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Abstract

Several robust algorithms for parametric optimization of hidden Markov models are presented. These combine aspects
of Fabian’s ‘sign’ algorithm, two-time scale stochastic approximation and certain techniques for estimating the gradient
(or related quantities) of the performance measure based on a simulation run.
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1. Introduction

The archetypical stochastic optimization algorithm is the stochastic gradient scheme, an
instance of the general class of stochastic approximation algorithms.! This is given by

X(n+ 1) =X(n) ~ a(m)[VAX()) + &()] 1

where () is the function to be minimized, {a(x)} is a stepsize sequence satisfying

Y amy=o, Y a(m)? <o @

n

and {{(n)} is a random process that models measurement noise, the implication being that the
expression in the square brackets in (1) is a noisy measurement of the gradient. Often, this
information is not available and one has to settle for a noisy measurement of an approximate
gradient, e.g. a finite-difference approximation as in the so-called Kiefer~Wolfowitz scheme. A
comprehensive account and analysis of these schemes appears in Polyak and Tsypkin.”

In many recent applications, one encounters situations where even an approximate gradient
is not easily available, but has to be estimated online or based on a simulation run. This
typically happens because one aims to optimize the expected value of a performance variable
with respect to a parameter and the interdependence thereof is not analytically explicit. Thus,
while one is still seeking the gradient of an expectation as implicit in the aforementioned
schemes, one is no longer in a position to interchange it with the expectation of a gradient, as in
fact has been done in (1) and its variants. This has led to a considerable body of work on
estimates for the former that are either online or based on a simulation run, These techniques
go under the rubric of ‘infinitesimal perturbation analysis’ (IPA).3 But, these are not without
their problems. To press this point further, consider, for example, a recent scheme due to
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Chong and Ramadge.® In this, one assumes the conditional law of the performance variable
given the parameter as known. The algorithm requires the derivatives of the inverse map of the
conditional distribution function, with respect to the parameter. In practice, this itself will have
to be estimated and will be a far from robust statistic. Furthermore, the algorithm aggregates
and averages data over regeneration epochs which can be very sparse, leading to very slow
convergence. In addition, there are other intrinsic limitations, such as the need for the
performance variable to be real and continuous-valued, as well as insensitive to the so-called
‘event order changes’ and so on.

With this in mind, Bhatnagar and Borkar’ propesed a two-time scale stochastic
approximation algorithm for parametric optimization of hidden Markov models (HMMs). The
idea behind the two-time scale stochastic approximation is simple.S It involves coupled
iterations.

X(n+ 1) =X + aln)(g(X(n), Y(n)) + M(n + 1)), (3)
Y(n+ 1) = Y(n) + b(n)(g(X(n), Y(n)) + M'(n + 1)), 4

where {a(n)}, {b(n)} are stepsize schedules that satisfy (2) and a(n) = o(b(n)), {M(r)} and
{M'(n)} are sequences of uncorrelated zcro mean random variables representing mcasurement
noise. It can be shown® that (3), (4) asymptotically behave like the singular o.d.e.

x(1) = g(x(1), y( .
£y(1) = g(x(1), (1)) ,

in the £l 0 limit. Tatuitively, the ‘slow’ component x(-) is seen as ‘quasi-static’ by the fast
component y(-), while the latter is seen as ‘almost equilibrated’ by x(-). That is, from the point
of view of y(-), x(-) changes very slowly so that the behaviour of y(-) is close to that of the o.d.e.

V(0 =g0x,y. () ®

where x~x(f) is a ‘frozen’ parameter. Suppose (5) has a globally asymptotically stable
equilibrium A(x). Then y(f) ~ A(x(2)) and as a result, x(¢) tracks the solution of the o.d.c.

(1) = g(x’ (1), A(x"(1))). ©6)

Suppose (6) has a globally asymptotically stable equilibrium x*. Then (x(£), ¥(£)) approximately
converges to (x*, M(x*)). In turn, one can show that (X(n), ¥(n)) — (x*, A(x*)) with probability
one .

The scheme comes in handy for implementing algorithms with nested ‘DO’ loops, where
the inner loop is a subroutine that involves another algorithm whose near-convergence is
required between each successive iterate of the outer loop. One can achieve the same effect by
doing simultaneous updates on the two loops, albeit on different time scales simulated by
different stepsize schedules (the inner one being faster). The way in which this has been used
by Bhatnagar and Borkar’ is by doing the averaging of the performance variable on the fast
time scale. while performing an approximate gradient search on the said average on a slower
time scale. Thus, one achieves ‘gradient of expectation’ directly, without having to contend
with the aforementioned interchange. Also, the scheme is set up for HMMs, a much richer
class of processcs than those considered in earlier literature. It also allows for discrete-valued
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performance variables like queue lengths and does not require conditions like insensitivity to
event order changes.

