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1. Introduction 

The objective of this paper is to motivate the need for wavelets in the study of partial differen- 
tial equations (PDE) and the numerical analysis (NA) of their solutions. The use of Fourier 
analysis (FA) in this domain is classically well known in the form of Fourier transform (lT), 
Fourier series (FS) and spectral methods (SM): see for instance Hormanderl, Gottlieb and Or- 
szag2, Voight et d3, Canuto et aL4 and Bernardi and ~ a d a ~ . ~  Other techniques which are fre- 
quently used in numerical computations include finite-element method (FEM) and f i ~ t e -  
difference method (FDM). We cite the works of ciarlet6, Girault and ~ a v i a d ,  Richtmyer and 
Morton8, Fletcherg, Peyret and ~ a ~ l o r " ,  ~trikwerda" and ~ a v i s ' ~  to convince the reader of the 
power of these methods and the class of problems they can solve. Thus, it seems natural to be- 
gin by recalling some of the virtues of these classical methods and the difficulties that we face 
in enlarging their field of applications. I think that this is the best way of motivating the defini- 
tion of wavelets. 

The discovery of wavelets was not sudden and it has been a slow evolution. Many scientists 
(mathematicians and engineers alike) were convinced of the need to modify the classical FA to 
tackle new classes of problems and they have been hying out various alternatives over a period 
of several decades. The idea of wavelets can be found in some vague form in several earlier 
works. One striking example is the so-called atomic decomposition used in the analysis of 
Hardy class functions: see ~ t e i n . ' ~  However, their h a l  form and their applications are recent 
and are due to I. Daubechies, P.G. Lemarie, S. Mallat, Y. Meyer, J. Morlet and J.O. Stromberg. 
They can be found along with historical references in the monumental works of ~ e ~ e r ' ~ , " ,  
Meyer and Coifman16 and ~aubechies". 

National and international conferences and popular lectures organized in the last few years 
show the enormous interest of the scientific community on the subject. At the same time, we 
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witness an explosion of articles and publications in journals presenting seducing properties of 
wavelets and their applications in various domains such as harmonic analysis, numerical 
analysis, computations, image processing, signal processing, fluid mechanics, etc. There exists 
even an up-&date bibliography on wavelets available through e-mail at a nominal cost. Con- 
sidering this situation, one feels the need to stimulate interest and develop the subject in India. 
(Of course, certain individuals in India realizing the importance of the subject are already pur- 
suing research in this attractive field.) My aim here is to achieve this by probing the following 
questions: What are wavelets? Why wavelets? What are their properties? Why are they better 
suited than their predecessors to understand various classical phenomena in a different light? 
What new things can be achieved using them? As we shall see, they cannot replace FA; on the 
contrary, we need FA to understand and construct wavelets. We touch upon certain applica- 
tions of wavelets, and conclude by discussing recent developments, modifications, improve- 
ments, various perspectives and an outlook into the future. For an exhaustive bibliographic 
material, we refer the interested reader to MeyerI4,l5, ~anbechies" and Ruskai et al.'" 

2. Fourier analysis 

Since the initial ideas of Fourier, trigonometric series and FT have been the main tools to study 
the structure and regularity properties of functions. Because of their importance, their defini- 
tions have been extended to cover singular objects called tempered distributions: see 
~chwartz '~.  To see the impact of FA in PDEs, it is enough to cite the seminal works of Hor- 
manderl not to speak of abstract harmonic analysis on groups and respresentation theory. The 
purpose here is not to discuss such advanced developments but merely to point out some rnoti- 
vating properties of FS and FT for which they were introduced. 

