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Abstract 

Several robust algmithms for parametric optimization of hidden Markov models are presented. These combine aspects 
of Fabian's 'sign' algorithm, two-time scale stochastic appmximatlon and certain techniques for estimating the madient . . 
(or related quantities) of the performance measure based on a simulation run. 
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1. Introduction 

The archetypical stochastic optimization algorithm is the stochastic gradient scheme, an 
instance of the general class of stochastic approximation algorithms.' This is given by 

wherefi) is the function to be minimized, (a(n)) is a stepsize sequence satisfying 

and {&)} is a random process that models measurement noise, the implication being that the 
expression in the square brackets in (1) is a noisy measurement of the gradient. Often, this 
information is not available and one has to settle for a noisy measurement of an approximate 
gradient, e.g. a finite-difference approximation as in the so-called Kiefer-Wolfowitz scheme. A 
comprehensive account and analysis of these schemes appears in Polyak and ~ s ~ ~ k i n . ~  

In many recent applications, one encounters situations where even an approximate gradient 
is not easily available, hut has to be estimated online or based on a simulation run. This 
typically happens because one aims to optimize the expected value of a performance variable 
with respect to a parameter and the interdependence thereof is not analytically explicit. Thus, 
while one is still seeking the gradient of an expectation as implicit in the aforementioned 
schemes, one is no longer in a position to interchange it with the expectation of a gradient, as in 
fact has been done in (1) and its variants. This has led to a considerable body of work on 
estimates for the former that are either online or based on a simulation run. These techniques 
go under the rubric of 'infinitesimal perturbation analysis' (IPA).' But, these are not without 
their problems. To press this point further, consider, for example, a recent scheme due to 
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Chong and ~ a m a d g e . ' I n  this, one assumes the conditional law of the performance variable 
given the parameter as known. The algorithm requires the derivatives of the inversc map of the 
conditional distribution function, with respect to thc parameter. In practice, this itself will have 
to be estimated and will he a far from robust statistic. Furthennore, the algorithm aggregates 
and averages data over regeneration epochs which can be very sparse, leading to very slow 
convergence. In addition, there are other intrinsic limitations, such as the need for the 
performance variable to be real and continuous-valued, as well as insensitivc to the so-called 
'event order changes' and so on. 

With this in mind, Bhatnagar and ~ o r k a ?  proposed a two-time scale stochastic 
approximation algorithm for parametric optimization of hidden Markov models (HMMs). The 
idea behind the two-time scale stocha3tic approximation is r impk6 It involves coupled 
iterations. 

X(n + I )  = X(n) + a(n)(q(X(n), Y(n))  + M(n + 1 )). (3) 

Y(n + 1 ) = Y(n) + b(n)(g(X(n), Y(n))  + M'(n + I)), (4 )  

where { ~ ( n ) ) ,  {b(n)} arr: stepsize schedulea that satisfy (2) and a(n)=o(b(n)) ,  { M ( n ) )  and 
{M'(n)} are sequences of uncon-elated zero mean random variables reprcsenling measurement 
noise. It can be shown6 that (3),  (4)  asymptotically behave like the singular 0.d.e. 

i ( t )  = q(x( t ) , y ( t ) ) .  

FL(t) = g(x(t),?(r)) 3 

in the e J  0 limit. Intuitively, the 'slow' component x(.) is seen as 'quasi-static' by the fast 
component y(.), while the latter is seen as 'almost equilibrated' by x(.). That is, from the point 
of view of y(.), x(.) changes very slowly so that the behaviour of y(- )  is close to that o€  the o d e .  

~ , ( t )  = g ( x , ~ ~ ( t ) )  (5) 

whcre x - x ( t )  is a 'frozen' parameter. Suppose (5 )  has a globally asymptotically stable 
equilibrium A(x). Then y(t) -- A(x(t)) and as a result, x(t) tracks the solution of the 0.d.c. 

i ' ( t )  = q(x'( t) , i (x ' ( t))) .  (6 )  

Suppose (6) has a globally asymptotically stable equilibrium x*. Then (x(t), y(t)) approximately 
converges to (x*, h(x*)). In turn, one can show that (X(n), Y(n))  -t (I*, A(x*)) with probability 
one6. 

