The sequentiai aigorithm

A time-homogeneous Markov chain X(#), t= 0 is defined on the state space of pixel array
S={():1<i<N, | £j< N} A neighbourhood structure N(.) is defined on the state space of
pixel array S such that the set of neighbours N(i, j) of pixel (4, j) is the 3 x 3 neighbourhood
{(m, W — ) + = NP L2, (m, m)# (N}

Thus a typical neighbourhood looks as in Figure 1 where we have assumed that the pixel
lattice is embedded on a torus in such a way that the top and bottom edges as well as the right
and left edges are adjacent, while preserving the orientations.

g:Sx 8 —[0,1] is a selection probability function satisfying
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Here exp{~ (c(m, n) — c(i, ))"/T} is the probability that the neighbouring state (m, ») will be
accepted conditioned on its selection and c(i, /) is the cost associated with state (j, ;) where c(i,
b =_|Vﬁ2(z’, /). Thus, points corresponding to relatively high values of the gradient function
correspond to relatively low cost values. It is clear from the graph of the Markov chain that for
every pair of states (1, /), 0, @) € S, I, jo), (i1, 7)eee (s Ju) € S, Goy jo) = G s G Jid = (s @)
such that p[Ge, 7Gx+ 1 Jew 191> 0, k=0, 1,..., n— 1. Hence the chain consists of a single com-
municating class. Moreover, there is at least one state (Z, j) € S (e.g. the point of minimum value
of the cost function) such that p{(Z, j), (i, /] > 0. Hence the chain is aperiodic.

X(p) is thus an aperiodic, irreducible Markov chain. The unique stationary distribution 7(.)
where

7(i) = lim Pr{X(s) = i}

f=yoa

of such a chain exists' and can be obtained from the global balance equation

¥ . )e[ G 1), (mom)] = (. ) &)
(013
A sufficient condition for (1) is the detailed balance equation which implies the global balance
equation. From the detailed balance
7, ) pl(E, (m, )] = (m, n) pl(m, 1), (i, H] @
and the assumption that g[...] is symmetric,
—c@ )T
(i, ) = —=— 3
(%)) ZT) (©)

where

ZMy= Y, et

(m,n)eS
It can be seen that at a given temperature T,
2@f) _ Heup-ommhr g
7(m,n)

if ¢(i, j) < ¢(m, n). Since the limiting distribution 7t(.) also gives the long-run mean fraction of
time that the process X(¢) spends in a state,

T
7(6.0) = 2 HX©)=(.1)}
1=0

for large T. Thus, a higher value of ©i(.) for a state implies that the state is visited more often
than other states by the process.

Thus the algorithm sequentially ‘‘tracks’” the edges independent of the starting point.



34 UMA S. RANJAN, e/ al.

2.1. Effect of Temperature

Let Ty, T, be any two tempcratures, 7} > T». The stationary distribution at T and 7, are
given by

el
LT == 4
=i, N1 Z(Tl) @
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ali T, = &)
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respectively, where Z(T,) is the normalising factor. Let (7, /), (m, i) be such that c(¢, j) < c(m, n).
Then .
et )—elmm)pt
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Thus, ai lower temperatures, the stationary distribution has relatively higher peaks at points of
lower cost. Hence the process will spend less time at points of relatively high cost (= non-edge
points) at lower temperatures. However, since the probability of an uphill transition being ac-
cepted is low at lower temperatures, the chain will require a longer time to converge to its equi-
librium behaviour.

Al higher temperatures, the chain moves faster over the state space, but the relative differ-
ence between the probability assigned by the invariant measures to points of higher and lower
costs (= non-edge points and edge points ) is lower. Hence a trade-off between the two is re-
quired.