Tt should be added that two-time scale techniques had been introduced earlier, but purely as
an averaging techmque for damping the oscillations of algorithm (1) above, in the spirit of
‘momentum’ methods.”* These works do not address or resolve the issues raised above.

The workability of the proposed scheme was established by analysis and simulations in
Bhatnagar and Borkar” Nevertheless, the scheme shares with standard stochastic
approximation its usual problem of high variance as reflected in the highly oscillatory
behaviour of its trajectory, particularly in the initial stages. A large body of work on variance
reduction techniques has been around for a while. We have already rnentioned averaging,
which can be implicit averaging of r.h.s. of (1) through a ‘momentum’ term’® or explicit
averaging of the iterates themselves.*'® Other techniques include importance sampling, use of
common randomness or control variates, conditioning, etc.'"'? The aim of this paper is to
propose a computationally inexpensive alternative based on the Fabian algorithm'®

X(n+ 1) =X(m) ~ aln)sgn(VAX(n) + &) )]

where sgn(-) is the sign function given by

()= 1forX =0,
g b= —1for X <0.

(For the vector case, sgn(-) is interpreted componentwise). The usual motivations for replacing
(1) by (7) are high uncertainty in the gradient measurement and low computational complexity.
We advocate its use as an explicit variance reduction mechanism. Thus, the algorithm we
propose is

X(n + 1) = X(n) - a(n)sgn(S(rn)) ®)

where S(n) is the ‘approximate gradient of expectation’ obtained through the two-time scale
technique. The intuition behind the expected robustness of this scheme is somewhat akin to that
behind the use of median as a more robust estimator than mean—it is insensitive to freak
episodes of large IS(n)l due to noise spikes or numerical instability of the gradient estimation
scheme. This intuition is indeed confirmed by the numerical experiments reported later in the
paper.

There is also another important motivation for looking at (8). When an algorithm is
implemented in a distributed manner, different processors may compute different components
of the iteration and communicate these to each other over a communication channel with
concomitant overheads. This makes (8) quite appealing, for it needs only one bit of information
per component.

We consider two other candidates for {S()} in addition to the Bhatnagar-Borkar scheme.
These are described in the next section, following a brief theoretical analysis of (8). Section 4
applies these schemes to two queuing problems and concludes with some general comments on
the empirical evidence and some related issues.



122 B. BHARATH AND V. S. BORKAR

2. The algorithms
As in Bhatnagar and Borkar®, the process we seek to optimize will be an ‘HMM with a tunable
parameter” given by the coupled iteration
X(n+ 1) = h(X(n), Y(n), &), 6(n)),
Y(n+1) = g(X(n), Y(n), & (n), 6(m),
n=0. Here, {£(n)}, {£n)} are iid. sequences in &", #® resp., independent of each other,
B EXEXEORE > & and g: F X HF XKD x ¥ - ¥ are measurable maps, and
{B(n)} is the & -valued parameter that is being tuned on line. The state process {X(n)} is
unobserved and (X(n), Y(n)) is assumed to be an ergodic Markov process for each fixed 6 (i.e.
when &) = 8 for all n). {¥(n)} is the observation process. Let Eg-] denote the expectation
with respect to the stationary distribution when 6 is the operative parameter. Our aim is to
minimize
J(8) = Edk(¥Y(n))]
for a given continuous cost function &(-). We assume that this expectation is well defined and
that J(-) is continuously differentiable.
The algorithms that we consider have the form (8), rewritten as
Bn+ 1) = 8(n) - a(r)sgn(VJ((n)) + e(n)) %)

where e(n) is the vector error given by S(n) — V.J(68(n)), S(n) being a suitable approximation of
the gradient. Thus, e(n) combines both the approximation error and the noise. We make the
following additional assumptions:

(A1) P(efn) < x/X(m), m £ n) = Pe(n) < x/X(n)) and is independent of n, i.
Thus, we may write
Flx! )AP(g;(m) < x] X(n)=y),
the conditional distribution function of e(n) given X(n).
(A2) (x,y) = F(x/y), x = VJ(x) are Lipschitz maps.
(A3) Forally, F(0/y)=1/2.

(A1) and (A2) are purely technical conditions that can be relaxed with some extra effort.
‘We shall comment on these later. (A3) is the crucial condition which says that the conditional
median of e(n) given X(n) is always zero. We also assume:

(A4) sup, 1G(m)l < oo with probability one.

