J. Indran Inst. Sci., March~April 1998, 78, 131-151.
© Indian Institute of Science

The search for optimal Lagrange multipliers

VIAY CHANDRU* AND MICHAEL A, TRICK'

*Department of Computer Science and Automation, Indian Institmte of Science, Bangalore 560 012, India
email: chandru@csa.iisc.emet.in

'Graduate School of Industrial Administration, Carnegie-Mellon University, Pittsburgh, PA 15213, USA.
email: rick@gsia.cmu.edu

Received on Apni 15, 1998.

Abstract

Lagrangean constramnt relaxation methods are a widely used approximation techaique for NP-hard discrete optimization
problems. The computational complexity of the L relaxation techmique 1s d in this paper. It is shown
that the optinization of Langrangean roultipliers is polynomial-time equivalent 10 optumization of the Lagrangean sub-
problems. The main technique used to derive this result is the ellipsoid racthod for optimizing linear functions over

convex bodies.

Consequences, both theoretical and computational, of this result are developed. A direct polynomial-tune reduction
of integer knapsack to integer group knapsack s shown to follow via an elementary treatment of (a
Lagrangean dual-based) super group embedding of the knapsack problem. The computational message of the paper is
that multiplier search using the ellipsoid mwethod is an attractive alternative to first-order subgradieat methods. With this
perspective, some preliminary computational experiments on 1-trec Lagrangcan relaxation of the travelling salesman
probiem were conducted and the results are reported.

Keywords: Lagrangean relaxation, computational complexity, mteger programming, subgradient method, ellipsoid
method.

1. Imtroduction

Lagrangean constraint relaxation methods are multiplier methods for mathematical program-
ming problems that are dual-based, approximation methods. For convex programming prob-
lems, these are exact dual methods. In the presence of non-convexities, the approximation
achieved by these methods is equivalent to a simple convexification” 2. In the context of integer
programming, Lagrangean relaxation has been used in a variety of applications with generally
favorable results. Two features of these methods have contributed to their success. The first is
that judicious choice of the constraints to be relaxed leads to useful exploitation of special sub-
structures that exist in most applications. The second feature is that these methods often pro-
vide excellent bounds on the optimal objective value. These are critical in restricting the com-
binatorial explosion inherent in partial enumeration methods, such as branch and bound, for
these discrete optimization-problems.

Lagrangean decomposition® * is a related idea which involves making copies of variables
and splitting the integer program into two or more subproblems. Lagrangean decomposition is
used when there are two or more exploitable substructures in the integer program. In principle,

132 OPTIMAL LAGRANGE MULTIPLIERS

Tagrangean decomposition is a special case of Lagrangean relaxation applied to a reformula-
tion of the integer program.

A fundamental problem in both Lagrangean relaxation and decomposition is the search for
optimal Lagrangean multipliers. This involves the maximization of an implicitly defined
piecewise linear and concave function. In current practice, subgradient optimization techniques
are normally used to solve this non-differentiable optimization problem. However, these tech-
niques are not pure ascent methods and are not even finite algorithms in the strict sense. They
are heuristically terminated and uncertainty as to whether the optimal multipliers have been
found is unavoidable.

The ellipsoid method was proposed by Shor’ of the erstwhile Soviet Union as a space dila-
tion method for non-differentiable convex programming. Ha?:ijan6 (pronounced Khachiyan)
later observed that with minor technical modifications this algorithm solves linear program-
ming problems in polynomial time. A large body of work on the ellipsoid method exists. The
survey paper by Bland ef al.” gives an early account of these developments.

In this paper, we propose the use of the ellipsoid algorithm to compute optimal Lagrange
multipliers. Our justification of this proposal stems from both theoretical and computational
perspectives. Tt may be noted that the use of the ellipsoid algorithm to solve the multiplier
search problem was advocated by Chandru® in 1982. It has also been briefly discussed in the
compendium of Schrijver’.

In the following section, we review some background results in Lagrangean relaxation and
decomposition as well as the optimization/separation equivalence implied by the ellipsoid al-
gorithm. In Section 3, we show that the ellipsoid algorithm provides a polynomial-time
(Turing) reduction of the multiplier search problem to the Lagrangean subproblem. As a theo-
retical consequence of this theorem, we show in Section 4 that a general integer linear program
can be reduced to a group knapsack problem. We present some preliminary computational evi-
dence, in Section 5, that the ellipsoid method is practical and robust for obiaining good La-
grange multipliers quickly. The computational results are for the 1-tree relaxation of randomly
generated travelling salesman problems (TSP).

2. Preliminaries

In what follows, we briefly review the results in Lagrangean relaxation that are of relevance to
later sections. We also present the main result in connection with the ellipsoid algorithm that
we shall need. Several survey papers'®’ have been written on Lagrangean relaxation.
Throughout this paper we shall assume some familiarity with computational complexity theory
at the Jevel found in the treatise by Garey and Johnson'*,

The problems of interest to use are discrete optimization problems of the form max{cx :
x & 8} where § is a discrete set belonging to the collection of d-vectors of Os and 1s or some
positive integer values. The complexity of the procedures we shall discuss will be relative to
the input length L of this problem. For example, when we discuss the TSP on a complete
graph, the input length is with respect to a binary encoding of the distance matrix and nor with
respect to an integer programming formulation of the TSP.

VIJAY CHANDRU AND MICHAEL A. TRICK 133

2.1. Lagrangean relaxation and decomposition

Consider a representation of a discrete optimization problem in the form:
P)z=max{cx:Ax2b,xe X< #'}.

We assume throunghout that

(Al) The explicit constraints (Ax < b) are small in number and dimension. More precisely,
the dimensions of the matrix A are bounded by some polynomials in L.

(Al) The implicit constraints, embodied in X, have a finite description. By this we mean that
X can be replaced by a finite list {x!, 22,... x7}.

