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Abstract 

The paper presents important steps in the approximation of solutions of differential equations and examines crucial 
issues involved in the process. h particular, the role played by the regularity of solutions in their approximation is 
emphasized. After highlighting the progress achieved, it speculates on what may be in store for the future. 
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1. Introduction 

Ordinary differential equations (ODE) and partial differential equations (F'DE) arise as models 
in various situations (physical, natural, etc.). We need not dwell on this point as it is too well 
known. Most such equations are nonlinear. Linear equations also appear either directly from 
the modeling processes (e.g. quantum mechanics) or as an approximation to nonlinear ones via 
the so-called linearization scheme. Thus, 'solving' them is imperative if one wishes to under- 
stand the various phenomena which they are supposed to incorporate and make quantitative 
predictions based on them. Looking into the past history, we notice that five broad approaches 
have been followed to achieve this goal and get a first-hand information on the problem at 
hand. They are: 

(if obtaining explicit solutions exploiting invariance of the problem (or) by some ingen- 
ious ways, 

(ii) obtaining approximate and new solutions by perturbation methods around a known so- 
lution, 

(ui) obtaining asymptotic solutions by the application of wide spectrum of techniques from 
applied mathematics, 

(iv) physical experiments, 

(v) numerical computations. 

World War U was a watershed in this process. It is indeed impossible to exaggerate the ex- 
tent to which modem applied mathematics has been shaped and fueled by the availability of 
computers in the post-war period. These electronic machines offer an alternative to physical 
experiments which have become either expensive or impossible at times. Let me quote the pro- 



phetic words of John von Neumann: "really efficient high speed computing devices may, in the 
field of nonlinear PDEs as well as in many other fields which are now difficult or entirely de- 
nied of access, provide us with those heuristic hints which are needed in all pam of mathemat- 
ics for genuine progress ... many branches of both pure and applied mathematics are in great 
need of computing instruments to break the present stalemate created by the failure of purely 
analytical approach to nonlinear problems". 

Having mentioned the importance of computation, let us cite a few remarkable achieve- 
ments. 

Fermi, Pasta and Ulam discovered the remarkable almost periodic behavior of the vibra- 
tions of nonlinear chains, and Kruskal and Zabusky the generation and interaction of solitons. 
The complete integrability of the Toda Lattice became plausible through very careful numeri- 
cal calculations of Joe Ford. For a descliption of these developments, see ~ o d a . '  Mitchell Fei- 
genbaum2.3 discovered his remarkable universal laws on iterations by analyzing numerical ex- 
periments. Numerical studies led ~orenz'  to the concept of strange attractor; the understanding 
of chaotic behavior of simple dynamical systems coexisting with islands of stability has been 
much enhanced by numerical ~tudies.~ 

Our objective here is to examine the various issues involved in this kind of calculations, 
highlight the progress made and raise a few questions about the future course of action. 

The following are the steps which are usually involved in the computation of solutions of 
ODEPDE: 

discretization 
solving discrete equations 
convergence 

2. Discretization 

The rapid rise of computing was made possible by striking improvements and novel ideas in- 
troduced in the discretization of the equations. Let us name a few commonly used techniques 
and discuss them separately. 

(i) Finite-difference method (FDM): Crudely put, this amounts to replacing differential opera- 
tors in the equation by difference quotients. Here is a partial list of mathematical ideas that 
have borne fruit. 

The methods of alternating direction and fractional step initiated by Peaceman, Rachford, 
Douglas, Yanenko and Strang are used ~n ive r s a l l y .~~  

High-order difference schemes developed by Lax and Wendroff, Mac Cormack and others 
have been particularly effective in meteorology and are of use for calculating any smooth 
flow.8 

Implicit methods: A variety of ideas, introduced by Hia, Warming, Beam, Hardned, and 
others have proved effective in both irncompressible and compressible flow calculations, as 
well as in magnetofluid 
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The method of complex coordinates, developed by GarabedianIo, allows a unified treahnent 
of sub- and supersonic regimes in flows and has been used successfully to design shockless 
transonic airloils, compressor blades and hlrbincs. 

