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1. Introduction 

Lagrangean constraint relaxation methods are multiplier methods for mathematical program- 
ming problems that are dual-based, approximation methods. For convcx programming prob- 
lems, these are exact dual methods. In the presence of non-convexities, the approximation 
achieved by these methods is equivalent to a simple c~nvexification'.~. In the context of integer 
progran~ming, Lagrangean relaxation has been used in a variety of applications with generally 
favorable results. Two features of these mcthods have contributed to their success. The first is 
that judicious choicc of the constraints to be relaxed leads to useful exploitation of special snb- 
stmctures that exist in most applications. The second featurc is that these methods oltm pro- 
vide excellent bounds on the optimal objective value. These are critical in I-estricting the con- 
binatorial explosion inherent in partial enumeration methods, such as branch and bound, for 
these discrete optimization problems. 

Lagrangean decomposition3~' is a related idea which involves making copies of variables 
and splitting the integer program into two or more sobproblems. bagrangean decomnposition is 
used when there are two or more exploitable substructures in the integer program. In principle, 
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Lagrangean decomposition is a special case of Lagrangean relaxation applied to a reformula- 
tion of the integer program. 

A firndanzental problem in both Lagranfean reluxation and decomposition is the search for 
optimal Lagrangean multipliers. This mvolves the maximization of an implicitly defined 
pieccwise linear and concave function. in current practice, subgradient optimization techniques 
are normally used to solve this non-differentiable optimization problem. However, L\ese tech- 
niques are not pure ascent methods and are not even finitc algorithms in the strict sensc. They 
are heuristically terminated and uncertainty as to whether the optimal multipliers have been 
found is unavoidable. 

The ellipsoid method was proposed by Sho? of the erstwhile Soviet Union as a space dila- 

tion method for non-differentiable convex programming. ~ai-i jan6 (pronounced Khachiyan) 

later observed that with minor technical modifications this algorithm solves linear program- 
ming problems in polynomial time. A large body of work on the ellipsoid method exists. The 
survey paper by Bland et al.' gives an early account of these developments. 

In this paper, we propose the use of the ellipsoid algorithm to compute optinlal Lagrange 
multipliers. Our justification of this proposal stems from both theoretical and computational 
perspectives. It may bc notcd that the use of the ellipsoid algorithm to solve the multiplier 
search problem was advocated by ~handru* in 1982. It has also been briefly discussed in the 
compendium of ~chrijver'. 

In the following section, we review some background results in Lagrangean relaxation and 
decomposition as well as the optimization/separalion equivalence implied by the ellipsoid al- 
gorithm. In Section 3, we show that the ellipsoid algorithm provides a polynomial-time 
('hnng) reduction of the multiplier search problem to the Lagrangean subproblem. As a theo- 
retical consequence of this theorem, we show in Section 4 mat a general integer linear program 
can be reduced to a group knapsack problem. We present some preliminary computational evi- 
dence, in Section 5, that the ellipsoid method i 6  practical and robust for obvaining good La- 
grange multipliers quickly. The computational results are for the I-tree relaxation of randomly 
generated lravelling salesman problems (TSP). 

2. Preliminaries 

In what follows, we briefly review the results in Lagrangcan relaxation that are of relevance to 
later sections. We also present the main result in connection with the ellipsoid algorithm that 
we shall need. Several survey have been written on Lagrangean relaxation. 
Throughout this paper we shall assume some familiarity with computational complexity theory 
at the level found in the trcatisc by Garey and John~on'~.  

The problems of Interest to use are discrete optimization problems of the fonn max{cx : 
x E S )  where S is a discrete set belonging to the collection of d-vectors of 0s and Is or some 
positive integer values. The complexity of (he procedurcs we shall discuss will be relative to 
the input length L of this problem. For example, when we discuss the TSP on a complete 
graph, the input length is with respect to a binary encoding of the distance matrix and not with 
respect to an integer programming formulation of the TSP. 
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2.1. Lagrangean relaxation and decomposition 

Consider a representation of a discrete optimization problem in the form: 

( P ) z = m a x { c x : A x > b , ~ ~  X C P ) .  