Note that assumption (A2} is much milder than it may appear at first reading. For example,
the results of Gathen and Sieveking'® imply that any integer linear program or mixed-integer
linear program can meet this assumption.

Definitions 2.1. The following definitions are with respect to (P)

Lagrangean: L(u, x) = u(b — Ax) + cx

Lagrangean subproblem: max, .y {¢x = (c—ud)x}

Lagrangean dual function: £ (#) = max, « x L(u,x)

Lagrangean dual problem: d = min,, » o £(x) D)
It is easily shown that (D) satisfies a weak duality relationship with respect to (P), i.e. z<d.
The assumption (A2) also implies that £(u) is a piece-wise linear and convex function. In fact,
both these properties may be observed from the equivalence of (D) to the large-scale linear
program:

d = ming, N(DLP)
s.t. N-ub-ANHzcdi=1,2,..,T
uz20.

The usual linear programming dual of (DLP) is given by:

T
2zp =max ¥ (ex')A; (PLP)

=1

T
st Y (Ax'-bIA, <0

=}

T
Y a,=1

=1

A, 20fori=12,..,T.

Many interesting characteristics of Lagrangean relaxation such as convexification, integrality
property, etc. may easily be derived from these formulations (see Shapiro'™). In practice, the

134 OPTIMAL LAGRANGE MULTIPLIERS

constraints X are chosen such that the evaluation of the Lagrangean dual function .¢(1) is easily
made (i.e. the Lagrangean subproblem, max, . x{Cx} is easily solved).

Lagrangean decomposition is used when the underlying integer program has two or more
exploitable substructures. To illustrate the idea, let us consider the integer program:
max <cx
st Dyx <dy (P2)
Dyx<d,
x20, intcgé:r

The first step is to formulate (P,) as (ollows:

7= max cx'
s.t. Dl)cl <d,
DS dy ®)
- =0

x', ¥ 20, integer

The linking constraints (x' — x* = 0) are now treated as the explicit constraints yielding the dual
problem:

1 2

dy = nﬂnrr}a;t{cxl Jr,Lz(x‘—xz)Dl‘)L SAd" Dzzx S.dz } (D3)
xxt x 20 integer, x* 2 0 integer
Note that (D7) is the nsual Lagrangean dual problem associated with (P). The dual variables
1 are unrestricted in sign in this case since the explicit constraints (x' —x* = 0) are equality
constraints. The problem again is to find the optimal Lagrangean multipliers. Because La-
grangean decomposition can be seen as Lagrangean relaxation of a suitably reformulated
problem, any method to find the multipliers for Lagrangean relaxation can also be used for
Lagrangean decomposition.

2.2. Ellipsoid algorithm

The most commonly used general method of finding the optimal multipliers in Lagrangean
relaxation is subgradient optimization. Subgradient optimization is the non-differentiable
counterpart of steepest descent methods. Given a dual solution «, the iterative rule for creating
a sequence of solutions is given by:

g uk+tky(uk)
where x(*) is a maximizer of max, . x L(u", x) 4, is an appropriately chosen step size.

Subgradient optimization has proven effective in practice for a variety of problems. It is
possible to choose the step sizes {#} to guarantee convergence 1o the optimal solution. Unfor-
tunately, the method is not finite, in that the optimal solution is attained only in the limit. Fur-
ther, it is not a pure descent method and bounds on the suboptimality of the current iterate are
not generally available. In practice, the method is heuristically terminated and the best solution
in the generated sequence is recorded. In the context of non-differentiable optimization, the

VDAY CHANDRU AND MICHAEL A. TRICK 135

ellipsoid algorithm was devised by Shor® to overcome precisely some of these difficulties with
the subgradient method. The ellipsoid algorithm may be viewed as a scaled subgradient method
in much the same way as variable metric methods may be viewed as scaled steepest descent
methods (cf. Goffin'®).

The ellipsoid algorithm of Shor’ gained prominence in the late 1970s when Hagijan®
showed that this convex programming method specializes to a polynomial-time algorithm for
linear programyming problems. This theoretical breakthrough naturally led to intense study of
this method and its properties. The survey paper by Bland er al” and the monograph by Ak-
¢iil'? attest to this fact. Direct theoretical consequences for combinatorial optimization prob-
lems was independently documented by Padberg and Rao'®, Karp and Papadimitriou’” and
Gritschel et al.”® For an elegant treatment of the many deep theoretical consequences of the
ellipsoid alz%oﬁthm, the reader is directed to the monograph of Lovész*! and the book by Grot-
schel et al.

Computational experience with the ellipsoid algorithm, however, showed a disappointing
gap between the theoretical promise and practical efficiency of this method in the solution of
linear programming problems. Dense matrix computations as well as slow average-case con-
vergence properties are the reasons most often cited for the behaviour of the ellipsoid algo-
rithm. On the positive side, though, it has been noted (cf. Ecker and Kupferschmid®) that the
ellipsoid method is competitive with the best-known algorithms for (nonlinear) convex pro-
gramming problems.

We first give a brief description of a very simple form of the algorithm so as to be able to
describe later how we will use it in solving the Lagrangean dual problem.

Let us consider the problem of testing if a polybedron Qe &', defined by linear inequali-
ties, is non-empty. For technical reasons let us assume that @ is rational, i.e. all extreme points
and rays of & are rational vectors or equivalently that all inequalities in some description of &
involve only rational coefficients. The ellipsoid method (in contrast with the simplex method
and Karmarkar’s algorithm™) does not require the linear inequalities describing @ to be ex-
plicitly specified. It suffices to have an oracle representation of &. Several different types of
oracles can be used in conjunction with the ellipsoid method®?* 2, We will use the strong
separation oracle described below.