The challenge of calculating flows with shocks has generated a number of mathematical 
ideas. One line of thought, shock capturing, started with von Neumann and Richtmyer's no- 
tions of artificial viscosity1'; to this was added the notion of difference equation in conservation 
form with numerical flux function and Godunov's idea of threading together solutions of the 
Riemann initial value problem. Glimm's method7-" is also based on solutions of Kiemann 
problems; it cmploys a sequence of random parameters and has the virtue of calculating cn- 
tropy production more realistically than other methods that enlploy an artificial viscosity. 
Chorin noted that this feature of the mcthod makes it a good candidate for calculating reacting 
flows. 

The far-reaching modification that Van Leer, Colella and Woodward have made of 
Godunov's method has resulted m astonishingly accurate calculations of vely complicated 
patterns of shocks. 

The method of flux-corrected transport, developed by Bolis and B~ok'~.'%nd artificial 
compression, dcvcloped by Harten, are successful in resolving discontinuitrcs, both contact and 
shock, that develop in flows of compressible, multimedia fluids. 

Jameson has developed intricate and rapidly convergent iterative techniques for the 
calculation of steady transonic flow fields with shocks around complicated aerodynamic 
shapes. 

An alternative to shock capturing is shock tracking, pioneered by Moretti, Richtmyer 
Lazaus, greatly advanced by Glimm and Mc BryanL5 and recently by Colclla. 

While modeling the physical process, some parameters may be neglected and assumed to be 
zero. One way of suggesting an approximation involves the reintroduction of the parameters 
and this process is called unfolding. Novel schemes are born this way. One example 1s the no- 
tion of artificial viscosity mentioned earlier. Another one is mean free path which gives rise to 
kinetic ~cheme.7.'~ 

Thc conclusion of all these is that one has to choose a suitable one from the myriad of pos- 
sible schemes. If not satisfied, the art is to introduce modifications and novelties to suit one's 
needs. But one thing is certain; straightforward schemes will not sufrice to achieve high acco- 
racy witb minimal cost. 

(ii) Finite-element method (FEM): This is a significant alternative to FDM and can copc with 
complicated geometrical configurations. It is based on more rigorous mathematical footing and 
deals with what is called a weak formulation of the given problem. There may be several for- 
mulations of the proble111 (primal, dual, hybrid, ctc.). The idca is then to approximate Lhc 
spaces involved in the fonnulalion by finite-dimensional spaces consisting of piece-wise poly- 
nomials. One of the virtues is that they have a canonical basis of functions with small support. 
The conshuction of such spaces uses triangulation of the domain which can be a very nontrivial 
geomehical problem depending upon the configurati~n. '~~'~ 
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(iii) Specha1 method (SM): The procedure here is more or less the same as in FEM except that 
we now use higonometlic polynomials (or other more general eigenfunctions associated with 
certain operators) instead of the usual algebraic ones. The advantage is that onc achieves very 
high accuracy in regions where the solution is smooth. 

Spectral methods, pioneered by Leith and put on map by Gottlieh and ~ r s z a g ' ~ ,  have been 
made more efficient by the use of fast Fourier transformZ0 introduced by Cooley and Tukey; 
they are of use in calculating space-periodic flows, both smooth and rough. 

(iv) Wavelet method (WM)~'-'~: Instead of trigonomehic basis, we work with wavelet basis. It 
is a virtue of wavelet basis that the representation is very lacuna; the wavelet coefficients in 
regions of smoothness are negligible and so we will be able to localize important features of 
the solution like shocks. Another importau( advantage is the cnormous gain in the storage re- 
quirements. Many standard operators are almost diagonalized in wavelet basis and hence a 
rapid convergence of algorithms is expected. This is yet to be confirmed. However, there are 
some disadvantages of treating nonlinear equations. Indeed, the computation of wavelet coef- 
ficients of nonlinear tcrms is not straightforward; it has lo be done in the physical space. These 
issues as well as comparison between WM and other methods arc discussed in a11 accompany- 
ing paper appearing in this issue.% 

(v) Particle methods (PM): This is based on the approximation of functions by delta measure 
at a finite number of points. One finds that these points evolve with characteristic speed and the 
corrcsponding coefficient satisfies a transport equation.z5 This method, introduced by Harlow, 
has been very effective in problems where two different media are in contact and exert a force 
on each other, such as in high-velocity impact. 