The scheme comes In handy for implementing algorithms with nested 'DO' loops, where 
the inner loop is a subroutine that involves another algorithm whose near-convergence is 
requrred between each successive iterate of the outer loop. One can achieve the same effect by 
doing simultaneous updates on the two loops, albeit on different time scales simulated by 
different stepsize schedules (the inner one being faster). The way in which this has been used 
by Bhatnagar and Borka? is by doing the averaging of the performance variable on the fast 
time scale. while performing an approximate gradient search on the said average on a slower 
time scale. Thus, one achieves 'gradient of expectation' directly, without having to contend 
with the aforcmentionzd interchangc. Also, the scheme is set up for AMMs, a rnuch richer 
class of pf'ocesscs than those considered in earlier literature. It also allows for discrete-valued 



B. BHARATH AND V. S. BORKAR 121 

performance variables like queue lengths and does not require conditions l i e  insensitivity to 
event order changes. 

It should be added that two-time scale techniques had been introduced earlier, but purely as 
an averaging technique for damping the oscillations of algorithm (1) above, in the spirit of 
'momentum'  method^.^.' These works do not address or resolve the issues raised above. 

The workability of the proposed scheme was established by analysis and simulations in 
Bhatnagar and ~ o r k a r . ~  Nevertheless, the scheme shares with standard stochastic 
approximation its usual problem of high variance as reflected in the highly oscillatory 
behaviour of its trajectory, pmicuiarly in the initial stages. A large body of work on variance 
reduction techniques has been around for a while. We have already mentioned averaging, 
which can be implicit averaging of r.h.s. of (1) through a 'momentum' term7.' or explicit 
averaging of the iterates themsel~es.~. '~ Other techniques include importance sampling, use of 
common randomness or control variates, conditioning, etc."." The aim of this paper is to 
propose a computationally inexpensive alternative based on the Fabian algorithmL3 

where sgn(.) is the sign function given by 

(For the vector case, sgn(.) is interpreted componentwise). The usual motivations for replacing 
(1) by (7) are high uncertainty in the gradient measurement and low computational complexity. 
We advocate its use as an explicit variance reduction mechanism. Thus, the algorithm we 
propose is 

x(n + 1) = X(n) - a(n)sgn(S(n)) (8) 

where S(n) is the 'approximate gradient of expectation' obtained through the two-time scale 
technique. The intuition behind the expected robustness of this scheme is somewhat akin to that 
behind the use of median as a more robust estimator than mean--it is insensitive to freak 
episodes of large IS(n)l due to noise spikes or numerical instability of the gradient estimation 
scheme. This intuition is indeed confirmed by the numerical experiments reported later in the 
paper. 

There is also another important motivation for looking at (8). When an algorithm is 
implemented in a distributed manner, different processors may compute different components 
of the iteration and communicate these to each other over a communication channel with 
concomitant overheads. This makes (8) quite appealing, for it needs only one bit of information 
per component. 

We consider two other candidates for {S(n)} in addition to the Bhatnagar-Borkar scheme. 
These are described in the next section, following a brief theoretical analysis of (8). Section 4 
applies these schemes to two queuing problems and concludes with some general comments on 
the empirical evidence and some related issues. 
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2. The algorithms 

As in Bhatnagar and ~orkar', the process we seek to optimize will be an 'HMM with a tunable 
parameter' given by the coupled iteration 

X(n + 1) = h(X(n), Y W ,  &I, B(n)), 

Y(n + 1) = g(X(n), Y(n) ,  <'(n), @OI,  

n t 0.  Here, { c ( n ) } ,  {c'(n)} are i.i.d. sequences in F") ,  dP(" resp., independent of each other, 
h : d P ~ H x r l T ~ ~ ~ x B " - + B  and g : l P " x H x F " ) x H " + B  are measurable maps, and 
(B(n)} is the B"-valued parameter that is being tuned on line. The state process {X(n)}  is 
unobserved and (X(n),  Y(n))  is assumed to be an ergodic Markov process for each fixed 0 (i.e. 
when &n) = 0 for all n).  {Y(n)}  is the observation process. Let Ed.] denote the expectation 
with respect to the stationary distribution when 0 is the operative parameter. Our aim is to 
minimize 

for a given continuous cost function k(.). We assume that this expectation is well defined and 
that J(.) is continuously differentiable. 

The algorithms that we consider have the form (a), rewritten as 

where e(n) is the vector error given by S(n) - VJ(B(n)), S(n) being a suitable approximation of 
the gradient. Thus, e(n)  combines both the approximation error and the noise. We make the 
following additional assumptions: 

( A l )  P(e,(n) i xlX(m), m i n)  = P(e,(n) $ xlX(n)) and is independent of n, i. 

Thus, we may write 
F ( x  1 y)gP(ei(n) < x 1 X(n) = y), 

the conditional distribution function of e(n) given X(n). 

(A21 (x,  y )  + F(xly), x -i VJ(x)  are Lipschitz maps. 

( A 3 )  For ally, F(0ly) = 112. 