The deffition of FS and FT of a function f defined on R stems from our desire to repre- 
sent f in terms of exponentials {e'&). Since the latter functions are 'nice', we will be able to 
'read off and 'understand' the properties off. Let us recall the definitions in one dimension: 

Needless to repeat, (2) is for functions which are 2n-periodic whereas (1) is for 'general' func- 
tions. Then we have the inversion formula which are the representations we seek: 

These formulae generally hold for tempered distributions as well. We obseme that both direct 
and inverse formulae are non-local operations; for instance, the computation of J(5) for any 

fixed 5 requires the knowledge off on the entire real line. 
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One crucial question is the following: do we lose any information in passing from f to f 7 

Tlus is not easy to answer. It depends on the class to which f belongs. Iff E L' then we do not 
lose any information; more precisely, we have energy conservation in the form of Plancheral 
Identity: 

i.e. one can read off whether a function f t L' or not by merely lookmg at the magnitudes of its 

Fourier coefficients. The same is true of Sobolev spaces HS which are based on L'. More pre- 

cisely, f t Ns if (I  + / ~ ' ) ~ ~ j ( < )  t I?. Futher, the convergence In (1) and (4) takes place in 

the corresponding norm. The significance of these spaces is that their elements represent states 
of several mechanical systems with finite energy. To analyze finer properties of such systems, 

in parlicular to study nonlinear systems, we need to consider LP, C' spaces and more generally 

W",P,CJ spaces. We are then naturally led to ask the following questions: 

- Can one characterize f E w S , ~ ( f  E C s )  in terms of the absolute values of f ? 

- Does the convergence in (3) and (4) take place in the corresponding norm? 

The answers to these types of questions are in general difficult and negative. The reason is that 

has a phase even iff does not and these phases play a role which is too subtle to be com- 

pletely unravelled by human beings. 

On the other hand, let us recall the following striking property of FT with respect to differ- 
entiation which had enormous success in linear PDEs: 

This signifies the fact that analytic operation 'derivation' goes into algebraic opcration 
'multiplication by a polynomial' under FT. This is because exponentials are eigenfunctions of 
constant coefficient operators: 

P ( D ) ~ " <  = ~ ( i & ? ~  (8) 

where 

P(D)  = a,Da , a ,  being constants 
lal<rn 

These properties lie at the heart of the analysis of linear PDEs with constant coefficients. For 
instance, an initial value problem (IW) involving PDE can be transformed to a parametrized 



family of IVPs for ODE. The latter can be solved 'explicitly' and the passage to PDE can he 
achieved using Inversion formulae (3) and (4) under a suitable byperbolicity conditon; see for 
instance, Treveszo. The case of operators with smooth variable coefficients is harder. However, 
the problem can be attacked by perturbation analysis and this requires sophisticated tools such 
as the calculus of pseudo-differential operators and Fourier integral operators1. When this 
works, we see that there is no major qualitative departure from the constant coefficient case. 

However, these methods are not easily adaptable to cover nonlinear equations which are or- 
der of the day. This is because exponentids are no more left invariant as in (8) and this is a 
qualitative depamre from the linear case. This simple reason is good enough lo look lor alter- 

natives of FA, indeed nonlincaritics tend to spread the support of j? To see this, let us recall 

the formula which shows that ordinary product is converted into convolution product under ET. 

3%) = + i ( 5 )  = ~ i ( t - ~ ) i % ) d ~ .  (10) 

This implies, in pa~ticular, the qpread of the support under FT: 

This indicates that new Fourier modes are generated by nonlinearities. To get it confirmed, let 
us consider the Hopf operator: 

If u = e"@- -' has one Fourier mode, then Nu = (-iw)ei('-"1 + ( i< )e2 ' (b"X)  has two Fourier 

modes. This is the chief mechanism behind the formation of shocks This already shows that 
the solutions to nonlinear equations can be very rough and new ideas are needed to handle 
them. 

In the theory of PDEs and also in NA, one is interested in the following aspects of solutions 
apart from their existence and uniqueness : 

-regularity properties with respect to data, 

- singularities, if any, 

- position, size and nature of singularities given these data initially. 