The vortex methodJ6 (i.e. particle method applied to vorticity equation) of Chorin generates 
and propagates vorticity in a very onginal fashion. The method has been very effective in cal- 
culating effects that depend sensitively on vorticity, such as drag at high Reynolds numbers. 
The method has been used by Peskin to calculate flows around valves, real and artificial, in the 
beating heart. 

Let us point out one important unsettled issue in this domain. Does the vorticity blow-up in 
classical norms for the 3d Euler incompressible flow? Numerical experiments of Chorin sug- 
gest that it is so. 

(vj) Finite-volume method (FVM)'~: After triangulation of the domain, the given set of equa- 
tions is integrated on each element of the triangulation. Exploiting the divergence form of the 
equation, we get an integral identity on the boundary of element. Via a numerical integration 
scheme, we are then led to a set of algebraic equations which have to be solved. We point out 
that the theoretical basis of FVM is not as well developed as in the case of FEM. 

(vii) Other merhods: There are other techniques which combine the ones listed earlier and 
which are based on different formulations of the problem. Let us cite a few: domain decom- 
position methodz8, parallel computing, nonlinear least squaresz9, operator decomposition, 
adaptive methods, etc. 

The multigrid method30 suggcsted by Federenko and Bahvalov and developed by Brandt, is 
an extremely rapid method for solving elliptic equations with variable coefficients. 
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The capacitance matrix method of Widlund exploits the fast algorithm for solving Poisson's 
equation in rectangles, developed by Bnnemann and Hockney, to solve Poisson's equation and 
related ones in more general geometries. 

3. Solving discrete equations 

We are not going to dwell on this point in this brief write-up. We merely point out that there 
are plenty of clever algorithms (both direct and iterative) to solve the system of algebraic equa- 
tions resulting from discretization. One of the main concerns is to minimize the number o i  o p  
erations and thereby computer time. One has to devise ways of exploiting the sparseness of the 
system which is usually large. We should worry about the condition number of the system. 
This is essential if we want to check the growth of round-off crror~.~'  

4. Convergence 

A straightforward discretization of given equations may nor converge at all. Even if it does, the 
limit may not he the solution we seek. This is especially true in the case of nonlinear equations 
which possess multiple solntions due to the presence of instahilities. Therefore, the question 
arises: how to believe the numbers churned out by the machine? In other words, is there con- 
vergence? If so, how to accelerate it at minimal increase in the cost? Can one estimate the er- 
ror? These are some of the issues which we take up now. 

The answer to the question of convergence is provided hy the central theorem of numerical 
analysis1' which states that a consistent and stable scheme is convergent. Consistency 
means that if the approximating sequence is convergent, then the limit is a solution. The order 
of consistency will usually be found from the local exactness of the scheme on polynomials. It 
is not entirely obvious to show that Glimm scheme is consistent. Stability means that the ap- 
proximate solutions are 'hounded'. In classical elliptic problems, this is a consequence of ellip- 
ticity. In general, stability will depend on the kind of apriori estimates one can deduce on the 
exact solution. These are not easy to prove either. These estimates usually imply some weak 
convergence for a subsequence which is enough to pass to the limit in linear problems. The 
convergence of the entire sequence depends on the uniqueness of the solution. In the case of 
nonlinear problems, the above weak convergence may not suffice. This is simply a manifesta- 
tion of instabilities created by nonlinearities. We require some compactness criterion of Rellich 
type. This does not always hold and even where it does, it is hard to prove. The compensated 
compactness result of ~urat -~ar te?  is a far-reaching powerful generalization of Rellich's 
Theorem. Using this, DiPemaz3 has succeeded in proving the convergence of schemes for sys- 
tems of conservation laws with two equations. This is considered to be one of the landmarks in 
this area. 