Oracle: Strong separation (&), y)
Given a vector y€ #° decide whether ye @ and if not find a

hyperplane that separatesyfrom Q@;more precisely, find a
vector ce ¥ such that c’y<min{ch|x€ @}.

The ellipsoid algorithm initially chooses an ellipsoid large enough to contain a part of the
polyhedron @ if it is non-empty. This s easily accomplished because we know that if & is
non-cmpty then it has a rational solution with values bounded by a function of the largest co-
efficient in the linear program and the dimension of the space.

The centre of the ellipsoid is a feasible point if the separation oracle tells us so. In this case,
the algorithm terminates with the coordinates of the centre as a sotution. Otherwise, the separa-

136 OPTIMAL LAGRANGE MULTIPLIERS

tion oracle outputs an inequality that separatcs the centre point of the ellipsoid from the poly-
hedron G, We ranslate the hyperplane defined by this inequality to the centre point. The hy-
perplane slices the ellipsoid into two halves, one of which can be discarded. The algorithm now
creates a new ellipsoid that is the minimum volume ellipsoid containing the remaining half of
the old one. The algorithm questions if the new centre is feasible and so on. The key is that the
new ellipsoid has substantially smaller volume than the previous one. When the volume of the
current ellipsoid shrinks to a sufficiently small value, we are able to conclude that G is empty.
This fact is used to show the polynomial time convergence of the algorithm. The details are as
follows.

Ellipsoids in &' are denoted as E(A, y) where A is a dx d positive definite matrix and

ye &'is the centre of the ellipsoid E(4, y).
EA,y)={xe Hlx-pAx-y <1}

The ellipsoid algorithm is described on the iterated values, A, and £ which specify the under-
lying ellipsoids Ey(Ag, x).
Procedure: Ellipsoid (Q'

0. Initialize:

e N:=N(G) (comment : iteration bound)

® R:=R(G) (comment: radius of the initial ellipsoid/sphere Ep)

® Ag:=RY

s x: =0 (comment: centre of Ey)

o k=0

1. Iterative step:

while k<N
call strong separation (&), x*)
ifx* € GQhalt
else hyperplane {x & &1 cx=c,} separatesx* from @
Update
b= — ! Ay
T
N A
= ¥ b b
d+1
dZ
A= o (A ~ 5507
ki=k+1
endwhile

2. Empty polyhedron:

VIIAY CHANDRU AND MICHAEL A. TRICK 137

e halt and declare “Qis empty”
3. End
The crux of the complexity analysis of the algorithm is on the a priori determination of the
iteration-bound N(&). This in turn depends on three factors. The volume of the initial ellipsoid

L
E, (determined by R(G)), the rate of volume shrinkage (VZZE(EE)) <e ‘“’) and the volume

threshold at which we can safely conclude that & must be empty. The assumption of Qbeing a
rational polyhedron is used to argue that G can be modified into a full-dimensional polytope
without affecting the decision question (“Is G non-empty?”). After careful accounting for all
these technical details and a few others (for example, compensating for the round-off errors
caused by the square root computation in the algorithm) it is possible to establish the following
fundamental resuit.

Theorem 2.2'% % There exists a polynomial g(d, ¢) such that procedure E11lipsoid (@)
runs in time bounded by T, g(d, ¢) where ¢ is an upper bound on the size of linear inequalities
in some description of G and T is the maximum time required by the oracle strong sepa -
ration(&,y) on inputsy of size at most g(d, ¢).

Consider a linear optimization problem of the form:
OPT min{dy: ye &}

when @is as described above. Optimizing the linear function dy over the convex body & can
be done by the “sliding objective function’ variant of the ellipsoid algorithm as described in
Bland er al.” If a feasible point y’ is found, the method adds an inequality (dy <dy’— &) for
some positive 8. Since y violates this constraint, it solves the separation problem for this itera-
tion. As a consequence, we get the following corollaries to Theorem 2.2.

Corollary 2.3: The optimization problem (OPT) is solvable in polynomial-time if and only if Q@
has a polynomial-time generator of separating inequalities.
Corollary 2.4: OPT is NP-hard if and only if the separation problem is also NP-hard.

In combinatorial optimization, these results are often used to indicate polynomial solvabil-
ity of various problems and to provide an approach for NP-hardness classification. We shall
give an illustration of this idea in Section 4.

3. Ellipsoid method solves the Lagrangean dual

This is obtained by applying Theorem 2.2 and its corollaries to the optimization problem
(DLP) for choosing optimal Lagrange multipliers.

Lemma 3.1. The generator of separation inequalities in DLP and the Lagrangean subproblem
MAX, x L(u, X) are polynomial-time equivalent.

Proof: Given a solution (7],%) the separation problem is to determine whether 77 is an up-
per bound on the dual functional value (&) =max ,,y L(,x). If not, an obvious separating
inequality is given by (7 —.4(@) = 0). Thus, the separation problem is easily solved once we

138 OPTIMAL LAGRANGE MULTIPLIERS

have 2 method for solving the Lagrangean subproblem. Conversely, if we are given a separa-
tion oracle and a fixed &, it is possible to obtain .£(#) by performing a binary search on the
range of values that 7) can take to obtain the least upperbound on £(i).

Thus, we have

Theorem 3.2: The Lagrangean dual problem is polynomial-time solvable if and only if the
Lagrangean subproblem is. Consequently, the Lagrangean dual problem is NP-hard if and
only if the Lagrangean subproblem is.

The theorem suggests that in practice if we set up the Lagrangean relaxation so that the
subproblem is tractable, then the search for optimal Lagrangean multipliers is also tractable. Of
course, this search problem may be solved by the ellipsoid method and our computational re-
sults reported in Section 6 indicate the viability of this approach. A less direct implication is
that we may be able to reformulate the Lagrangean relaxation-bound calculation as an optimi-
zation problem that can be solved by non-ellipsoid methods in polynomial-time. Results of
Martin™ provide some evidence that variable redefinition methods can be used to solve the
Lagrangean dual problem as a compact (polynomial-size) linear program in many cases.