We assume throughout that 

(At) The explicit constraints (Ax 5 b) are small in number and dimension. More precisely, 
the dimensions of the matrix A are bounded by some polynomials in L. 

(Al) The implicit constraints, embodied in X,  have afinite description. By this we mean that 
X can be replaced by a finite list {xl, 2,... xT}. 

Note that assumption (A21 is much milder than it may appear at first reading. For example, 
the results of Gathen and SievekingI5 imply that any integer linear program or mixed-integer 
linear program can meet this assumption. 

Definitions 2.1. The following definitions are with respect to (P) 

Lagrangean: L(u, x) = u(b -Ax)  + cx 

Lagraugean subproblem: max,,x{Fx = (c- uA)x) 

Lagrangean dual function: L (u) = max,, L(u,x) 
Lagrangean dual problem: d = min, L. , q u )  

It is easily shown that (D) satisfies a weak duality relationship with respect to (F'), i.e. z 5 d. 
The assumption (A2) also implies that L(u) is a piece-wise linear and convex function. In fact, 
both these properties may be observed from the equivalence of (D) to the large-scale linear 
program: 

d = min,, q(DLP) 

The usual linear programming dual of (DLP) is given by: 

T 

zLP = max (cx2)Ai (PLP) 
i=l 

Many interesting characteristics of Lagrangean relaxation such as convexification, integrality 
propeay, etc. may easily be derived from these formulations (see Shapiro'3). In practice, the 
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constraints X art chosen such that the evaluatioli of the Lagrangean dual function d(u) is easily 
made (i.e. the kagrangean subproblem, max, .~{?xi;rj is easily solved). 

Lagrangean decomposition is used when Ihi: underlying integer program has two or more 
exploitable substructures. To illustrate the idea, let us consider the integer program: 

The iirst step is to formulate (P2) as Sollows: 

z2 = max cx' 
s.t. Dlxi < d, 

D2x' 2 d2 

s', x' 2 0, integer 

The linking constraints (xi - ,I?= 0) are now treated as tbe explicit constraints yielding the dual 
problem: 

Notc that (D;) is the usual Lagrangean dual problem associated with (P i ) .  The dual variables 
JI  are unrzstricted in sign in this case since the explicit constraints ( X I - 2 =  0) are equality 
constraints. The problem again is to find the optimal Lagrangcan multipliers. Because La- 
grange'an decomposition can be seen as Lagrangean relaxation of a suitably reformulated 
problcm, any mcthod to find the multipliers for Lagrangcan relaxation can also be used for 
Lagrangean decomposition. 

2.2. Ellipsoid a!~or i l hm 

The most commonly used general method of finding the optimal n~ultipliers in Lagrangean 
relaxation is subgradient optimization. Subgradient opthization is the non-differentiable 
counterpart of steepest descent methods. Given a dual solution uk, the iterative rule for creating 
a sequence of solutions is given by: 

uk+ = uk+ tkY(uk) 

where x(u3 is a maximize1 oC ma,. ~ ( 3 ,  x) ti is an appropriately chosen step size 

Subgradient optimization has proven effective in practice for a variety of problems. It is 
possible to choose the step sizes { t ~ }  to guarantee convergence to the optimal solution. IJnfor- 
tunately, the method is not fmite, in that the optimal solution is attained only in the limit. Fur- 
ther, it is not a pure descent method and bounds on the suboptimality of the current iterate are 
not generally available. In practice. the method is heuristically terminated and the best solution 
in the generated sequence is recorded. In the context of non-differentiable optimization, the 
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ellipsoid algori(hm was devised by Shors to overcome precisely some of these difficulties with 
the subgradient method. The ellipsoid algorithm may be viewed as a scaled subgradient method 
in much the same way as variable metric methods may be viewed as scaled steepest descent 
methods (cf.  offi in'^). 