As an easy application of FA to prove regularity results, we show how f E L2, Af E L2 imply 

f E n2. Indeed, our hypotheses are equivalent, via Plancheral identity, to (1 + 1{12) f (5) E L' 
which in turn is equivalent to 

Plancheral Identity once again shows that the above property is nothing but saying that all de- 
rivatives off up to order 2 are all square integrable, i.e. f E H ~ .  
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To analyze the singularities off, the so-called singubr support of f is introduced. In order to 
keep track of the singularities, it is a discovery that one has to consider the corresponding wave 
numbers also which cause the singularities. This localization in (x, 5) space leads us to one of 
the fundamental objects, WFV), called the wave-front set off. Comparing the singularities with 
the energy of wave front of light, we conclude that WFV) obeys the laws of linear geometrical 
optics (LGO) in the case of linear PDEs. For the computation of this object in the case of linear 
PDEs and the subsequent beautiful analysis, see ~ormander '  once again. For reasons already 
cited, the analysis of WFV) for nonlinear equations poses a great challenge to mathematicians. 
As we shall see, localization in the physical as well as Fourier space lies at the heart of wavelet 
analysis (WA). Indeed, WFV) should be compared with the set of points where the wavelet 
coefficients W,(b, a)  do not 'vanish'. 

If we examine the difficulties mentioned above a little more closely, we see that one of 
the principal reasons is that exponentials are localized to the rnaximum in &space. They axe 
very regular and havc no decay at all. According to Heisenbe]-g Uncertainty Principle, the more 
an object is localized in <-space the more it is inadequate to describe the local phenomena in x- 
space. This explains why we face serious difticulties in describing regularity properties of 
function f using its Fourier representation. Can one replace exponentials hy other functions 
which do not concentrate in <-space and have nice decay properties in x-space? Can they be 
constructed by easy means? Do they form basis in the sense of (3) and (4)? Do we retain prop- 
erties (7), (8) and (lo)? The definition of wavelets is motivated through these questions. 

Somc of these questions were earlier asked in the context of generalizing LGO to nonlinear 
equations. This is the subject matter of nonlinear geometlical optics (NGO); cf. ~hitharn." 
The crucial idea there is to superimposc exponentials over several wave numbers to obtain a 
suitable localization in x-space. Ln other words, replace exponential by a suitable function 
which will be determined in such a way that it has some desired properties. Some of these ideas 
are retained in the construction of wavelets also; however, the desired properties are not the 
same now. 

3. Haar bases 

If the difficulty with exponentials is what was described in $2 and the purpose is to describe 
local properties of functions then one obvious solution (as suggested in $2) is to look for basis 
which are localized in x-space rather than in {-space. The construction of the classical Haar 
bases is done with this in mind. Start with the following function which has compact support: 

We then consider the following two collections of functions constructed by dilations and 
translations from h: 



These collections form individually orthonomal basis for L'(W). Compared with exponen- 
tial~, the Haar bases have many advantages. For instance, the norm of an LP function can be 
estimated by a function depending only on the absolute values of Haar coefficients off. Noth- 
ing similar could happen with exponentials. 

One of the drawbacks of Haar functions is that they fail with regard to property (8). They 
are not differentiable at all. Let us remember that (8) was an essential key point in the success 
story of FA in the theory of PDEs. This failure is due to the fact that Haar functions are on the 
other extreme; they are too much localized in x-space and poorly localized in {-space. This is 
reflected in their oscillations and lack of regularity. We measure the oscillations of a function f 
by looking at the averages. More precisely, we say f oscillates to the degree r if 

This can equivalently he phrased as 

Thus, we observe that the regularity of a function signifies the decay of large Fourier modes 
whereas the oscillation property (12) signifies the decay of low Fourier modes. The stipulation 
that these two Fourier modes decay is a good measure of localization of the function in 5- 
space. 

The moral therefore is that we should not completely sacrifice the localization in 6-space 
and the oscillation property available in FA even though there is a need to localize in x-space. 
So, the idea is to strike a middle ground between these two extremes without violating Heisen- 
berg's Uncertainty Principle but touching the very limit set forth by it. Wavelets arise naturally 
in this way. 

Another idea tried out in the past is to smoothen the Haar basis by taking their primitives, 
but then one loses the orthogonality property. By the classical GramSchmidt orthogonaliza- 
tion, one can recover it but then the functions obtained this way introduce enormous complexi- 
ties in the computation. Recall that the computation of solutions is one of our principal aims. 
Complexity means a lot of operations in the computer and thereby increase in the cost and 
round-off error. Complexity is thus to be avoided. 