It should be noted that this is a highly nontrivial assumption. One is effectively ‘assuming
away’ the stability of the scheme. There is no general scheme for verifying stability of
stochastic approximation algorithms, though there are many techniques applicable to special
classes thereof. Also, one can, as we do in our numerical experiments detailed later, avoid the
problem altogether by projecting the iterates back to a bounded set whenever they exit from the
sarne.
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Theorem 1: Under (A1)~(A4), {8(n)} converges to the set of local minima of J(-) with
probability one.

The proof goes along standard lines, so we shall sketch only a brief outline here.
Define /2 : & — & by h(x) = [l(x),..., K] with

h(x)= 1—2Ff:—gxi(x)/x:},lsiﬁm

By adding and subtracting #(6(n)) from the rh.s. of (9), it can be rewritten as
A+ 1) = B(n) + a(n)(h(&(n)) + M(n -+ 1))
for an appropriately defined {M(n)} satisfying
E{M(n + 1YX(D), 6(),i <m] = 0.

Under (A4), standard ‘o.d.e. a.nalysis’l‘d shows that with probability one, the algorithm
asymptotically behaves like the differential equation

x(1) = h(x(1)), t20. 10

(A2) ensures that (10) is well-posed. From (A3), it follows that 4,(x) has the sign opposite to
that of %ﬂfl when the latter is nonzero. Thus,

AFx@)dr = (D)), VI(0))) < 0
as Jong as IVJ(x()!l 0. The rest is routine.

This theorem forms the backdrop for all the algorithms we propose below. It should be
remarked that we do not verify the above assumptions for these algorithms. Nevertheless, their
empirical behaviour conforms to the foregoing intuition. (A3) in particular is not easy to verify
in practice, but that seems to matter very little.

Before giving the details of the algorithms, we shall comment briefly on assumptions (A1)~
(A4) above. In (Al), the dependence of the conditional distribution on the index i can be
reintroduced at no extra cost except notational, one having to assume (A1)-(A3) separately for
each i. Dependence on n can be reintroduced at the cost of now having to consider a family of
nonautonomous o.d.e.s in place of (10). This is eminently possible’, though tedious. Allowing
the conditional distribution depends on the entire past X(m), m < n, explicitly, rather than just
on X(n) as in the first part of (Al), is a much more serious matter. Under certain (nontrivial)
technical hypotheses (the ‘fading memory condition’) one is led to analyse in place of (10) a
similar ordinary differential equation

X(t) = u(x(1))
for an appropriately defined of-). With this, the above analysis can be pushed through with 2
lot more technical complications, that too for a restrictive class of dependences.

Coming to (A2), dropping (A2) leads to possible ill-posedness of (10). This is not as bad as
it seems, for one can go over to an appropriate differential inclusion and consider all possible
trajectories of it for a given initial condition.
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(A3), or more generally the condition that the conditional median is zero, is crucial.

(A4) can be verified by assorted techniques for checking the stability of stochastic
approximation algorithins, such as those based on stochastic Lyapunov functions. S J(B) = 0o
as 16l — oo, J(-) itself will serve as one. For our numerical experiments reported below, (A4) is
ensured for free by projecting the iterates back onto a bounded set. This is a standard trick in
practice, but one has to keep in mind that one is pow dealing with a ‘projected” version of (10)
which may develop spurious attractors on the boundary of the bounded set in question.

With this preamble, we list below the exaci algorithms we have experimented with. For
simplicity, only the scalar parameter case (m = 1) is stated, the vector case being completely
analogous.

Scheme 1. The finite-difference (FD) scheme

This scheme, from Bhatnagar and Borkar®, goes as follows: Let 8 > 0 be a small number and Jet
X{n), Y(n)), (X'(n), Y'(n)) denote simulations of the HMM corresponding to the parameter
sequences {O(n)}, {Bn) + 8}, respectively, where {6(n)} is obtained as:
x(n+ 1) =x(n) + b)Y (n)) - x(n)),
X{n+1)=x(n) + b(m)(K(Y () ~x'(n)),
6(n + 1) =T(8(n) + a(m)[(x(n) - x"(m)8]),

with a(n) = o{b(n)). I'(-) is a projection onto a prescribed bounded interval. Under appropriate
stability conditions on the HMM, x(n) (tesp, x'()) can be shown” to track Egy[k(Y(m))] (resp.,
Eoy+slk(Y'(n))]), this being the ‘fast’ scale. The iteration for {6(m)} then performs an
approximate gradient search based on a finite-difference approximation.