The ellipsoid algorithm of She? gained prominence in the late 1970s when ~ a ~ i j a n ~  

showed that this convex prograrmning method specializes to a polynomial-time algorithm for 
linear programming problems. This theoretical breakthroogh naturally led to intense study of 
this method and its properties. The survey paper by Bland et aL7 and the monograph by Ak- 
giil" attest to this [act. Direct theoretical consequences for combinatorial optimization prob- 
lems was independently documented by Padherg and Raoi8, Karp and ~ a ~ a d i m i t r i o u ' ~  and 
Grbtschel et aLzo For an elegant treatment of the many deep theoretical consequences of the 
ellipsoid algorithm, the reader is directed to the monograph of ~ o v ~ s z ~ ~  and the book by Grot- 
schel et 

Computational experience with the ellipsoid algorithm, however, showed a disappointing 
gap between the theoretical promise and practical efficiency of this method in the solution of 
linear programming problems. Dense matrix computations as well as slow average-case con- 
vergence properties are the reasons most often cited for the behaviour of the ellipsoid algo- 
rithm. On the positive side, though, it has been noted (cf. Ecker and Kupferschmidzz) that the 
ellipsoid method is competilive with the best-known algorithms for (nonlinear) convex pro- 
gramming problems. 

We first give a brier description of a very simple fomi of the algorithm so as to be able to 
describe later how we will use it in solving the Lagrangean dual problem. 

Let us consider the problem of testing if a polyhedroi~ QE dP, defined by linear inequali- 
lies, is non-empty. For technical reasons let us assume that Qis rational, i.e. all extrcmc points 
and rays of Q are rational vectors or equivalently that all inequalities in some description of Q 
involve only rational coefficients. The ellipsoid method (in contrasl with the simplex method 
and Karmarkar's algorithm23) does not require the linear inequalities describing Q to be ex- 
plicitly specified. It sufiices to have an oracle represeqtation or Q. Several different types of 
oracles can be used in conjunction with the ellipsoid 24. We will use the strong 
separation oracle described below. 

Oracle: Strong separation (Q, y) 

Given a vec to r  y E #f, decide whether y E Q, and i f  not f i n d  a 

hyperplane t h a t  s e p a r a t e s y f r o m  Q;more p r e c i s e l y ,  f i n d  a 
v e c t o r  c E &such  t h a t  cZy <min{cTx I x E Q}. 

The ellipsoid algorithm initially chooses an ellipsoid large enough to contain a p& of the 
polyhedron Q if it is non-empty. This is easily accomplished because we h o w  that if Q is 
non-cmpty then it has a rational solution with values bounded by a function of the largest co- 
efficient in the linear program and thc dimension of the space. 

The centle of the ellipsoid is a feasible point if the separation oracle tells us so. In this case, 
thc algorithm terminates with the coordinates of the centre as a sohtion. Otherwise, the separa- 
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tion oraclc outputs an inequality that separates the centre point of the ellipsoid from the poiy- 
hrdron Q. We translate the hyperplane defiled by this inequality to the centse point. The hy- 
perplane sllces the ellipsoid into two halves, one of which can be discarded. The algorithm now 
create? a new ellipsoid that is the minimum volume ellipsoid containing the remaining half of 
the old one The algorithm questions if the new centre is feasible .and so on. Thc key is that the 
new ellipsoid has substantially smaller volume than the previous one. When the volume of the 
current ellipsoid skrinks to a sufficiently small value, we are able to conclude that Qis empty. 
This fact is used to show the polynomial time convergence of the algorithm. The details are as 
follows. 

Ellipsoids in 1P' are denoted as E(A, y)  where A is a d x  d positive d e h i t e  matrix and 
y E &is the centre of the ellipsoid E(A, y). 

E(A, y) = {x t &l(x - -  y ) T ~  '(x - y )  5 I >  

Thc ellipsoid algorithm is described on the iterated values, An and 2 which specify the under- 
lying ellipsoids Ek(Ak, xkj. 