2.2. Determination of Threshold
It has been shown that if ¢(i) < ¢(j) and T} >T5,

27 < 2,

=) =)
At T=eo, (i) =1(j) = TVL Vi, j.. For any finite T < co, poinis of “‘relatively lower cost” will
have a value of ()2 ﬁll' and points of “‘relatively higher cost’” a value of ”(')S# in order to
maintain a total probability of 1. Thus 1% is a reasonable threshold for identification of points
of “‘relatively low cost’”. In terms of the count at a point, the threshold equals [ﬁ,lcngth of the
run of the Markov chain].
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2.3. Discussion
In order to enhance the performance of the edge detector, some modifications were made:

1. The cost as defined is unbounded and hence,results in thick edges”. Any linear scaling of
the cost function is equivalent to a mere change of temperature. However, a non-linear
scaling of the cost function which emphasizes large differences of cost while suppress-
ing small differences smooths out smaller local minima in the vicinity of the larger
minima. The function lVfi2 was linearly scaled between 0 and a value close to /2 and
its tangent was taken as the cost function. This value will henceforth be referred to as
cost[.].

2. gl...] was formulated such that the neighbours were not chosen with equal probability,
but neighbours of lower cost were given a higher probability of selection. Maximum
probability was assigned to the direction of minimum cost. The minimum probability
was assigned to the pixel in the direction opposite to this, and intermediate values were
assigned to other directions. The actual values chosen were as in Figure 2 where (p, ¢) is
such that cost(p, q) = mif, u e ny, » cost(m, n). Moreover, the neighbourhood structure
was not embedded on a torus, but on a rectangular grid so that the cardinality of the
neighbourhood is 3 for a comer point and 5 for a non-corner edge point. In such a case,
the selection probabilities of the points deleted from the neighbourhood are added to that
of the (edge or corner) point (m,n), which is therefore selected with a non-zero probabil-
ity. This violates the symmetry condition of g[.] imposed for theoretical analysis; how-
ever, this preferential selection of neighbours aids movement along the edge rather than
either movement away from it or a slow diffusion along it.

3. A limit on the count at a point is set and if this count is exceeded, the point is marked as
an inhibited point. If the process goes to an inhibited point, it is perturbed to one of its
neighbours. This is done so that the process does not detect only a part of an edge due fo
the presence of a non-zero gradient along the edge. The count at which points are inhib-
ited is determined as a percentage of the total number of iterations.

4. Since the starting point is chosen arbitrarily, this point might well have been chosen very
far from an edge contour and a large number of iterations are required to reach the edge
contour. Also, only the edges in the vicinity of the starting point may be detected in a
single run of the algorithm, This can be rectified by starting the process simultaneously
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Fia. 2. Selection probability diagram.
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at more than one point. This issue has been discussed again in the parallel algorithni in
the next section.

3. A parallel algorithm

A better performance than that of the sequential algorithm is achieved by an asymptotically
equivalent parallel algorithm wherein we start one such chain at each pixel. Two or more chains
coalesce when they meet (i.e., when they make transition into the same pixel at some instant)
and from then on move together.

We describe this algorithm by adopting the following notation.

Let M =N? where N*=1S! (= number of pixels) and let S, =S" (=S X §X..X S, M times).
Thus, a typical point in S, is x =[x}, Xg,..., X}, x, € S for all i. Let {py, pa...., par} be an env-
meration of pixels. Let X(f) = [X((#), Xa(t),.... Xu(@®], £=0, 1,... be an §,-valued process de-
scribed as follows:

X0)=p, for 1 i< M. (Thus, the i component of X(.) is an S-valued process starting at
o). Ateach ¢ 2 0, the following occurs.

At each pixel p,, a neighbour p, is selected from N(p,) according to prescribed selection
probabilities.(We use the uniform probability for this selection. This satisfies the detailed bal-
ance at all points except the boundary points. We neglect the boundary effects caused by the
imbalance.)

