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We prupasc a new viscous Lcrm m UE Constmtin-Lax-Majda ID mudel fa the 3D rorucity c q u a t ~ o ~  T h ~ a  u. smomes 
the drawback assocecled iwth Ihc canonical viscous term considezed by Schochct 

1. Introduction 

Physical arguments (c.g. ~risch' .  p. 115) and numerical computations (e.g. Crauer and sideris2) 
strongly suggcst that finitc-time smgularities develop in three-dimensional inviscid incom- 
pressible flow. The equations governing such a flow are thc Euler equations 

with the initial condition 

The main mathematical question regarding (1)-(2) are : Do sn~ooth solutions exist for all time 
or do singularities develop in finite time? Reguding the first question. Beale et al.' have 
proved the following. Suppose uo i s  smooth, then there exists a global snlooth solution ii" and 
only if the vorticity w = V x i~ satisfies 

for every T > 0. Further, they have shown that if a solution which is initially amooth loses its 
regularity at some later tune, then the maximum vorticity necessarily gl-ows without bound as 
the crilical time approaches. Thus, the formation of singularities in Euler equations depends on 
vollicity production or vortex stretching. Note that in two dimensions there is no vortex 
strelching. The interest in these possible singularities. as pointed out by CafliscbR, are physical, 
numerical and mathematical: physical because singularity formation may signify :he onset of 
turbulence and may be a primluy mechanism of energy transfer from large to smail scales, nu- 
merical because special methods to solve Euler equations would be required for tackling this 

*Dedicated lo Prof R. Naraalmha on hm 65th bnlhday. 
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singularity formation, mathematical because singularities in Euler equations would prevent an 
establishment of global existence theorems for (1 ). 

The need to understand the precise mechanism of formation of singularities in finite time 
has led to a consideration of some model problems that mimic the Euler equations. These 
models should not only be simpler than (1) but also possess some of the important features that 
are known about (1). Such models would be natural candidates as test problems in verification 
of numerical methods for (1). 

In this direction, Constantiu et aLS, hereafter CLM, proposed a very simple model for the 
vorticity equation. We shall briefly explain the motivation for their proposal. The Euler equa- 
tions (1)-(2) can be written as 

where 

and 
@ = V x s .  

Now u can be written in terms of w as 

aG 
G;(x) = - an,' 

~ ( x )  = z. 
4zlxl 

The matrix Vu can he decomposed into its symmetric part 

1 
D(u) = -[VU + (vu)'], 

2 
and its antisymmetric part 

1 
J O  = ,[VU - (vu)']. 

Since 

J(u).w = 0 
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eqn (3) reduces to 

where we have substituted (4) in (5). The explicit formula for D is not needed in the following 
but the following properties of D are worth noting. The matrix valued function D depends 
linearly on a the operator relating OJ to Dw is a linear singular operator that commutes with 
translation and has a mean value on the unit sphere equal to zero. CLM made the remarkable 
observation that in one space dimension the only operator similar to D is the Hilbert transform 

U M  then went on to propose the one-dimensional analogue of (6) 

w ,  = wH(w), ( x ,  t )  E R x ( 0 , ~ )  

w(x,O) = w ,  (x). 

'Velocity' is defined as, 

Surprisingly, (7) is explicity solvable and the solution is given by 

From the explicit formula it is clear that the solution o blows up in a finite time To if and only 
if there exists an a such that @(xo) = 0 and ( H a )  ( a )  )> 0. CLM also showed that if xo is a 
simple zero of @(xo) then 

Thus, the model vorticity equation (7) seemed to possess the most important feature of (6): 
finite-time blow up of vorticity but velocity remaining bounded. Now (7) with its explicit solu- 
tion (9) is a challenging test problem for numerical methods designed to detect blow up. This 
has been demonshated by Stewart and ~ e v e c i ~ .  Extension of the model equation (7) to include 
viscous effects was taken up by Schochet7; who considered the equation 

~oluti6n to (10) was explicitly written down by Schochet, who found that it blew up at time T, 
and 
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where To is the blow up time for E =  0, i.e. for (9). In other words, adding diffusion makes the 
solution less regular! Clearly this is unsatisfactory, especially in view of the result by Constan- 
tian8 which says that if the solution to the Euler equation is smooth then the solution to the 
slightly viscous Navier-Stokes equations with the same initial data is also smooth. Hence, the 
simple model (7) of CLM lost most of its interest. Some improvements of this model have been 
undertaken by De ~ r e ~ o r i o ~ , ' ~ .  The main aim of this work is to propose a nonlocal diffusion 
term which, when added to the CLM model, will reverse the inequility in (11) and thus remove 
the drawback mentioned above. 