4. Numerical analysis 

Having seen some motivation for wavelets from the Fourier analysis of solutions of PDEs, we 
turn our attention to the computational aspects and point out some fundamental difficulties. 
What can be done to overcome them? As we shall see, this leads us to wavelets once again. 
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Usual procedures employed to discretize PDEs are FDM, FEM and SM. The basic 
idea is to approximate the spaces involved by finite dimensional spaces. To constrnct 
thcm, exponentials are used in SM whereas piece-wise polynomials are used in FEM. The 
question is to know how accurate the approximate solutions are. Apart from the order of 
the scheme, this is related to regularity of the solution and stability. In classical situations 
where the solution is regular euougb, the error is of finite polynomial order in FEM and 
of infinite order in SM: see the works cited in 81. However, in situations where solution f 
is not regular, spectral approximations do not yield satisfactory results. One such example is 
the velocity field of a turbulent flow. Its principal characteristic is that Fourier representation is 

'full', i.e. there exists N large such that /f(5)/ for I4 z N are all negligible and for 151 $ N are 

not negligible. Hence, it is intnitively clear that if we want a reasonable approximation of such 

functions, we must take into account all Fourier modes f(5). 151 < N . The limitation of today's 

computers in terms of memory requirements and the speed of calculations prevent us from do- 
ing this. Rigorous mathematical analysis of these solntions is out of reach for the moment. The 
idea therefore is to look for alternative basis functions in which solutions will have 
'controllable' number of terms which are significant. Once again, we see the need to superim- 
pose exponentials over several wave numbers. Wavelet representation is motivated towards 
canying out this idea. 

The situation with FEM and FDM is not bad. On one hand, the FE basis of functions are 
easily constructed even on unstructured grid avoiding complexities. On the othcr, there arc 
some adhoc procedures to handle singularities. From physical reasons, the location of singu- 
laxities of solution is roughly estimated. For turbulent solutions, this is a hard problem and 
there are only conjectures: see ~ a n d c l b r o t . ~ ~  Once this is done, refmcment of the mesh in those 
regions is performed. This amounts to a minimal increase in the dimension guaranteeing, al the 
same time, an enhanced accuracy of the approximate solution. 

This practice has been in existence for qllite sometime with the numerical analysts and it is 
found quite successful. In some cases, there has been mathematical justification. As we shall 
see later, the iniroduction of wavelets formalizes this adhoc procedure. The FE hasis associated 
with such meshes are, of course, localized in x-space but nonuniformly distributed in space to 
take care of the variation of functions. Their main drawback is that they are not very smooth, 
and neither have the oscillation property mentioned earlier. Hence, it is necessary to combine 
this basis with that in SM in a suitable scnse. 

5. Wavelet transform 

From our discussion in the previous sections, we feel the need to have a basis consisting of 
functions localized in (x, space. The notion of WF(f) already incorporates such an idea. 
Another classical object which does the same job is the windowed Fourier transform (WFT) 
introduced by ~ a b o ? ~  (see also ~aubechies '~).  The idea is to decompose the given function 
into small pieces (windows) and take FT of each piece. More precisely, WFT of a function f (x) 
is defined by 



where g is the fixed window function. One of the drawbacks of this localization is that regard- 
less of the frequency values (high or low) the windows have the same width defined by g. In- 
tuitively, we feel the need for larger windows to see high frequencies and small windows to see 
low frequencies. The definition of wavelet transform (WT) can be seen to achieve this. A sec- 
ond reason to modify WIT is that is has been shown (see Daubechies") that one can only gen- 
erate 'frames' and not a basis via a lattice sampling in WFT. The main difference between 
frames and basis is that frames contain 'too many' vectors and so not ideally suited for NA. On 
the other hand, as we shall see in the sequel, it is a miracle that a suitable lattice sampling of 
WT will lead us to an orthonormal basis. For a good review about frames, see Heil and Wal- 
nu?. The formalization of the above ideas involve the following: since we wish to localize in 
x-space, we must have a variable to do this job. Since exponentials were localized in &space, 
this was not possible in FT. Of course, as in FT, we must have a variable which measures the 
scale of variations of function. As agreed upon already, exponentials have to be grouped over 
several wave numbers and this gives to what is called a mother wavelet function y. Once y i s  
chosen, the principle of WT is very simple. As in FT, given a functionf, we test it against ly. 