Next, p, is “‘accepted’’ with probability exp{—(c(p,) — c(p.))"/T}. If p, is *‘accepted”’, the
processes Xy(1), 1 <k <M such that X(f) = p,, move 1o p, at time ¢+ 1. If not, they remain at p,.
The selection and acceptance at distinct pixels is performed in a statistically independent man-
ner.Thus, for a fixed i, {X,(f)} is a copy of the process defining the serial version described ear-
lier, starting at p,, and therefore exhibits the same asymptotic behaviour. {X,(.}}, however,are
not independent. In fact, they are highly correlated as will become clear later. The following
theorem suggests that the intuition behind the serial version which justifies its use for edge-
detection, carries over in foto to the parallel version.

Let N ()= Eﬁll{Xk (1) = p,},1 <i< M. Thus, N{f) = number of processes at pixel p, at time .
Clearly, N(0) =1 forall i.

Original image Sequential Algorithm

FiG. 3. Train image.
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Parallel Algorithm

Original image Sequential Algorithm

FiG 4. Tram image corrupted with aose (0 = 20).
Theorem 1: o, =lim, , .. EIV|IH] exists for all i and is proportional to 7(p)).
Proof

fim, , .. E[N,(t)]

=tim, B2, 1{X, ()= p,}]

=lim .2, p{% ()= p,}

= 21{‘/’:1 lim,_,., P{XA = Px}

= 22/’:1 n(P.)
since each X (f) has the same asymptotic behaviour as in the serial version.

o, = Mr(p,),

i.e., 0, is proportional to (p,)

The following theorem shows that the serial and the parallel versions are asymptotically
equivalent,

Original image Sequential Algorithm Parallel Algorithm

Fic 5. Unix image.
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Original image Sequential Algorithm Paratlel Algorithm
Fi. 6. Unix image corrupted with noise (o =20)

Let S) © S, bethe set {x = [x1,..., xu] € S, | x, =xiA ]}
P P

¥, . N . .
Theorem 2: 1. S, is an aperiodic communicating class of states.

2. All states in S)\S, ; are transient.

Proof

1. From the explicit construction, it is clear that if X, (#,) = X; (f) at some random ¢, de-

pending on j, it remains so for all z 2 £. Thus S; is closed. Once in S;’ all components
of X(.) move together as a block and exhibit the same dynamics as that of the serial ver-
sion. Hence 1 follows.

2. Forany x € SD\S;, it is clear that the probability of X(.) hitting S;; in finite time after f,
conditioned on X(#) = x, is strictly positive. Hence the second claim.

Remark 1: Theorem 2 automatically implies Theorem I. We have established the laster sepa-
rately because the convergence of distributions therein seems to occur much faster (i.e., within
a typical run of the algorithm) than the coalescing of processes implicit in the former. In fact,

Original image Sequential Algorithm Parallel Algorithm

FiG. 7. Peppers image.
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Original image Sequential Algorithm

Fic. 8 Peppers image corrupted with nosse (¢ = 20).

given that the parallel version employs simple thresholding for identifying edge points, it is not
desirable to wait till all processes coalesce.

3.1. Determination of Threshold

Following the same argument as in the sequential version, points of “‘relatively higher cost™
have an expected value of count 0i(i) < Nz—,\;-z. Hence, the threshold on alpha is Loi) ] = 0.

3.2. Discussion
The parallel algorithm has the following advantages over the sequential algorithm:

1. No ad hoc modifications are required to take care of initial conditions or non-zero gradi-
ent along the edge ( since the parallel algorithun starts a sequential Markov chain at every
pixel).

2. No explicit count is required to be maintained w.r.t. time.

3. The threshold on the number of processes hias been set to 0. This simplifies the threshold-
ing operation in the neural network implementation, to be discussed in the next section.

Original image

FiG. 9. Institute image.
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Original image Sequential Algorithm Parallel Algorithm
FiG. 10. Tnstiute image corrupted with notse (G = 20).

4. A Neural Network Implementation

The dynamic process described in the earlier sections has been cast here in the framework of a
neural network. The network consists of three layers - an input Jayer u(.) an output layer w(.)
and an intermediate hidden layer v(.). Each layer consists of an array of N x N nodes.