(Al) and (A2)  are purely technical conditions that can be relaxed pith some extra effort. 
We shall comment on these later. (A3)  is the crucial condition which says that the conditional 
median of e,(n) given X(n) is always zero. We also assume: 

( A 4 )  sup, II&n)ll< m with probability one. 

It should be noted that this is a highly nontrivial assumption. One is effectively 'assuming 
away' the stability of the scheme. There is no general scheme for verifying stability of 
stochastic approximation algorithms, though there are many techniques applicable to special 
classes thereof. Also, one can, as we do in our numerical experiments detailed later, avoid the 
problem altogether by projecting the iterates back to a bounded set whenever they exit from the 
wne. 
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Theorem 1: Under (AIHA4), {Qn)} converges to the set of local minima of J( . )  with 
probability one. 

The proof goes along standard lines, so we shall sketch only a brief outime here. 

by h(x) = [hl(x), ..., hm(x)]'with 

By adding and subtracting h(&n)) From the r.h.s. of (9), it can he rewritten as 

Rn + 1) = Rn) + a(n)(h(@n)) + M(n + I ) )  

for an appropriately defined {Mfn) }  satisfying 

EIMfn + l)lX(i), Ni), i S m] = 0. 

Under (A4). standard ' o d e .  analysis".6 shows that with probability one, the algorithm 
asymptotically behaves like the differential equation 

x( t )  = h(x(t)), t > 0. (10) 

(AZ) ensures that (10) is well-posed. From (A3). it follows that h,(x) has the sign opposite to 

thal of 3/(*) when the latter is nonzero. Thus, .i.. 

as long as lIVJ(x(t))ll# 0. The rest is routine. 

This theorem forms the backdrop for all the algorithms we propose below. It should be 
remarked that we do not verify the above assumptions for these algorithms. Nevertheless, their 
empirical behaviour conforms to the foregoing intuition. (A3) in parlicular is not easy to verify 
in practice, but that seems to matter very little. 

Before giving the details of the algorithms, we shall comment briefly on assumptions (A1)- 
(A41 above. Jn (Al), the dependence of the conditional distribution on the index i can be 
reintroduced at no extra cost except notational, one having to assume (A1)-(A3) separately for 
each i. Dependence on n can be reintroduced a1 the cost of now having to consider a family of 
nonautonornous o.d.e.s in place of (10). This is eminently possible'4, though tedious. Allowing 
the conditional distribution depends on the entire past X(m), m 5 n, explicitly, rather than just 
on X(n) as in the first pan of (Al), is a much more serious matter. Under certain (nontrivial) 
technical hypotheses (the 'fading memory condition') one is led to analyse in place of (10) a 
similar ordinaq differential equation 

i ( t )  = a(x(t)) 

for an appropriately defined d.). With this, the above analysis can be pushed b o u g h  with a 
lot mol-e technical complicat~ons, that too for a restrictive class of dependences. 

Coming to (A2), dropping (AZ) leads to possible ill-posedness of (10). This is not as bad as 
it seems, for one can go over to an appropriate differential i~iclusion and consider all possible 
trajectories of I( for a given initial condition. 
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(A3), or more generally the condition that the conditional median is zero, is crucial. 

(A4) can be verified by assorted techniques for checking the stability of stochastic 
approximation algorithms, such as those based on stochastic Lyapunov  function^.'^ If J(0 )  + - 
as llal-+ m, J(.) itself will serve as one. For our numerical experiments reported below, (A4) IS  

ensured for free by projecting the iterates back onto a bounded set. This 1s a standard trick in 
practice. but one has to keep in mind that one is now dealing with a 'projected' version of (10) 
which may develop spurious attractors on the boundary of the bounded set in question. 

Wit11 this preamble, we list below the cxact algorithms we have experimented witb. For 
simplicity, only the scalar parameter case (m = 1) is stated, thc vector case being completely 
analogous. 

Scheme 1. The finitedifference (FD) scheme 

This schcme, from Bhatnagar and ~orkar ' ,  goes as follows: Lct 6 > 0 be a small number and let 
(X(n), Y(n)), (X'(n), Y(n)) denote simulations of the HMM corresponding to the pwametcr 
sequences (qn)}, {qn)  + 61, respectively, where {B(n)) is obtained as: 

x(n + 1) = x(n) + b(n)(lc(Y(n)) - x(n)), 

x'(n + I )  = x'(n) + b(n)(k(Y(n)) -x'(n)), 

q n  + 1) = T(qn) + a(n)[(x(n) - x'(n))lF]), 

with a(n) = o(b(n)). r(.) is a projection onto a prescribed bounded intcrv~l. Under appropnatc 
stabilily conditions on the HMM, x(n) (resp, n'(n)) can be shown5 to track ER.,[k(Y(n))] (resp., 
ER,,,+s[k(Y'(n))]), this being the 'fast' scalc. The iteration for ( q n ) )  then performs an 
approximate gradient search based on a finite-difference approximation. 