Let b E 1P denote the position parameter which can be moved from one position to another by 
translation. This corresponds to localization in x-space. Let a > 0 he the scaling parameter 
which measures the scale of variations of functions. This corresponds therefore to localization 
in &space. They form a group under multiplication. WT of f is defined as follows : 

It is quite clear that WT serves as a 'mathematical microscope' to analyze the structure of a 
function. Indeed, by fixing b, we can localize the behaviour of f around b and by decreasing the 
values of a > 0, we can see the structure off to finer and finer details. 

Of course, the mother wavelet y i s  not an arbitrary function. From our discussions in the 
earlier section, we wish y t o  have the following properties: 

(a) y i s  regular 

(h) y is localised in x - space 

(c) y oscillates in the sence of (12) 

(d) There exists an inversion formula expressing f i n  terms of Wf. 

A partial solution to the above question is found in the early 60s: see ~ a l d e r c i n . ~  Indeed, let y 
satisfy 

Then it can be shown, using Parseval's relation in PA, that 
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is an isometry, i.e. W* Wf =.T. Moreover, the dual map W* is given by 

w*:L~[R:;$$)+ L'(R), 

w * n(x )  = Jr': QR(~,~)Y($)*. 

As a consequence, we obtain the following inversion fornzula: 

This tau be gcneralizcd as follows : let y b e  such that 

Then, we have 

One important choice of $ in (18) is q5 = 6, which is possible if y sat~sfies, in addition, that 

We then obtain (he inversion formula: 

The single-most important property of WT which distinguishes it from FT is the following: f is 
regular at b if the wavelet coefficients Wf(b, a )  decay as a 4 0. To see this heuristically, let us 
observe that we can write Wf(b,  a )  as follows using (12): 

and so on. These expressions imply successively the decay of wavelet coefficients: 

~ ( b ,  a )  = 0(a&), 0 (a  &). . . 



depending on the regularity off. The converse part is a consequence of the inversion formulae 
(18) and (19). We remark that such local regularity analysis does not exist in FT. 

Of course, properties (7) and (8) which are due to the maximum localization in (- 
space are not shared by WT. Better is the localization of win x-space, the poorer is its localiza- 
tion in (-space and in this case, properties (7) and (8) are more violated by WT. 

6. Wavelet series 

Apriori the uncertainty principle in quantum mechanics seems to cast doubts of obtaining a 
basis consisting of localized functions in (x, space. However, this is not the case; indeed a 
refined version of the principle says the following (see slepianz6): there are exactly 2lWz in- 
dependent functions that are essentially localized in {(x, 5); 1x1 < T, 151 5 a) as Tn + -. Thus, 
there is a ray of hope producing a basis by letting i2 -+ - or T + -. 

Though (17) is a formula analogous to (3), we would like to underline one important differ- 
ence. As f varies over L',? fills up L2 whereas Wf(b, a) varies over a 'tiny' subset of 

L2 ( R '  +,dyj -- . This suggests that from the family of wavelet coefficients in the inversion 

formula (17) representing a function, one can extract a countable number of them which are 
significant. The corresponding wavelets form a basis for L2. From the numerical point of view, 
this is exbremely important because it implies enormous reduction in storage. 

To see this, let us start with the classical finite-element spaces which are defined on finer 
and finer meshes of R :  

Vj = {f E c O ( R ) ;  f is linear on [k2-j,(k + 1 ) 2 - ~ ] ~ k  E Z }, G ZZ. 

These spaces correspond to the so-called PI-element in the finite-element literature: see Ciar- 
let6 The usual finite-element basis consisting of 'hat functions' has a particular structure which 
was not used in the theory of finite elements but becomes important now. It is the following: 
for Vo, there exists a basis of the fonn Cg(x- k)IkEZ where g E VO. In fact, g is the unique hat 

fmction in Vo such that g(0) = 1 and g(k) = 0 V k E Z \@). 