Note that this requires two parallel simulations, respectively for {&n)} and for {6n) + &}.
The computational overhead can be reduced by using common random numbers for both the
simulations, which also improves the variance. For m 2 1, the number of simulations increases
accordingly. An alternative is to use the scheme proposed by Spall,‘(’

The ‘robust’ version of this scheme is obtained by replacing the third recursion by
Kn + 1) =T(8(n) + alr)sgnl(x(n) - x'(m))/3)).
Scheme 2: Smoothed functional (SI) scheme

Adapted from Katkovnik and Kulehitsky'’, the idea behind this scheme is as follows: Suppose
we approximate Vfin (1) by a ‘smooth’ approximation to Vf given by Df,; which stands for ‘Vf
convolved with a Gaussian with zero mean and a small variance 6>, Denoting the Gaussian by
G4{), one has

Dfg(x)= J G, (x=)VF(y)dy (componentwise integral)

Integrating by parts,

Df, ()= [ VG, (e =0 f .
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Rearranging the terms in the integrand, this can be rewritten as (see section 7.6 of Rubinstein'?
for details):

Dfy )= [ Gy x =0T, (i

for a suitably defined ]70( -) . But the right-hand side is simply the expectation of jN(, (x+&) for
an appropriate Gaussian random variable £, which can be estimated by a Monte Carlo scheme.

These considerations lead to the estimate'>'® for V.J(6(n)) given by
B m En JOm)+n,5)

where N> 1, f> 0 “small’ and {n,} are i.i.d. N(0, 1). This, in tact, is a Monte Carlo estimate
for DJ(6(rn}), which in turn is an approximation of VJ(6(n)). One may achieve this averaging
by the two-time scale scheme described earlier. This suggests the scheme:

x(n+l)= x(n)+b(n)|i1']g«k()’(n))—«x(n)}

On+ 1) =1(8n) - aln)x(n)),
with a(n) = o(b(n)), where the HMM is now governed by {81n)} given by
81n) = 8n) + n,B.

The important feature of this scheme is that the derivative estimation is done only indirectly,
thus requiring only a single simulation. The standard deviation 3 of the Gaussian has to be
small for this estimation to be justified. But since f also appears in the denominator, very smatl
B tends to cause numerical instability. Our ‘robust’ version then is

&n + 1) =T(Bn) — a(n)sgn(x(rn))).
Scheme 3: Correlation-based (CB) scheme

This scheme is based on the observation that (fix) —fAy))(x, — v,y and (fx) — fy))/(x, — y,) have
the same sign when x, # y, (x,, y; being the ith components of x and y, respectively). Thus, one
may consider the algorithm

6(n + 1) = T(0(n) - a(m)MY(m) - k(¥(n = 1))(6(m) - 6(n — 1))).

This, however, turns out to be numerically ill-behaved, the reason being that 8(-) changes very
little over a single iterate, This suggests taking ¥(n — N), &n — N) in place of ¥(n - 1), &n—1)
in the above for a moderately large N>1. Even better, one may average the expression
multiplying a(n) to stabilize it further. This averaging, in turn, can be affected by using two-
time scales as explained earlier. Thus, the algorithm becomes

x(n + 1) = x(n) + bn)((k(¥(n)) — k(Y(n ~ N))(6(n) — &n - N))),
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Fi6. 1. Queueing network for problem 2.

&n +1)=T(6n) - a(n) x(n)),
with a(r) = o(b(n)). The robust version replaces the second recursion by
&n + 1) =T(Bn) - a(n)sgn(x(m))).

It should be remarked parenthetically that there is some interest in correlation-based algorithms
in computer vision literature because similar mechanisms are believed to operate in human
vision. These considerations have led to the ALOPEX algotithm.'®" This is very similar to
ours except that it does not use the sign of the estimated correlation, but another %1-valued
random variable whose probability distribution is modulated by the empirical correlation
through a Gibbsian mechanism.

Numerical experiments
The above algorithms were tried on the following two problems:

Probiem 1

Consider a GI/G/1 queue. Let {a(n)} be the sequence of interarrival times to the queune and
{o(n)} the sequence of service times. Here, we shall assume that G, = G,(6), i.e. the service
times are parameterized by a parameter 8 which the server can tune. The times {T(n)} spent by
the nth customer in the system satisfy the recursion
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Fic. 11. Convergence of the robust smoothed functional
algoxithm for quene 1 in problem 2.