Procedure: Ellipsoid ( Q  

0. Initialize: . N: = N ( Q  (comment: i t e r a t i o n  bound) 

* R: =R(@ (comment: radius o f  the initial ellipsoidlsphere Eo) 
AO: = R ~ I  

10: = O  (comment:: c e n t r e  o f  &) . k : = O  

1 .  Iterative step: 

while k < N 

call strong separation (Q, 2) 
if 2 E Qhalt 

else hyperplane {x E & i cTx = co) separatesxk from Q 
Update 

endwhiie 

2. Empty polyhedron: 
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e halt and declare "Qis  empty" 

3. End 

The crux of thc complexity analysis of the algorithm is on the a priori determination of the 
iteration-bound N(Q. This in turn depends on three factors. The volume of the initial ellipsoid 

4 (determined by R(@). the rate of volume sh.nkagc [- < e $' and the volume 

threshold at which we can safely conclude that Qrnust be empty. The assumption of Qbeing a 
rational polyhedron 1s used to argue that Q c a n  be modified into a full-dimensional polytope 
without affecting the decision question ("Is Q non-empty?"). After careful accounting for all 
these technical details and a few others (for example, compensating for the round-off errors 
caused by the square root computation in the algorithm) it is possihle to establish the following 
fundamental result. 

Theorem ~ 2 ' ~ .  ", '! There exists a polynomial g(d, $1 such that procedure Ellipsoid (QJ 
runs in time bounded by T, g(d, $) where $ is an upper bound on the size of linear inequalities 
in some description of Qand T is the mwlimum time required by the oracle s t r o n g  scya 
ration(() ,  y) on inputs y of size at most g(d, $). 

Consider a linear optimization problem 01 the form: 

OPT min{dy: Y t C?) 

when Qis as described above. Optimizing the linear function dy over the convex body Qcan 
be done by the 'sliding objective function' vaiant of the ellipsoid algorithm as described in 
Bland et ak7 If a feasible point y' is found, the method adds an inequality (dy 5 dy'- 6) for 
some positive 6 Since y' violates this constraint, it solves the separation problem for this itera- 
tion. As a consequence, we get the following corollaries to Theorem 2.2. 

Corollary 2.3: The optimization problem (OPT) is solvable in polynomial-time if and only if Q 
has apolynomial-time generator of separating inequalities. 

Corollary 2.4: OPT is NP-hard <f and only ifthe separation problem is also NP-hard. 

In combinatorial optimization, these results are often used to indicate polynomial solvahil- 
ity or various problems and to provide an approach for NP-hardness classification. We shall 
give an illustration of this idea in Section 4. 

3. Ellipsoid method solves the Lagrangean dual 

This is obtained by applying Theorem 2.2 and its corollaks to the optimization pi-ohlem 
(DLP) for choosing optimal Lagrange multipliers. 

Lemma 3.1. The generator of separation inequalities in DLP and h e  Lagrangean subproblem 
~ n a x , , ~ x  L(u, x) are polynomial-time equivalent. 

Proof: Given a solution (v,I i)  the separation problem is to determine whether v is an up- 
per bound on the dual functional value I ( $  = ma,, L(Ii ,x) .  If not, an obvious separating 
inequality is given by (5- I ( @  2 0 ) .  Thus, the separation problem is easily solved once we 
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have a method for solving the Lagrangean subproblem. Conversely, if we are given a separa- 
tion oracle and a fixed u" , it is possible to obtain l ( G )  by performing a binary search on the 
range of values that q can take to obtain the least upperbound on Llii). 0 

Thus, we have 

Theorem 3.2: The Lagrangeun dual problem is polynomial-tim~ solvable if and only if the 
Lagrangean subproblem is. Consequently, the Lagrungean dual problem is NP-hard and 
only ifthe Lagrangean subproblem is. 

The theorem suggests that in practice if we set up the Lagrangean relaxation so that the 
subproblem is @actable, then the search for optimal Lagrangean multipliers is also tractable. Of 
course, this search problem may be solved by h e  ellipsoid method and our computational re- 
sults reported in Section 6 indicate the viahility of this approach. A less direct implication is 
that we may be able to reformulate the Lagrangean relaxation-bound calculation as an optimi- 
zation problem that can be solved by non-ellipsoid methods in polynomial-time. Results of 
 arti in" provide some evidence that variable redefinition methods can bc used to solve the 
Lagrangean dual problem as a compact (polynomial-size) linear program in many cases. 