The above example can be abstracted and put in the following fonn: 

D e f ~ t i o n :  A multiresolution analysis (MRA) is a sequence {v,}~,~ of closed subspaces of 

L2 (R) satisfying 

... v_zc v-, c voc v, c v2.. 

nvj =(0) and m= L' 
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There exists a functlon g E Vo such that Ig(x - k)jkez forms a basis of Vo 

From g, we can produce a function 4 t Vo such that {@(x - k)lkez  forms an orthonoma1 

(an.) basis for V ,  To get the required basis for L', we introduce W, to be the orthogonal com- 
plement of in VJ+, and wnte 

L2 = e3 wj (or) L= = vo e3 WJ 

Since Vo c V,  and { ~ 5 @ ( 2 x - k ) ) ~ ~ ~  forms on 0.n. basis for V,  we can exprcss, for some 

~ ( x )  = h, f i4(2x - k). 
k 

Simply define ~ ( x )  = Ck (-l)'+'h,_, fi@(2x-n). .It is not hard to check that {v,~],,, 
forms an 0.n. basis for WJ for all j t  Z. Here, ~k stands for the function yJk(x)  = 

2''' y(2jn- k) obtained from y by translation and dilation. We then have the following rep- 

resentations for Lz-function: 

These are examples of expansions in the basis of Z? formed by wavelets ( ~ k )  which 
arise from MRA. The functions y and $ are referred to as mother and father wavelets, respec- 
tively. 

Once their existence has been established, the next question concerns their choice which is 
more suitable for a local Fourier analysis, namely, can one choose y such that y i s  regular, y is 
localized in x-space and yhas  oscillation property? In this connection, the following results 

have been proved in literature: strombergn proved, for each r, s, the existence of y t CS 

having exponential decay and satisfying (12). ~auhechiesl' improved it by showing ycan  be 
chosen to have compact support. On the other hand, Lemaue and ~ e ~ e I ? '  showed that the 
choice of y i s  possible in the Schwartz class Sand such that (12) is satisfied with r = -. 

7. Wavelet and Fourier series 

WS arc destined to compete with FS. Thanks to double localization, WS permits analysis finer 
than FS. As far as NA is concerned, the most singlc property which distinguishes WS from FS 
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is the following: WS is 'sparse' in the sensc that wavelet coetficients with respecl to scale pa- 
rameter j is 'zero' for ljl large where the function is regular. This property is responsible [or 
enormous data compression. On the other hand, let us remark that Fourier series of imporIan1 
functions is 'full' whereas lacunary FS represent often pathological functions. 

Moreover, wavelet, provide a basis also for the classical standard space LP 1 < p < -, c " , ~  
0 < a <  1, etc. These spaces are characterized directly by conditions on the wavelet coeffi- 
cients. k t  us remember that such characterizations with Fourier coefficients ace rather ]-are. 

There are, of course, certain inconveniences in dealing with wavelets of which we mention 
two here. Recall that the derivation operator is transformed to multiplication operator under FA 
(see (7)). This property is no more truc. However, some operators acquire special structure in 
the wavelet formulation depending upon the choice of the wavelet. For instance, the so-called 
Calder6n-Zygmund operator5 are almost diagnosable in the wavelet basis.I5 

Next, turning our attention to nonlinear equations, let us recall that the usual multiplication 
in x-space is rransforrned to convolution product under FA (see 110)). in other words, the 
Fourier coefficients of f%e calculable entirely in terms of those off This is not the case wit11 
the wavelet coefficients. For the moment, this is done in x-space after cnmputingf2. Research 
is on as to how best the wavelet coefficients of nonlinear tenns can be directly calculated with- 
out going to the physical space. To have a measure of difficulties in this context let us cite a 
recent paper.z9 

8. Wavelets in numerical conlpulations 

If there is one field where wavelets have enormous impact it is in the domain of numerics. 
Since wavelet basis lies between finite-element basis and spectral basis as explaincd already, it 
shares their properties: as efficient as FEM in locali~ing and capturing aingula~ities of solut~on 
and at the same time providing good approximation in smooth regions. This latter phenoineuon 
depends on the oscillation property (12) satisfied by the wavelets. This situation is to be com- 
pared with the difficulties one encounters with higher order schemes like Lax-Wendroff in the 
presence of singularities. 