Note that this requires two parallel simulations, respectively for {Kn)} and for {@n) + 6). 
The computational overhead can be reduced by using common random numbers for both the 
simulations, which also improves the variance. Form 2 1, the number of simulations increases 
accordingly. An alternative is to use the scheme proposed by  all.'^ 

The 'robust' version of this scheme is obtained hy replacing the third recursion by 

&n + 1) = T(qn) + a(n)sgn[(x(n) -x'(n))/6]). 

Scheme 2: Smoothed functional (SF) scheme 

Adapted from Katkovnik and ~ulchitsky'~,  the idea behind this scheme is as follows: Suppose 
we approximate Vf in (1) by a 'smooth' approximation to V f  given by Df, which stands for ' V f  
convolved with a Gaussian with zero mean and a small variance d'. Denoting the Gaussian by 
GJ,.), one has 

Df, (XI = 5 Go ( X  - y)Vf (y)& (componentwise integral) 

Integrating by parts, 
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Rearranging the temls in the integrand, this can be rewritten as (see section 7.6 of Rubinstein" 
for details): 

for a suitably deiined yc(.). But the right-hand side is simply the expectation of yc(x+ 5)  for 

an appropriate random variable 5, which c m  be cstimated by a Monte Carlo scheme. 

Thesc considerations lead to the estimateL2.I6 for VJ(B(n)) given by 

where N >  1, B> 0 'small' and (77,) are i.i.d. N(0, I). This, in fact, is a Monte Carlo estimate 
for DJdRn)), which in turn is an approximation of VJ(B(n)). One may achieve this averaging 
by the two-time scale scheme described earlier. This suggests thc scheme: 

wlth n(n) = o(b(n)), where the HMM is now governed by {B'(n)) glven by 

The important feature of tbis scheme is that the derivative estimation is donc only indirectly, 
thus rcquiring only a single simulation. The standard deviation P of the Gaussian has to be 
small for this estimation to be justified. But since P also appears in Ihc denominator, very small 
B tends to cause numerical instability. Our 'robust' version then is 

Scheme 3: Correlation-based (CB) scheme 

This scheme is based on the observation that m.r) - f(y))(x, -v,) and (f(x) -Xy))/(x, - y,) have 
the same rign when x, tj, (x,, y, being the ith components of x and y, respectively). Thus, one 
may consider the algorithm 

q n  + 1) = r(B(n) - a(n)(k(Y(n)) - k(Y(n - I)))(@n) - H(r? - I))) .  

This, however, turns out to be numerically ill-behaved, the reason being that &.) changes vcry 
little ocer a single iterate. This suggests taking Y(n - M, &n - Ar) in place of Y(n - 11, 601 - 1 )  
in the above for a moderately large N >  1. Even better, one may average the expression 
multiplying u(n) to stabilize it further. This averaging, in turn, can be affected by using two- 
time scales as explained earlier. Thus, the algorithm becomes 



FIG. 1. Queueing network for problem 2. 

6tn + 1 )  = W X n )  - a(n) x(n)), 

with a@) = o(b(n)). The robust version replaces the second recursion by 

B(n + 1) = U N n )  - a(n)sgn(x(n))). 

It should be remarked parenthetically that there is some interest in correlation-based algorithms 
in computer vision literature because similar mechanisms are believed to operate in human 
vision. These considerations have led to the ALOPEX algorithm.1s.'9 This is very similar to 
ours except that it does not use the sign of the estimated conelation, but another -fl-valued 
random variable whose probability distribution is modulated by the empirical correlation 
through a Gibbsian mechanism. 

Numerical experiments 

The above algorithms were tried on the following two problems: 

Problem 1 

Consider a GVGt1 queue. Let {cc(n)} be the sequence of interarrival times to the queue and 
{ N n ) }  the sequence of service times. Here, we shall assume that on = on(@, i.e. the service 
times are parameterized by a parameter B which the server can tune. The times {T(n))  spent by 
the nth customer in the system satisfy the recursion 
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Fm. 2. Convergence of thc imite-difference algonthm 
for problem 1. 

FIG. 4. Convergence oC the smoothed functiord 
algorithm for problem 1. 

RG. 6 .  Convergence of the codation scheme for 
problem 1. 
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FIG. 3. Convergence of the robust finite-difference 
algonrllm for problem 1. 
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Ro. 5. Convergence oi the robust sinoolhed functianal 
algorithm for problem 1 

Pic;. 7. Convergence of the heohust coxelation scheme 
for prohlem I. 