Apart from the central theorem cited above, experience also shows that stability and consis- 
tency can serve as valuable design principles for discretizing problems even if they are not 
well-posed in a strict mathematical sense. 

Admitting convergence, the next step is to obtain error estimates. It is well known that the 
error depends not only on the order of the consistency but also on the regularity of the exact 



solution. This explains the success of FEM in the case of linear elliptic problems17 and the dif- 
ficulties in the case of turbulent fluid flows where the velocity field is notoriously irregular. 

So far we have been discussing approximation of well-posed problem. Let us now focus ow 
attention on some singular problems which all arise, as a rule, in practice. One of the grand 
open problems in the field is to suggest schemes which can efficiently compute irregular solu- 
tions. One idea to overcome this difficulty is to know the location and the nature of singulari- 
ties of the s0lution.3~ (Mandelbrot's seminal observation about the fractal character of the sin- 
gularities of the velocity field in fluid flows cries out for an explanation.) Incorporating these 
singularities into our approximation scheme, we will then be able to compute 'rough' solutions. 
In order to localize the singulatities, point-wise estimates will be of immense help; or one can 
try to check the decay of wavelet coefficients. These are the programmes for the future. Thus', 
we see how qualitative properties of the solution are intimately connected with its approxima- 
tion. 

Another idea is to study the asymptotic behaviour of the solution for large times. This 
means, in the modem language, to frnd out the attractor and the inertial manif0ld.3~ Based on 
this, one can suggest the so-called nonlinear Galerkin approximation36 in which only signifi- 
cant Fourier modes representing the solution are taken into account. The trouble is that there 
are still too many of them. Here is where wavelet basis may be of immense help. The idea is to 
group Fourier modes and seek a new representation of the solution in terms of wavelet basis. 
The research in this direction seems to be full of promise. 

Yet another way to treat higher Fourier modes is to set up a turbulence model whose solu- 
tion is reasonably smooth and lies near the original one. This process is nowadays also called 
homogenimfion. In spire of having several tools like H-, T-, and G-convergences, H-measures, 
semi-classical measures and Wigner measures which had enormous success in homogenizing 
oscillating coefficients, domains and boundaries and in the analysis of composite materials, 
justification of a turbulence model still remains a 

Other unstable phenomena where an increasing number of calculations are done are 
interface instabilities of Helmholtz and Rayleigh-Taylor, boundary-layer instabilities, turbulent 
mutliphase flows, turbulent combustion, bifurcation problems, etc. Let us mention also 
that no general approximate scheme exists as of today to the models which incorporate the ba- 
sic physical laws of conservation of mass, momentum and energy. Constrnction of finite- 
element schemes even for scalar conservation laws in multi-dimensions is a hot topic of re- 
search. 

5. Other issues 

So far, we have considered direct approximation of a given model. In some cases, it is possible 
to 'simplify' it before proceeding to make computations. Presently, we will look at some ex- 
amples in which once again qualitative properfies of the solution play crucial role. We have 
already mentioned the equations which have rapidly oscillating coefficients or posed on do- 
mains with a lot of perforations or oscillating boundaries. Such problems arise as models in the 
study of composite materials, tall buildings and towers or as an idealization of certain fluid 
motions. Perforations are made in the structures in order to make them light and they are com- 
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monly used in space industry. In such cases, it is not wisc to proceed with dircct computations 
because the task of triangulation of the domain which can he as such a hard geometrical prob- 
lem is further compounded by the nature of the domain. Homogenization procedures produce 
simplified models, in which coefficients, domain or boundaries oscillate no Needless to 
say that it is easy to deal with the homogenized modcls. 