A major task is to exploit the presence of lacunarity in the wavelet series representing thc 
solution. To this end, we must necessarily use non-oniform meshes. Indeed, a comparative 
study shows that on regnlar meshes, wavelet method and more traditional methods yield the 
same type of results. In practice, the mesh is rendered nonuniform in an iterative fashion by 
anticipating significant wavelet coefficients at the next iteration from the magnitude of the co- 
efficients in the present iteration. Another technique is to use what are called mobile wavelets.30 
The idea here is to consider the wavelets as particles in the space (b, a) of position and scale 
and they move around as time evolves. The approximate solution is in the form 

The aim here is to cook up suitahle evolution equations for a,(t), b,(t) and c i ( t )  in such a 

way thal there is strong concenuation of wavelcts in the region of singularities of solution. 
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Yet another theory on thc horizon to achieve this is that of wavelet packets wherein the aim 
is to represent a function in a basis which is optimal, i.e. the number of elements of the basis 
representing the function is as small as possible. Each elcment o l  the basis is constructed start- 
ing from the mother-wavelet packet by thc operations of dilation, translation and modulation. 
Thus, there are three parameters instead of the usual two in the classical construction of 
wavelets. This theory includes that of windowcd FT and WT and seems lo be full of promisc in 
future applications. For details sce Coifman et aL3' 

9. Conclusions 

In his paper, wc have tried to answer the following questions: what are wavelets? why 
wavelets? basis ideas behind their construction with examples and interpretations s t d n g  from 
the classically known objects, their immediate properties, limitations, comparison with trigo- 
nometric Cunctions, etc. There are several issues which are not discussed and research is in full 
swing in these m a s .  TO the set of several questions raised in earlier sections, we add the fol- 
lowing ones: the choicc of wavelets best suited to the PI-oblem at hand, construction of 
wavelets in thc presence of boundaries, issues involved in the case of several variables, 
wavelcts in nonhoinogeneous media, etc. Wavelets are destined to compete with tbe more 
classical lrigonometric functions. Consequently, somc classical issues are viewed in a dill'erent 
light now. For instance, Calder6n-Zygmuud operators are almost diagnosable in wavelet basis 
and this explains aposlcriori heir  success. Various algorithms using wavelets for these opera- 
tors should show rapid convergcncc and this has to be confirmed. Some important observations 
in this regard have been made by Devore and ~ucier . '~  Group-theoretical aspects of WT are 
discussed in Heil and ~ a l n u t . "  For fast algorithms using WT, consult Beylkin et uL3"he in- 
teraction ol' wavelets with geometrical surfaces (regular and fractal) is the subject matter in 
 avid'^, Ameodo et 0 1 . ~ ~  and Holschneider." 

A basic goal of the subject is to analyze lhe singularities of solutions of nonlinear equations. 
One specific question in this context is the following: do Navier-Stokes equations and Euler 
equations in three dimensions exhibit non-smooth solutions with smooth initial data? Can one 
answer such questions using wavelets? FA did not have much success in this area. Argoul et 
al.3%how nnmerical evidence of an affirmative answer to this question. However. rigorous 
mathematical analysis of this phenomenon is still elusive. The conjecture is that h e  set of sin- 
gularities is concentsated on a small set22,39. If this is true hen, by the very virtue of wavelet 
coefficients, we will be able to represent flnid flows by wavelet series where there exists only a 
'contmllahle' number of significant terms. Fourier analysis enabled one to derive upper esti- 
mate on the dimension of the attractor which represents the fluid flow (Temam). The above 
arguments may imply that a significant improvement of this estimate can be achieved using 
wavelets. Can one then develop a nonlinear Galerkin method based on wavelets analogous to 
Marion and p em am^^? Probably, these are some of the major issues with which the scientific 
community will be preoccupied m the fntnre. 
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