In practice, however, the Lagrangean relaxation is oftcn set up so that the resulting subprob- 
lem is NP-hard but not 'pathologically' hard. For example, the relaxation of general assignment 
problems by  ish her" yields a subproblem that is a collection of (0-1) knapsack problems. 
Knapsack problems are NP-hard but do admit pseudo-polynomial time algorithms that are ex- 
tremely efficient if the coefficients are small. Theorem 3.2 may be specialized for such situa- 
tions as follows. 

Proposition 3.3. If the Lagrangean subproblem admits a pseudo-polynomial algorithm then so 
does the Lagrangean dual problem. 

Another issue of importance from a practical perspective is hat  of bounds on the La- 
grangean function. Since the Lagrangean relaxation method is usually embeddcd within a 
branch and bound framework, early termination of the ellipsoid algorithm can be useful in 
curtailing the amount of computational effort expended at each node of the branch and bound 
tree. Early termination may be employed if we had a technique for computing good lower 
bounds on the optimal Lagrangean dual value d. The next proposition shows that such a tech- 
nique does indeed cxist. 

Proposition 3.4. Let E be the ellipsoid at any iteration of the ellipsoid algorithm (applied to 
(D)) with centre (uk, r f ) .  Let x(uk) be an optimal solution to the Lagrangean subproblem at uk. 
I f E n  {u:u>O}#@, then, 

d 2 min u(b-&(uk)). 
U E E . U ~ O  

Proof: Since E contains a feasible u, E also contains the opt~mal value for u. (D) is equivalent 
to 

d = min minL(u,x). 
usE,ulO r t X  

Restnctiug X to the single value {x(u)} yields a valid lower bound on d. 0 
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It is not difficult to optimize a linear function over the intersection of the ellipsoid and non- 
negative orthant. All of the calculations needed are required in the ellipsoid algorithm to update 
the ellipsoid. Thus, the lower bound is essentially a byproduct. 

Finally, we also note that analogous results can be obtained for the Lagrangean dual prob- 
lem (D;) that results when Lagrangean decomposition approach is taken. The interesting re- 
sult from a computational perspective is that if all the subproblems admit polynomial time al- 
gorithms then so does the Lagrangean dual problem (D; ) . 

4. A Turing reduction 

The theory of NP-completeness implies that any two NP-complete decision problems are poly- 
nomially equivalent. The existence of polynomial reductions is the motivation to look for more 
natural or direct equivalences between such problems. In this section, we will provide such an 
equivalence theorem relating integer knapsack problems (KP) to integer group knapsack prob- 
lems. The construction demonstrating the equivalence of these two NP-complete problems will 
involve Lagrangean relaxation and the polynomiality will follow from results of the previous 
section. 

An integer knapsack problem is an optimization problem of the form: 

yo, x, 5 0 and integer forj= 1, ... n 

where b L a, > 0 for all j = 0, 1,2, ..., n. Assume the ordering 

TO obtain a relaxation of KP we first substitute for yo the linear form (xo + sB) where s is taken 
to be a positive integer and both xo and O are non-negative, integer-valued variables. Relaxa- 
tion of the non-negativity restriction on O yields the formulation: 

x, 2 0 and integer for j = 1 ,..., n. 
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GP is the usual group knapsack relaxation of KP. The modulo constraint enforces integral- 

15 of the @ variables which has been substituted by [b - x ajxJ] (lla@) in GP. A Lagrangean 
r=o 

-elaxation may be realized by associating a scalar non-negative multiplier u with the relaxed 
;onstraint (sao 2 0). This yields the form: 

~ i t h  the Lagrangean dual problem defined as 

d = min max L(u, x) 
"20 IEX 

X = {(x,,xl,, ,x, ):x aJx, - b = O(modsa,)x, 2 0 and integer] 
j=o 

4s usual, we have the weak duality relationship that z is no larger than d. It is somewhat sur- 
xising therefore that the duality gap (d - z) can be set to zero by choosing a large enough value 
'or s, the modulus parameter. This is the essence of the 'convergent duality' results of ~ e 1 1 ~ ~  
md Bell and ~ha~iro" .  We shall now prove such a theorem and furthermore show that s does 
lot have to be too large (ie. s is polynomial-space bounded) for the convergent duality relation 
.o hold. First we need some technical lemmas. 