FIG 8. Convergence of the finite-difference algorithm 
for queue 1 in problem 2. 

FIG. 10. Convergence of be smoothed functional 
algorillun for queue 1 in problem 2. 

FIG. 9. Convergence ot Ule robust fimte-difference 
algorithm for queue 1 in problem 2 
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Rr 11 Conve~gi-nce of the robust smoothcrl functional 
algonthm for queue 1 m problem 2 
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FIG. 12. Convergence of the correlation scheme for 
queue 1 in problem 2. 
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Ro. 14. Convergence of the fwte-difference algorithm 
for queue 2 in problem 2. 

FIG. 16. Convergence of the smoothed functional 
algorithm for queue 2 in problem 2. 

FIG. 18. Convergence of the correlation scheme for 
queue 2 in problem 2. 

FIG. 13. Convergence of the robust correlation scheme 
for queue 1 in pmblem 2. 

FIG. 15. Convergence of the robust fimte-difference 
algorithm for queue 2 in problem 2. 

h o .  17. Convergence of the robun smoothed functional 
algorithm for queue 2 in problem 2. 

ho.  19. Convergence of the robust correlation scheme 
for queue 2 in problem 2. 

where I ( - )  denotes the indicator function. The cost we seek to minimize is E[T(n)]. 

In the simulation results reported below, we take %s to be exponentially distributed with 
rate 0.2, and q s  with rate p(@n))& 150/(1+ iO(n) - 5001). The initial guess is NO) = 100 and - 
r(.) is the projection onto [10,1000]. 
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Problem 2 

We consider here the network of two queues with feedback depicted in Fig. 1. Here, hi = 0.2, 
h2 = 0.1 are the rates of two independent Poisson streams entering nodes I and 2, respectively. 
After getting served at node 1, a customer joins node 2. After getting sewed at node 2, he either 
leaves the systenl with probability p or is fed hack to node 1 with probability q=  I-p. The 
servjce discipline is FCFS Tor both irrespective of where the customer comes from. The service 
times at the two nodes are exponential with rates {p,(@,(n))), {pz(&(n))}, respectively, with 

~ ~ ( 8 , )  = ji, I (l+lB, - 8, I )  where 8, = 400, 82 = 600, p1 = 360, ji2 = 520, q = 0.7. The cost 

function is Eo[T1(n) + li(n)l where B= l01, 811 and T,(n) = the time spent by the nth customer at 
the ith queue. The initial gucsses were &(0) = 100, Q2(0) = 200. 

The simulation results are shown in Figs 2-19. The stepsizes were n(n) = Cln and 
b(n) = Cln"' where C =  I for the non-robust vcrsions of the algorithms and C =  50 for the 
robust versions. Some broad conclusions that can be drawn from the empirical evidcncc are as 
follows. 

1. In the lucky situations where the variance is already low, our variance reduction device 
uctually worsens thc pe~formance. This is not untypical of vaimce reduction schemes. 
With this in mind, we rescrve the subsequent comments for the high variance cases 
only. 

2. For identical stepsize schedules, the robust versions are slower, as is to be expected. 
This can be amended by scaling up the stepsize for the robust version as above. The 
following corrnnents refer to a comparison between robust and non-robust versions with 
the scaled stepsizes. 

3. The robust versions converge more gracefully, with very little oscillatory behaviour. 
This is particularly pronounced in the initial stages. In the long run, however, the 
convergence is slower for the robust versions. (This is in conformity with the so-called 
bins-variance dilemma). In situations where they are used explicitly as a variance- 
reduction technique and not motivated by computational or communication complexity 
considerations, this suggests a two-tier strategy: the robust version in the initial stages 
till the iterations have 'settled' a liltle, and the original algorithm thereafter. More 
generally, one can consider graded schemes which switch from one 'quantized' version 
of the gradient to the next, more refined one, with the sign at one cnd of this spectrum 
(the coarsest) and the full gradient at the other. 

4. Another advantage for robust versions is that by virtue of not having to contend with 
violent oscillations, the projection operation r(.) is rarely called for. 

5. We also tried numerical experiments where an additional noise with small variance was 
deliberately added to the argument of sgn(.) in the robust algorithm. This did not 
significantly alter their behaviour. It has also been suggested8 that a(n) = €b(n) with a 
small c > 0 will outperform a(n) = o(b(n)). Again, our simulations did not show any 
significant difference. 

Note: In all the graphs x axis denotes Bvalues, y axis denote number of iterations. 
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