%)
R

B. BHARATH AND V. S. BORKAR

?iﬁ

] 23 ) £ e Cl w0

. 12. Convergence of the cotrelation scheme for
queue 1 in problem 2.

e
[}

g8 ¥s88¢E

v P O g O © ) ] i

Fic. 13. Convergence of the robust correlation scheme
for queue 1 in problem 2.

§LtEsEREEE

|

] 100 20 200 £ 00 w0 ™ 2

FiG. 14. Convergence of the finite-difference algorithm
for queue 2 in problem 2.

H

o

R R

g

i 1 3 ¥ i £ i e
a0

Fic. 15. Convergence of the robust fintte-difference
algorithm for queue 2 m problem 2.

hes B d]
»o 1
o =
™ m e e
P “
o0 o
o 50
et n
- 0
e P

) [

Y ] 0 0 o ] e

FiG. 16. Convergence of the smoothed functional
algorithm for queue 2 in problem 2.

s H r 0 [l 0 ] [l 3
10

FiG. 17. Convergence of the robust smoothed functionalt
algorithm for queue 2 in problem 2.

R o0
00 ssa
o
0
150
a0 s
am 00
100 -
0
£
o
o W e 00 | e see & TRe #w ¢ 2 4 ¢ * " i H ¥

Fie. 18, Convergence of the comelation scheme for
queue 2 in problem 2,

FiG. 19. Convergence of the robust comelation scheme
for queue 2 in problem 2.

T+ D) =T + Gus 1= 0+ {044 ST} + G {01 > T},

where I{-~-} denotes the indicator function. The cost we seek to minimize is E[T(n)].

In the simulation results reported below, we take or,s to be exponentially distrbuted with
rate 0.2, and o,s with rate u(G(n))é 150/(1 + 1&n) — 5001). The initial guess is 6(0) = 100 and

() is the projection onto [10,1000].
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Problem 2

We consider here the network of two queues with feedback depicted in Fig. 1. Here, A; = 0.2,
Xy = 0.1 are the rates of two independent Poisson streams entering nodes 1 and 2, respectively.
After getting served atnode 1, a customer joins node 2. After getting served at node 2, he either
leaves the system with probability p or is fed back to node 1 with probability g = I-p. The
service discipline is FCFS for both irrespective of where the customer comes from. The service
times at the two nodes are exponential with rates {)(6,(n))}, {l2(6:(n))}, respectively, with
u(8)y=1,;/(1+8,~0,1) where 6, =400,8, =600, 4; =360, 1, =520, g=0.7. The cost
function is E¢[7(n) + T2(n)] where 6= (6, 6,] and T(n) = the time spent by the nth customer at
the ith queue. The initial guesses were 6;(0) = 100, 6,(0) = 200.

The simulation results are shown in Figs 2-19. The stepsizes were a(n)= C/n and
b(n) = C/n™® where C'=1 for the non-robust versions of the algorithms and C =50 for the
robust versions. Some broad conclusions that can be drawn from the empirical evidence are as
follows.

1. In the lucky situations where the variance is already low, our variance reduction device
actually worsens the performance. This is not untypical of variance reduction schemes.
With this in mind, we reserve the subsequent comments for the high variance cases
only.

2. For identical stepsize schedules, the robust versions are slower, as is to be expected.
This can be amended by scaling up the stepsize for the robust version as above. The
following comments refer to a comparison between robust and non-robust versions with
the scaled stepsizes.

3. The robust versions converge more gracefully, with very little oscillatory behaviour.
This is particularly pronounced in the initial stages. In the long run, however, the
convergence is slower for the robust versions. (This is in conformity with the so-called
bias-variance dilemma). In situations where they are used explicitly as a variance-
reduction technique and not motivated by computational or communication complexity
considerations, this suggests a two-tier strategy: the robust version in the initial stages
till the iterations have ‘settled’ a little, and the original algorithm thereafter. More
generally, one can consider graded schemes which switch from one ‘quantized’ version
of the gradient to the next, more refined one, with the sign at one end of this spectrum
(the coarsest) and the full gradient at the other.

4. Another advantage for robust versions is that by virtue of not having to contend with
viclent oscillations, the projection operation I'(.) is rarely called for.

5. We also tried numerical experiments where an additional noise with small variance was
deliberately added to the argument of sgn(,) in the robust algorithm. This did not
significantly alter their behaviour. It has also been suggested® that a(n) = eb(n) with a
small € >0 will outperform a(n) = o(b(n)). Again, our simulations did not show any
significant difference.

Note: In all the graphs x axis denotes 8 values, y axis denote number of iterations.
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