2. The proposed viscous model 

In this section, we derive heuristically our proposal for including 'viscous effects' to (7). It is 
well known that solution to 

loses regularity in finite time no matter how smooth uo is. If we add viscosity to (12) 

u, = uu, + vu,, (x, t) E R x (0, -) 

u(x,O) = %(xX 

then a global smooth solution exists for all time. Trying to propose a model for water wave 
phenomenon like sharp crests and breaking of waves, Whitham" asked the question: Is there a 
'viscosity' which when added to (12) loses its regularity in finite time? Obviously, ~ l ,  is not 
the right candidate for reasons mentioned above. Whitham" conjectured that if we consider 

u, = uu, - K*u,; (x, t) E R x (0, -) 

u(x,O) = uo(x) 

with the kernal K having the Fourier transform, 

a0 = &Gz, 
then solutions to (14) will lose its regularity in finite time. This conjecture has been completely 
settled by Naumkin and Shi~hmarev'~. In a similar vein, we ask the opposite question: which 
viscous will make the solution (9) blow up at a later time when added to (7)? In other words, 
inequality (1 1) holds from the results of Schochet7 that it cannot be or,. Now, CLM has shown 
that the blow up of (9) is different from the blow up of u, where u is a solution to (12). Note 
that u, satisfies, along the characterstics 



CONSTANTIN-W(-MAIDA MODEL 113 

and hence blows up in finite time. In other words, equation u,- uu, is not a good model for the 
breakdown of smooth solutions to (I) but @ - &(D) is a better model. Now H(w)  can be in- 
terpreted as differential operator via the Fourier transform 

Arguing analogously one feels that - M u ,  would be a better model to 3D 'viscosity' compared 
to ac,. So, we propose 

as the 'viscous' analogue of (7). Note that -&a is indeed a dissipative term as can be cheiked 
by solving the linear part of (16) using Fourier transform. Such a dissipative term has also been 
considered by ~ a t s u n o ' ~ .  

3. Explicit solutions 

Solution to (16) can be explicitly obtained by the complexification 

Z=H(w) + iw 

It is easy to check that Z satisfies, 

where, 

Making the transformations 

(17) reduces to 

This can be easily solved and we obtain the solution for (17) 

where 

$(x,t) = &(x* 01. 

Note that if E = 0 then = &, and we get 



which is the solution to the inviscid case (7) obtained by CLM. To obtain the solution for (16) 
we need to take the imaginary part of (19). After a tedious algebra we obtain, 

where 

w;,(x,t) = (h' t h- - o+ + W-) - t(h+h- -a+@-), 

w:,(x,t) = (hC - h- + w+ + W-)- t(hiu- + h-w'), 

hi(x, t )  = (H~o)(x f t&), 
d(x ,  I) = @(x * t&) 

Once again note that if &=O, then hi = h and wf = a and we obtain, 

hence 

4w 
(2 - th)2 + t2w2 ' 

which is the same as (9). Now the solution to (20) will blow up in finite time T, if o;, and 

612~ vanish simultaneously at some point x ~ .  This is difficult to check unless we know pre- 

cisely what h* and o? are. Let us consider the example considered in CLM 

m,=cosx 
then 

where 
ad t )=s inn+cosn  

Figure 1 shows Ihe case for = cos n x  for E =  0.1 at t = 2 and for E = 0.1 and 0.001 in Rg. 2. 
Clearly the solution is finite at x = 4 but as E -+ 0, the solution is about to blow up at x = 4. 
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PIG. 1. Solution of the modified equation (16) at t=O Flo. 2. Solution of the modified equation (16) at t = 2  
and2with@=cosmfor&=O.l. with ub=cos mfor~=O.Ol and 0.601. 

If E = 0 the solution blows up at x = 4 and t = 2. So for E> 0 the solution blows up at T, and 

this is obtained by solving the nonlinear equation 

This function is shown in Fig. 3 and for E = 0.001 T, is just above 2 which is the blow up point 
fore=O. 

Since it is difficult to give an explicit value of T, where (20) blows up (as was shown above 
even in the explicit case of @ = cos nx) we try to give an approximate answer by considering 
the Taylor expansion of (20) in powers of E 

for i = 1,2. This gives 

w;, (x,t) = 2 b  -t(# -o;)-&ztw;, +0(c2) 

We now assume the following on the initial data @ and ho. There exists an xo such that 

W O ( X ~ )  = 0 and ~ ( X O )  > 0, (23) 

wh(x,,)<O andh$(xo)=O (24) 

Note that (23) is the same condition that is required for the inviscid solution (9) to blow up. 
Using (23)-(24) in (21)-(22) an approximate blow up time T, is obtained by requiring (21) to 
vanish up to 0(2). This gives 

2ho T, = ----- 
(hi +2&06) 



116 A. S. VASUDEVA MURTHY 

Fro. 3. The function - t for various E 

Since wh < 0 (cf. 24) we obtain 

In the above example where W, = cos ax conditions (23)<24) are satisfied; hence, T, > To = 2 
as is confiied in Fig. 3. 

To summarize, under conditions (23)-(24) on the initial data the viscous solution (20) 
blows up at time T, which satisfies (25). This argument is true up ro O(2) and can be made 
rigorous by assuming that the solution is smooth in E. A more systematic and complete study is 
required to characterize the precise conditions on that is necessary for the blow up of the 
solution to (16) given by (20). This is being pursued and will be reported in Wegett and 
Vasudeva Murthy14. 

4. Conclusions 

A new viscous version of the Constantin-Lax-Majda 1D model for the 3D vorticity has been 
proposed. The solution to this equation blows up at a later time than that of the inviscid case for 
the same initial data. This is in contrast to the canonical viscous version considered by Scho- 
chet. 
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