In practice, however, the Lagrangean relaxation is often set up so that the resuliing subprob-
lem is NP-hard but not ‘pathologically” hard. For example, the relaxation of general assignment
problems by Fisher' yields a subproblem that is a collection of (0-1) knapsack problems.
Knapsack problems are NP-hard but do admit pseudo-polynomial time algorithms that are ex-
tremely efficient if the coefficients are small. Theorem 3.2 may be specialized for such situa-
tions as follows.

Proposition 3.3. If the Lagrangean subproblem admits a pseudo-polynomial algorithm then so
does the Lagrangean dual problem.

Another issue of importance from a practical perspective is that of bounds on the La-
grangean function. Since the Lagrangean relaxation method is usually embedded within a
branch and bound framework, early termination of the ellipsoid algorithm can be useful in
curtailing the amount of computational effort expended at each node of the branch and bound
tree. Early termination may be employed if we had a technique for computing good lower
bounds on the optimal Lagrangean dual value d. The next proposition shows that such a tech-
nique does indeed exist.

Proposition 3.4. Let E be the ellzpsozd at any iteration of the ellipsoid algorithm (applied to
(D)) with centre (", 1*). Let x(u*) be an optimal solution to the Lagrangean subproblem at o,
FEN{u:u20})# ¢ then,

dz min u(b— Ax(u*)).
ueEu>0

Proof: Since E contains a feasible u, E also contains the optimal value for u. (D) is equivalent
to

= min minL(x,x).
ueE,u20 xeX

Restricting X to the single value {x(u")} yields a valid lower bound on d.]

VUAY CHANDRU AND MICHAEL A. TRICK 139

It is not difficult to optimize a linear function over the intersection of the ellipsoid and non-
negative orthant. All of the calculations needed are required in the ellipsoid algorithm to update
the ellipsoid. Thus, the lower bound is essentially a byproduct.

Finally, we also note that analogous results can be obtained for the Lagrangean dual prob-
lem (D3) that results when Lagrangean decomposition approach is taken. The interesting re-

sult from a computational perspective is that if all the subproblems admit polynomial time al-
gorithms then so does the Lagrangean dual problem (D5).

4. A Turing reduction

The theory of NP-completeness implies that any two NP-complete decision problems are poly-
nomially equivalent. The existence of polynomial reductions is the motivation to look for more
natural or direct equivalences between such problems. In this section, we will provide such an
equivalence theorem relating integer knapsack problems (KP) to integer group knapsack prob-
lems. The construction demonstrating the equivalence of these two NP-complete problems will
involve Lagrangean relaxation and the polynomiality will follow from results of the previous
section.

An integer knapsack problem is an optimization problem of the form:

n
z = max |ic0yo +20]xj}

J=1
n
s.t.ayy, +Zajxj=b (KP)
j=1
Yo % 2 0 and integer forj=1,...n
where b 2 g,> 0 forall j=0, 1,2, ..., n. Assume the ordering
(colag) 2 (er/ay) 2 ... 2 (cifay)-

To obtain a relaxation of KP we first substitute for y, the linear form (x; + 5°) where s is taken
to be a positive integer and both x, and © are non-negative, integer-valued variables. Relaxa-
tion of the non-negativity restriction on © yields the formulation:

n
machjxj +(¢o / ag)b — X} ga;%;] @)
7=1

s.t‘z ax, — b = 0(modulo say)
=1

%20 and integer for j= 1,..., n.

140 OPTIMAL LAGRANGE MULTIPLIERS

GP is the usual group knapsack relaxation of KP. The modulo constraint enforces integral-

ity of the © variables which has been substituted by [b— z a;x,] (1/ags) in GP. A Lagrangean
=0

-elaxation may be realized by associating a scalar non-negative multiplier u with the relaxed

sonstraint (sag = 0). This yields the form:

L, x) = (e +wb/ ag)+ Y., (e, —(cy+uda; / ap))x,

=0
with the Lagrangean dual problem defined as

d = minmax L(u, x)
uz0 xeX

L3
X ={(xp. %,):Z a,x, —b = 0(modsap)x, 2 0 and integer}
J=0
As usual, we have the weak duality relationship that z is no larger than 4. It is somewhat sur-
srising therefore that the duality gap (d — z) can be set to zero by choosing a large enough value
‘or s, the modulus parameter. This is the essence of the ‘convergent duality’ results of Bell*®
aind Bell and Shapiro®. We shall now prove such a theorem and furthermore show that s does
10t have to be too large (i.e. s is polynomial-space bounded) for the convergent duality relation
.0 hold. First we need some technical lemmas.

Lemma 4.1. For any non-negative value of the multiplier # we have ¢, — (xo + u)(a/ag) < 0 for
sachj=0,1,..,n
Proof:
¢, — (€0 + u) (a/ag) = ¢; — colafag) — u(a/ag)
< ~u(alag)
<0
where the first inequality follows form the non-decreasing order (co/ap) 2 (c)/ay)... 2 (cilay,). n

Lemma 4.2. We may restrict the feasible set X to contain only irreducible elements, i.e.
X = {x}, X,..., X;} where ¥ satisfies

n
z alx; = b(modsay),x’ = 0 integer
o

nd xlr < say for each j =0, 1,..., n. Further, this restriction of X to irreducible elements does
10t affect the quality of the upper bound d on z.