The input layer contains the image data, or equivalently, the cost function values. The val-
ues of the nodes are given by
(i, jy=—c(, j). ©)
The intermediate layer contains the values of the number of processes N,(z) at site i as de-
fined in the paralle] algorithm.
WG, ) = N p(0): )

Each node (i, j) in the intermediate layer is connected to all nodes in its 3 x 3 ncighbourhood so
that the configuration of the network evolves as a result of local interactions. The nodes of the
intermediate layer are updated in the following manner:

The value v P(, ) of node (i, j) at instant (z + 1) is given by

VG =v0G )+ Y Hmn) o 6 (mn)
(mmen(sj)

-6 Y, Heh)— ma} ®

(m,n)eNG.g)

where I{(m, n) — (i, /)} is the indicator of the event that a transition has occurred from node
(m, n) to node (i, j) at the instant of evaluation, i.e., I{(m, 1) — (i, j)} is 1 if this transition oc-
curs and O otherwise.

The second term on the RH.S. of Equation 8 corresponds to the processes that enter the
node in consideration and the third term corresponds to the event that the processes currently at
the node leave the node.
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Original image Sequential Algorithm Parallel Algorithm
FiG. 11. Results on TEEE girl image.

WG, j) is thus a random variable with conditional Expectation
E[v(m)(i,j)lv(')(i,j);v(’) (m,n),(m,nye N(i,j)] =
OGN+ e mam) [, ), ()]
=0 J)Z, e 2L ()] ©

where pi.,.] is the transition probability as defined earlier.

By Theorem 1, the expected values of v, J) converge to a value pfoportional to the invari-
ant measure of (i, j).

The output layer contains the edge image, thresholded as before.

@) 1 ifv(i,j)>0
wli, j)=
/ 0 otherwise

5. Results
The images were filtered initially with a 5 x 5 zero-mean Gaussian mask of variance ?=10.
The parameters chosen for the algorithms on 128 x 128 images were as follows:

® Sequential Algorithm:
1. Temperature = 0.25
2. Length of the run of the homogeneous Markov chain =2 million iterations
3. Threshold = 150.

o Parallel Algorithm :

1. Temperature = 0.25

2. Number of passes =Length of the homogeneous chain/ Number of pixels(image
size) = 150.

3. Threshold = 0.
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Original image Sequential Algorithm

Fic 12 Gurl image corrupted with noise of 6= 10,

We note that the results obiained by the stochastic algorithm are comparable o those re-
ported in literature™ using simulated annealing under conditions of no noise. Moreover, no
false edges are reported on smoothly shaded surfaces. This is due to the fact that smoothly
shaded areas correspond to relatively smaller local minima which are not detected by our algo-
rithm,

In terms of time taken, the typical time taken for a 128 x 128 image is approximately 6
minutes of CPU time on a CD-IRIS workstation. This drastic reduction of time is due to the fact
that the cardinality of the solution space is much less in case of the algorithms presented here
(from 2™ for simulated annealing to IS] for our stochastic algorithm, where § is the number of
pixels in the image array).

The parallel algorithm offers a further reduction in computational time. Moreover, since
each pass of the algorithm operates only on pixels having a non-zero value, even a sequential
implementation of the parallel algorithm is much faster (typically 2-3 minutes on the same
computing platform) than the sequential algorithm.

The algorithms were also run on 8-bit images corrupted with white Gaussian noise. The
strength of these algorithms is that they are robust and perform well even in the presence of
noise. The algorithms were run on 2-1 images corrupted with white Gaussian noise of standard
deviation ¢ = 10. The values of the parameters chosen were the same as before. Figure 3--10
show the results of both the scquential and the parallel algorithm on various real-world images.
In Figare 11 and Figure 12, the results of the sequential and parallel algorithms are presented
along with a comparison by the Canny edge detector. The implementation of the Canny detector
used was a matlab implementation by Prof. Perona of Caltech.
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