Similarly, if one has three-dimensional bodies which are thin in one direction or multistruc- 
tures4' consisting of bodies of different dimensions, it is better to make an asynlptotic study 
which yields (coupled) models of lower dimension that can he handled more easily. In the 
same spirit, let us mention that long-time integration of equations generally needs the knowl- 
edge of the solution and calls for a study of asymptotic behaviour of the solution for large 
times.35 Linear hyperbolic equations on unbounded domains arise as models in scattering 
problems. How are we going to discretize such domains? One idea to overcome this difficulty 
is to look for a suitable boundary formulation of the p r o h ~ e m . ~ ~ . ~ ~  If scattering frequencies 
are to he calculated then we have to worry about diffraction, grazing, etc. Direct computations 
are quite difficult. One can think of using the ansatz of linear geometrical optlcs which reduces 
the problem to a set of ODES and a simple transport PDE. In this context, let us also mention 
the problem of localization of a shock. This is a quite difficult problem because the shock 
is driven by the flow behind it which is enormously complicated. Shock tries 
to isolate those mechanisms which are mainly responsible for the shock movements and cooks 
up a simplified modcl. Once again geometrical optics techniques are in forefront and are found 
very useful. We end our remarks on this aspect by mentioning that a wide vwiety of singular 
perturbation techniques46 are also available to simplify a given model before starting computa- 
tions on it. 

Another aspect which we have not yet touched is the following: so far, we were concerned 
with the computation of the solutions from the data. This is known as direct problem. Inverse 
problems are the ones where we need to extract information on data (or even determine data) 
so that the solution has a desired hehaviour. Concepts like stabilizability and exact controlla- 
bility have been introduced in this c o n t e ~ t . ~ ' . ~ ~  These have to be developed further especially in 
the case of infinite dimensional nonlinear systems. Computational issues involved in soch con- 
trol approaches are highlighted by Glowinski and ~ i o n s . ~ ~  

6. Conclusions 

In this brief sketch, we have merely touched upon several aspects of computations which are 
more or less specific in nature and discussed their connections with various qualitative proper- 
ties of the solution. Thus, merely proving its existence is not sufficient; indeed, it is only a f i s t  
step which provides a framework through which further analysis should be pursued. Needless 
to mention that many more points are left out in our discussion. 

We would like to conclude with some observations which are of general nature. Scientific 
computing with the corresponding supporting mathematical analysis is an independent disci- 
pline which is gathering momentum. Having computers is like having telescopes in astronomy 
and microscopes in biology. The calculations not only aid engineers in their design but also 
give theoreticians clues about possible structures involvcd and jog their imagination. For this, it 



is essential that the numbers from the computer should have some significance and not be a 
garbage, How to check this? Rigourous proofs may take a long time to come, if at all. Testing 
the programme with special and explicit solutions, checking with asymptotic description, veri- 
fying the results in simplified form of equations, matching with experiments in laboratories and 
repeating the computations with several values of parameters involved and checking the con- 
vergence are some of the numerical pragmatics that are usually followed. But obviously we 
need more. 

Another direction in which progress is made is the acceleration of various algorithms. Paral- 
lel computations serve this purpose apart from specific algorithms like fast Fourier transform 
(FFT) and fast wavelet transfom (FWT). 

Our discussion of convergence and error analysis is focused at bringing out several features 
of solution into the picture. A good error estimate is the one which is both computable and real- 
istic. A bound on the error which overestimates it by a factor of 100 is surely not realistic. Most 
of the error analysis leads to estimates which are often not realistic. A potential exception is the 
method of aposteriori error analysisSo but even this has not been worked out to any significant 
extent. 

There is a large class of calculations in the field of dynamical systems to show that they 
exhibit chaos. By the very definition of chaos, there is extreme sensitivity to initial conditions 
and other data in the system. Because of the unavoidable round-off errors in the computer, the 
question arises as to how one is sure that the calculations really represent the exact situation. 
This is a very puzzling situation indeed! Of course, there is the so-called shadowing lemma.51 
Is this sufficient in all situations? From the myriad of computational results, can one extract 
some information on the average behaviour of dynamical systems? 

We would l i e  to conclude by giving a rather stunning application of computations. It is not 
a suprise to use machine calculations to prove results in combinatorics (four-colour theorem). 
But Fefferman and Lanford have taken the road of using them as an ingredient of a rigourous 
proof of theorems in analysis.s2.s3 Unbelievable, isnt it? The reader is most welcome to try his 
own skills. 
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