>roof. From the previous lemma it follows that all coefficients of the Lagrangean subproble;
néa? L(t,x) are non-positive and therefore an irreducible solution is always optimal. E

VIAY CHANDRU AND MICHAEL A. TRICK 141

Henceforth, we assume that X has been restricted to its irreducible set. As noted in Section
2, the dual problem can be represented as a large-scale linear program whose linear program-
ming dual is given by:

T n
Zip = maxz c0h+z ((:Ja0 —cya;)xj A, (PLP)
=1 J=0
T "
SLY b= ax)i, 20
=1 =0

N=0foraliz=172,.,T

It is useful to note here that if an optimal solution to PLP is integer valued (i.e. A,;* = 1 for some

¢, then we will have an optimal solution x') for the KP. Now, we go on to construct a thresh-
old value S for the modulus parameter s, beyond which the linear program (PLP) is forced to
have an integer-valued optimal solution.

Lemma 4.3. (b + 1) is a strict upper bound on the sum of non-negative numbers {x}/=1,2,..., n
which satisfy

n

Z a;x; Sb.

J=0

Proof: Recall that 2 a,21 for all j=1,2,...,, n. Therefore, maximum value attainable by the
sum of x, variable satisfying the said sign and inequality constraints is the maximum of the ra-

tios (b/a,) for j = 1,2,..., n. This number is always strictly less than (b + 1).]
Threshold modulus:
Define

”
S’ = max z a,x,~b
=1

"
Sty x <bhtl
j=1

xz0forj=1..n
The threshold value is then tai(cn tobe
S=[(Sla]+ 1

142 OPTIMAL LAGRANGE MULTIPLIERS

which is no larger than O(b*) by inspection.

Consider the partition (X, X,) of the irreducible set X.
Xy =< EX:Z x, <b+l
=)
X=X\ X,
Let (T3, T») be the associated partition of the index set {1,2,..., T}.

Lemma 4.4. Beyond the threshold modulus (i.e. s 2 S) and for all t in T; we have the inequal-
ity, Z'j':oa]x; 2b.
Proof: Since x'is in X for all r & Ty, we have
"
agxy + 2 a,x} —b = 0(mod say) .
=1
By the definition of T and the threshold value § we also know that
n
z ax, ~bi<sayfortefands>S.
j=L

The lemma now follows since both a4y and x{ are non-negative in value.]

Lemma 4.5. Beyond the threshold modulus (s > S) and for any feasible solution A in PLP we
must have Z, =0 forallt e T,

Proof: Suppose A is a feasible solution in PLP, then
n n
2 b—z ax, ﬂ.,z [b—z axi A, 20,
rely J=0 tel, J=1

The first term is non-positive from the observations that 2 s non-negative and the previous
lemma implies that each of the parenthetic expressions is non-positive. Therefore,

2 b~§": ajx;]}:, =0.

el j=0

Excluding the non-negative terms, agxg yields

VUAY CHANDRU AND MICHAEL A. TRICK 143

2 [b—i ajx;]zf >0
=]

teTy

Now suppose the lemma is false, i.e. Z /_l, =7 >0. Consider

1T,

F=(1/7)Y Al

el

Clearly, ¥ 20 and further

[b—i ajfjjzllyz [b-i ajx;]I, 20.
J=1

J=1 tel,

Lemma 4.3. implies that

> % <+,
=1

But, from the definition of T (and X,), we have

n

2 xi2b+1)

=1
for each t in 7. Thus a contradiction has been reached. 0
The lemmas can now be combined to give the main result.
Theorem 4.6. KP is polynomial-time reducible to the group knapsack.

Proof: Given an instance of KP we set up the Lagrangean rclaxation as described above
to obtain a Lagrangean dual problem whose associated subproblem is the group knapsack
problem (GP). Assume further that the modulus parameter s is taken to be above the thres-
hold value. Note that the threshold value § is O(b%) and is hence polynomial-space bounded.
This ensures that the set X is succinct and finite as needed for assumption (A2) (Section 2) to
hold.

Theorem (3.2) now implies that the Lagrangean dual for this sct up is polynomial time
equivalent to the group knapsack problem. To complete the proof we need to now argue that
Lagrangean dual problem solves the integer KP.

Suppose A* is an optimal solution for PLP. From lemma (4.6), we have:

144 OPTIMAL LAGRANGE MULTIPLIERS
n
sl
teT) J=1
T -

€T}
X, 20forallteT,.
From lemma (4.5) we know that

7

b~) ax; 20foreachte T,

7=l

4

Therefore, for each r* € T for which X, > 0 we must have
n
P
Z ax; =b
=0

and hence x}* is optimal in KP with (y, = xf;) . Note also that PLP will be infeasible if and

only if KP is infeasible. Thus, PLP is equivalent to KP. But the Lagrangean dual problem is
exactly the linear programming dual of PLP. Hence the theorem. O

This theorem may be viewed as an extension of results in polynomial time aggregation of
integer programming problems. The most general of these results was proved by Kannan®®.

Theorem 4.7. The general integer programming problem
max {cx : Ax =b, x 2 and integer}
is polynomigl-time reducible to a knapsack problem.

This result does not assume explicit bounds on the variables. The two theorems can there-
fore be combined to yield.

Theorem 4.8. The general integer programming problem is polynomial-time reducible to a
group knapsack problem.

As was stated in the introductory paragraph of this section, all these theorems are also con-
sequences of the fact that the three problems—integer programming, knapsack and group
knapsack-—are NP-hard with NP-complete decision analogues. The new result is that direct
reductions are possible. The reduction of knapsack to group knapsack-—as described in this
section—is a Turing reduction in that an instance of the knapsack problem is to be solved. It
would be interesting to find an ‘instance-to-instance’ reduction (Karp or many-to-one reduc-
tion™) for these problems. Finally, we note that the Lagrangean constructs of this section can

VDAY CHANDRU AND MICHAEL A. TRICK 145

be used to directly prove Theorem 4.8. This was shown in Chandru® and involves, in addition
to the ellipsoid algorithm, some preprocessing using the polynomial-time Smith normal form
algorithm of Kannan and Bachem™.