Lemma 4.1. For any non-negative value of the multiplier u we have cJ - (xu + u)(aJao) 5 0 for 
:ach j = 0, 1 ,..., n. 

c, - (CO + 4 (a/%) = cj - co(aJa0) - -(allad 

5 -u(allao) 

< 0 

where the fust inequality follows form the non-decreasing order (cdao) 2 (c,la,) ... 2 (c,/a,). 

Lemma 4.2. We may restrict the feasible set X to contain only irreducible elements, i.e. 
Y = {xl, x2, ..., x,] where x' satisfies 

a x! = b(modsao),xl t 0 integer 2 J J -  
j=O 

md x: 5 sa, for each j = 0, 1, ..., n. Further, this restriction of X to irreducible elements does 

rot affect the quality of the upper bound d on z .  

'roo$ From the previous lemma it follows that all coefficients of the Lagrangean subproblems 
nax L(p,x) are non-positive and therefore an irreducible solution is always optimal. 
xsx 
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Henceforth, we assume that X has been restricted to its imcducible set. As noted in Section 
2, the dual problem can be represented as a large-scale linear program whose linear program- 
ming dual is given by: 

It is useful to note here that if an optimal solution to PLP is integcr valued (i.e. A;" - 1 for some 

i, then we will have an optimal solution x' ) for the KP. Now, we go on to construct a thresh- 
old vnlue S for the modulus parameter s, beyond which the linear program (PLP) is forced to 
have an integer-vahred optimal solution. 

Lemma 4.3. (b + I )  is a strict upper bound on the sum of non-negativc numbers (.x,)j = 1.2, ..., n 
which satisfy 

Proqf Recall that b > a, 2 1 for all j =  1,2, ..., n. Therefore, maximum value attainable by the 
sum of xJ variable satisfying the said sign and inequality constraints is the maximum of the ra- 
tios (blu,) f o r j  = 1,2, ..., n. This number is always strictly less than (b + 1). 0 

Threshold modulus: 

Define 

The threshold value is then taken to he 

S = r(~'1aO)l + 1 
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which is no larger than 0(b2) by inspection. 

Consider the partition ( X I ,  X2) of the irreducible set X 

X2=X\X, .  

Let (Ti, T?) be the associated partition of the index set {1,2 ,..., T ) .  

Lemna 4.4. Beyond the threshold mndulrrs (i.e. s 2s) andfor all r in TI we have the inequul- 

ify, Cy=ou,n: > b. 

Proofi Since x' is in X for all t E Ti, we have 

a& + a,.( - b - O(mod sa,) 
)=I 

By the definitioii of- T,  and the th~eshold vitlue S we also know that 

The lemma now follows since both a. and xb are non-negative m value. 0 

Lernnla 4.5. Beyond the threshold modulus (s 2 S) and for any feasible solution in PLP we 

must have x, = 0 for all t E T2. 

Pro& Suppose 1 is a feasible solution in PLP, then 

The fint  term i s  non-positive from the observations that 1 is non-negative and the previous 
lemma implies that each of the parenthetic expressions is non-positive. Therefore, 

Excluding the non-negative tenns, a,xh yields 
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Now suppose the lemma is false, i s .  I ,  = y z 0. Consider 
tET2 

Clearly, ? 2 0 and further 

Lemma 4.3. implies that 

But, from the definition of Tz (andX2), we have 

for each r in T2. Thus a contradiction has been reached 

The lemmas can now be combined lo give the main result 

Theorem 4.6. KP is polyr~ornial-time reducible to the gmup knapsack. 

Proofi Given an instance of KP we set up the Lagrangean relaxation as described above 
to obtain a Lagrangean dual problem whose associated subproblem is the group knapsack 
problem (GP). Assume further that the modulus parameter s is takcn to be above thc thres- 
hold value. Note that the threshold value S is 0(b2) and is hcncc polynomial-space bounded. 
This ensures that the set X is succinct and finite as needed for assumption (A2) (Section 2)  lo 
hold. 

Theorem (3.2) now implies that the Lagrangean dual for this set up is polynomial time 
equivalent to the group knapsack problem. To complete the proof we need to now argue that 
Lagrangean dual problem solves the integcr KP. 