5. Optimizing over valid inequalities
We use the results of the previous section to provide an alternative method for optimizing
over classes of valid inequalities of integer polyhedra. This method has the advantage
using optimization algorithms rather than separation algorithms. For many classes of valid ine-
qualities, the corresponding optimization algorithim is more efficient than the separation algo-
rithm.
Consider a discrete optimization problem:
max{cx:x e S} Q)
where S is some (very large) set of points. An inequality ax < b is valid if ax’ < b for all X’ & §.
For rmany important problems, certain classes of inequalities have been shown to be valid ine-
qualities.
Given classes of valid inequalities A\x < by, Azx < by,... X £ by, S can be relaxed to:
max{cx : Aix £ by, Asx £ by, AX S by} F)
A solution to (F) gives an upper bound on the value of Q.

In many problems, the classes of valid inequalities found can contain an exponential num-
ber of constraints. If the separation problem is polynomially solvable for each class, then F is
polynomially solvable by the ellipsoid algorithm. Furthermore, if the separation problem is
solvable for a class of valid inequalities, then the optimization problem over that class alone js
solvable. For instance, if for any x” it is possible to find a constraint of A;x £ b; that is violated
by a x’, or determine that none exist, then

max{cx: Ax < b}

is also solvable in polynomial time by the ellipsoid algorithm. In some cases, however, the op-
timization problem is much easier than the separation algorithm. An example of this is the
subtour elimination constraints of the TSP. The number of such constraints is exponential in
the number of cities to be visited but optimizing over the constraints is easy, The optimization
problem is essentially a spanning tree problem (as shown in Held and Karp®"). The separation
problem is a series of minimnum cut problems and is more time consuming (though still poly-
nomial) than just finding an optimal spanning tree.

We can exploit these more efficient optimization algorithms by combining Lagrangean de-
composition with the ellipsoid algorithm.
Theorem 5.1. If the optimization problem for each of these classes of valid inequalities Apx <
by,..., ApX < by is polynomiaily solvable, then the optimal value of F can be found in polynomial
time.

Proof: Consider the following, equivalent, formulation of A:

146 OPTIMAL LAGRANGE MULTIPLIERS

max{cx' : Ag' < b, ¥ =1 Vi. ()

This can be solved by repeated applications of Lagrangean decomposition, so Theorem 3.2
provides a polynomial bound. [}

We illustrate our results on a relaxation of the TSP. An extensive review of previous results
of TSP can be found in Lawer ef al.?! Let Ajx < b; be the 2-matching constraints which force
exactly two edges to meet every node. Let Apx < b, be the subtour elimination constraints
which force the tour to be a single loop. Both sets have an exponential number of constraints.
The linear programming relaxation consisting of just Ay and A, (along with upper and lower
bounds on the variables) does not necessarily give an optimal solution to the TSP, for there
may be fractional optimal solutions. Previously, applying the ellipsoid algorithm directly was
the only polynomial algorithm for solving this relaxation.

(Primal ellipsoid). Solve F with the ellipsoid algorithm, solving the matching separation
and subtour elimination separation problem at each iteration. -

Our results give an alternative polynomial method.

(Dual ellipsoid): Solve F' with the ellipsoid algorithm and Lagrangean decomposition
solving a matching optimization problem and a subtour elimination optimization problem at
each iteration.

The separation algorithms required by the primal ellipsoid algorithm are quite complex.
The subtour elimination separation algorithm is a series of minimum cuts of a graph. The
matching separation algorithm is even more complex and, generally, heuristics are used to
identify violated constraints.

In contrast, the optimization algorithms required by the dual ellipsoid are quite simple. The
subtour elimination optimization algorithm is very efficient, being simply the greedy algorithm.
The matching optimization algorithm is another well-known algorithm (Edmonds®) with effi-
cient implementations widely available.

It does not seem possible to determine a priori which of the alternatives is the most efficient
for a given set of valid inequalities, as the number of iterations each algorithm requires is not
known. In cases where the optimization algorithms are very effective, however, the dual ellip-
soid method is a promising alternative.

6. Computational results

In this section, we give computational results for finding optimal multipliers for the one-tree
relaxation of the TSP. The ellipsoid algorithm finds very good, but not optimal, solutions very
quickly. This makes the ellipsoid algorithm very attractive in applications like branch and
bound where good solutions are required quickly and the marginal advantage of optimal solu-
tions is small. However, the ellipsoid algorithm is slower by a factor of two to three in finding
the optimal multipliers on the problems examined, making the algorithm inferior in cases
where the optimal solution is required. The ellipsoid algorithm also has the practical advantage
of being almost parameterless. Subgradient optimization, in contrast, has numerous parameters
that must be ‘fine-tuned’ for efficient operation.

VIJAY CHANDRU AND MICHAEL A. TRICK 147

First, we give a brief description of the one-tree relaxation for the TSP. A more detailed de-
scription is in Held and Karp®®**,

For an undivected graph G, with costs on each edge, the TSP is to find a minimum cost set
H of edges of G such that:

1. exactly two edges of H are adjacent to cach node, and
2. Hforms a connected, spanning subgraph of G.
Condition 1 certainly implies:

3. exactly two edges of H are adjacent to node 1, and

4. H has n edges, where n is the number of nodes in G.

We now relax Condition 1. The problem of satisfying Conditions 2, 3 and 4 is the minimum
cost one-tree problem, for any graph that satisfies these conditions is a spanning tree plus an
extra edge.

‘We can easily find the minimum cost one-tree as follows:

Step 1. find the minimum spanning tree in G-{1}.

Step 2. find the two smallest cost edges incident to node 1.

The edges in the spanning tree in Step 1 together with the edges in Step 2 form the optimal
one-tree.

If the constraints associated with Condition 1 are placed in the objective with Lagrangean
multipliers, we get the one-tree Lagrangean relaxation for the TSP. We will use this relaxation
to determine the effectiveness of the ellipsoid algotithm for finding Lagrangean multipliers.

We use straightforward implementation of the ellipsoid algorithm with just a single parame-
ter: the radius of the initial ellipsoid.

In contrast, we had to do extensive testing to determine the best method of implementing
subgradient optimization for the problems we were interested in. The details of the choice of
step size are in the appendix. Four parameters are required:

(a) an overestimate of the optimat cost;

(b) an initial step multiplier;

(¢) an iteration limit; and

(d) a step length divisor.

We chose values for b, ¢ and d by experimentation. The overestimate of the optimal cost
was based on the historical optimal costs generated by our problem generators.

We created two problem generators: first, the random gencrator assigns costs randomly

drawn from a uniform distribution; second, the Euclidean gencrator places nodes randomly in a
square with the cost on the edge between two nodes equalling the distance between the nodes.
All testing was done on an IBM PC/XT* with a math co-processor.
*These experiments were carried out when the authors were attending a summer school and the only machine availabte
to them was an 1BM PC/XT. Clearly, with today’s superfast machines, the CPU timings would shrink to a small factor
of those reported here. However, the relative performance of the methods tested, i.e. the subgradient and ellipsoid
methods, would remain unchanged.

148 OPTIMAL LAGRANGE MULTIPLIERS

Table I

Time to optimality

Problem type Average time to optimality (s)
Ellipsoid Subgradient Ratio

Random—20 nodes 219 68 323

Random—50 nodes 2916 937 311

Buclidean-20 nodes 105 83 127

Euclidean-50 nodes 2677 898 298

Two sets of problems were created by each generator, one with 20-node problems and an-
other with 50. Five problems were generated in each set, and the results were averaged over the
five. Table I gives the time required to find the optimal solutior, defined to be within one of the
optimal solutions. The ellipsoid method was two to three times slower than the subgradient
optimization.

The ellipsoid method seems to have great difficulty in the final stages of the algorithm.
While it found very good solutions quickly, it required a large number of iterations to find the
optimal solution. Subgradient optimization did poorer initially but once good solutions were
created, it found optimal solutions quickly. This is shown in Figs 1 (20-node) and 2 (50-node).
The vertical axis is best objective function found, expressed as a percentage of the optimal so-
lution. The horizontal axis represents time. The results shown are for the random problems; the
Euclidean results are similar.

In some applications, getting the optimal solution is not as important as getting very good
solutions quickly. For instance, in branch and bound, the objective function is used to identify
search directions that do not need to be explored further. In general, a small difference in the
objective function will not significantly affect the decision on whether or not completely search
the tree. In this case, it may be better to stop quickly with suboptimal solution rather than spend
excessive time finding an optimal solution which will rarely affect the search decision. The

100 100
90 4 a0 -
%ol %of
Optimal— Optimal—
80| 30|
8 - T T T T T 70—[T T T T T
¢ 0 Dime(s 4O 60 0 5 Time(y 0 15
[0 subgradient Ellipsoid subgradient Ellipsoid
+ +

FiG. 1. 20-node results. FIG. 2. 50-node results,

VIJAY CHANDRU AND MICHAEL A. TRICK 149

ellipsoid algorithm is a good approach in these cases. For example, in our random 50-node
problems, terminating the ellipsoid algorithm after two minutes gives solutions that are 95% of
the optimal value. Terminating subgradient optimization at that time gives only 75% of the
optimal value. We would have to use subgradient optimization for more than six minutes to get
a95% solution.

In other applications, getting the optimal solution is more important. In those applications,
subgradient optimization may be better.

One further advantage of the ellipsoid method is the lack of paramcters. Computational
times for subgradient optimization depend heavily on the choice of values for the parameters.
For instance, choosing the number of iterations to be 25 rather than 10 almost doubled the
average time to optimality for the 50-node problems in our tests. The results given here use
finely mned parameters. A poor choice of parameters will degrade the effectiveness of subgra-
dient optimization. In contrast, the ellipsoid method has just one parameter: the radius of the
initial ellipsoid. If this parameter is too small, then the optimal multipliers will occur on the
boundary of the initial ellipsoid. This condition can easily be checked and re-optimization can
take place. Providing this value is large enough, the algorithm is relatively insepsitive to spe-
cific values.

An interesting possibility is to combine the best features of the two approaches. A hybrid
algorithm that begins with ellipsoid algorithm to get a very good solution and then uses sub-
gradient optimization to find an optimal solution might dominate each algorithm individually.

7. Conclusion

In this paper we have examined the theoretical (worst-case) complexity of the Lagrangean
relaxation method. The main result shown is that the ellipsoid method is a theoretically effi-
cient method for choosing optimal multiplier vatues. This result is shown to have both theoreti-
cal and practical implications. As topics for further investigation we present two recommenda-
tions.

The first is to identify Lagrangean constructions that involve polynomial time-solvable
subproblems and to attempt reformulation of the Lagrangean dual problems with the objective
of obtaining small-size linear programming descriptions. Some preliminary results along
these lines have been obtained by Martin™. The second recommendation concerns computa-
tional testing along the lines of Section 6 for other examples of Lagrangean relaxation. The
results of this paper were addressed to general-purpose methods for finding good Lagrangean
multipliers. Additional testing on problems other than the TSP is needed to ascertain the true
contribution of the framework presented in this paper to practical computation in discrete op-
timization.

References
1 MacGNANTL T. L., SHAPRRO, J. F. AND Generalized linear programming solves Lhe dual, Mgmt Sci., 1976,
‘WAGNER, M. H. 22, 1195-1203.

Mathematical programmung; structures and algorithms, Wiley,
1979.

2. Suapro, J.F.

150

v

~

o

w

=

14.

20.

21

e

22.

23.

OPTIMAL LAGRANGE MULTIPLIERS

. GLOVER, F. AND KLINGMAN, D.

. GUIGNARD-SPIELBERG, M.

. SHOR, N. Z,

Haduan, L.G.

. BLAND, R. G., GOLDFARB, D. aND

Tobp, M. .

. CHANDRU, V.

. SCHRIVER, A

. FisuEr, M. 1.

. FisHeR, M. L.

. GEOFFRION, A M.

. SHAPRO, J.F,

GaREY, M. R. aND Jonnson, D. S.

. GATHEN, J. AND SIEVEKING, M.

Gorrn, 1. 1.

. AKGUL, M.

. PADBERG, M. W. anD Rao, M. R.

. Karp, R. M. AND ParapimrTrion, C. H.

GROTSCHEL, M., LOVAsz, L. AND
SCHRUVER, A,
Lovasz, L

ECKER, J. G. AND KUPFERSCHMID, M.

KARMARKAR, N. K,

Layering strategies for creating explowable structure m linear and
integer programs, Techncal Report CBDA 119, Graduate Schoo}
of Business, University of Texas, 1985,

Lagrang dec ion: An over Lagrangean and
surrogate duals, Techmcal Report #62 ‘Wharton School, University
of Peansylvania, 1984.

Convergence rate of the gradient descent method with dilation of
the space, Cybernencs, 1970, 6, 102-108.

A polynormial algorithm m linear progranumng, Sov. Math. DokL,
1979, 20, 191-194.

The ellipsoid method: A survey, Op. Res , 1981, 29, 1039-1091.

The complexity of the super-group approach to integer program-
ming, Ph. D. Dissertation, O.R.Center, MIT, 1982,

The theory of linear and integer programming, Wiley, 1986.

The Lagrangean relaxation method for solving integer programmng
problems, Mgmt Sci., 1981 27, 1-18.

An applications oriented guide to Lagrangcan relaxation, Interfaces,
1985, 18, 10-21.

Lagrangean relaxation for integer programming, Maih. Prog. Study,
1974, 2, 82-114.

A survey of Lagrangean techniques for discrete optunization, Ans.
Duscrete Math., 1979, 5, 113-138.

Computers and intractability: A guide to the theory of NP-com-
pleteness, W H. Freeman, 1979.

A bound on solutions of equalities and inequalities, Proc. Am.
Math. Soc., 1978, 72, 155-158.

Variable metric relaxation methods, Part II: The ellipsoid method,
Math. Programming, 1984, 30, 147-162.

Topics in relaxation and ellipsoidal methods, Research Notes in

Mathemancs, Pitman, 1984.

The Russian method; I, I, II. Working Papers, Graduate School of
Business Admini ion, New York University, 1980,

On linear characterizations of combinatorial optimization problems,
Proc, Foundations of Computing Science, TEEE, 1980.

Geometric algorithms and combmatorial optumization, Springer-
Verlag, 1988.

An algoruhmic theory of numbers, graphs and convexity, SIAM
Press, 1986

An ellipsod algorithm for nonlinear programming, Math. Program-
ming, 1983, 27, 83-106.

A new polynomial-time algonthm for lincar programmung, Combi-
natorica, §984, 4, 373-395.

24,

26.

27.

28.

29.

30.

31

32.
. HELD, M. AND KaRP, R. M.

VHAY CHANDRU AND MICHAEL A. TRICK 151

GROTSCHEL, M., LovAsz, L. anp
SCHRIUVER, A.

. MarTIN, R. K.

BeLL, D. E.

BELL, D, E. AND SHAPIRO, J. F.

KanNaN, R.

KANNAN, R. AND BACHEM, A.

HeLp, M. aND KaRP, R. M.

LAWLER, E. L., LENSTRA, J. K.,
RiNNOOY KN, A, H. G. AND
SumMovs, D. B. (EDS)

EpMONDS, J.

Appendix 1: The step size

The ellipsoid method and its consequences in combinatorial
optimization, Combiratorica, 1981, 1, 169-197, (Corrigendum:
1984, 4, 291-295).

Using separation algorithms to generate mixed integer model refor-
mulations, Op. Res. Lett., 1991, 10, 119-128.

Constructive group relaxation for integer programs, SIAM J. Appl.
Math., 1976, 36, 708-719.

A convergent duality theory for integer programming, Op. Res.,
1977, 25, 419434,

Polynomial-time aggregation of integer programming problems,
JA.CM., 1983, 30, 133-145.

Polynomial algorithms for computing the Smith and Hermite nor-
mal forms of an integer matrix, SIAM J. Computing, 1979, 8, 499
507.

The travelling-salesman problem and mumimum spanning trees,
Op. Res., 1970, 18, 1138-1162.

The travelling salesman problem, Wiley, 1985.

Paths, trees and flowers, Can. J. Math., 1965, 17, 449-467.

The travelling: problem and mini panning trees: Part

11, Math. Programming, 1970, 1, 6-25.

As mentioned in an earlier section, subgradient optimization requires a sequence of step sizes
{3} to determine the sequence of multipliers {1;}. The most effective method we found was:

was 10 for all problems we examined.

(a) Let 1° be the zero vector and define x’ to be the optimal solution to D,y (the Lagrangean

subproblem associated with (£);

(b) Let w* be an overestimate of v(D) and {7} a sequence of scalars such that 0 < 7, < 2;

(c) Let

where

v(-

o =v(D,J)

g T TT ;e
U by — AP

= the optimal value of problem (),
= the Euclidean norm of -,
Ayx = b, = the relaxed constraints.

We tried various alternatives for 7 before deciding on setting i, = 1 and decreasing 7, by a
factor of two whenever a fixed number of iterations has passed without an improvement in the
objective (this is based on a suggestion in Fisher'). The best value for this number of iterations