Suppose A* is an optimal solution for PLP. From lemma (4.6), we have: 
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From lemma (4.5) we know that 

Therefore, for each t* E TI for which A: 2;> 0 we must have 

and hence x; is optimal in KP with (yo = xg) . Note also that PLP will be infeasible if and 

only if KP is infeaqiblc. Thus, PLP is equivalent to KP. But the Lagrangean dual problem is 
exactly the linear programming dual of PLP. Hence the theorem. 0 

This theorem may be viewed as an extension of results in polynomial time aggregation of 
integer programming problems. The most general of these results was proved by KannanZ8. 

Theorem 4.7. Thr general integerprogramming problem 

mau {cx :Ax = b, x 2 and integer) 

is polynomial-time reducible to a knapsackproblem. 

This result does not assume explicit bounds on the variables. The two theorems can there- 
fore be combined to yield. 

Theorem 4.8. The general integer programming problem is polynomial-time reducible to n 
group knupsuck problem. 

As was stated in the introductory paragraph of this section, all these theorems are also con- 
sequences of the fact that the three problems-integer programming, knapsack and group 
knapsack-are NP-hard with NP-complete decision analogues. The new result is that direct 
reductions are possible. The reduction of knapsack to group knapsack-as described in this 
sectiolris a Turing reduction in that an instance of the knapsack problem is to be solved. It 
would be interesting to find an 'instance-to-instance' reduction (Karp or many-to-one reduc- 
tionl4) for these problems. Finally, we note that the Lagrangean constructs of this section can 
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be used to directly prove Theorem 4.8. This was shown in chandm8 and involves, in addition 
to the ellipsoid algorithm, some preprocessing using the polynomial-time Smith normal form 
algorithm of Kannan and ~aehem~' .  

5. Optimizing over valid inequalities 

We use the results of the previous section to procide an alternative method for opthizing 
over classes of valid inequalities of integer polyhedra. This method has the advantage 
using optimization algorithms rather than separation algorithms. For many classes of valid ine- 
qualities, the corresponding optimization algorithm is more efficient than the separation algo- 
rithm. 

Consider a discrete optimization problem: 

where S is some (very large) set of points. An inequality ar 5 b is valid if ax' 2 b for all x' E S. 
For many important problems, certain classes of inequalities have been shown to be valid ine- 
qualities. 

Given classes of valid inequalities Alx 5 bl, AZX 5 b2.. AkX 5 b ~ ,  Scan be relaxed to: 

A solution to (F) gives an upper bound on the value of Q. 

In many problems, the classes of valid inequalities found can contain an exponential num- 
ber of constraints. If the separation problem is polynomially solvable for each class, then F is 
polynomially solvable by the ellipsoid algorithm. Furthermore, if the separation problem is 
solvable for a class of valid inequalities, then the optimization problem over that class alone is 
solvable. For instance, if for any x' it is possible to find a constraint of AIX 5 bl that is violated 
by ax', or determine that none exist, then 

is also solvable in polynomial time by the ellipqoid algorithm. In some cases, however, the op- 
timization problem is much easier than the separation algorithm. An example of this is the 
subtour elimination constraints of the TSP. The number of such constraints is exponential in 
the uumber of cities to be visited but optimizing over the constraints is easy. The optimization 
problem is essentially a spanning tree problem (as shown in Held and ~ a ~ p ~ ' ) .  The separation 
problem is a series of minimum cut problems and is more t h e  consuming (tbough still poly- 
nomial) than just finding an optimal spanning tree. 

We can exploit these more efficient optimization algorithms by combining Lagrangean de- 
composition with the ellipsoid algorithm. 

Theorem 5.1. I f  the opiirnization problem for each of these classes of valid inequalities Alx S 
bl ,..., A& b k  ispolynomzally solvable, then the optiml value of F can befound in polynomial 
time. 

Pro05 Consider the following, equivalent, formulation of A: 
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max(cxl : As' < b,, x' = x'" Vi. (m 
Thiu can be solved by repeated applications of Lagrangean decomposition, so Theorem 3.2 
provides a polynomial bound. U 

We illustrate our results on a relaxation of the TSP. An extensive review of previous results 
of TSP can he found in Lawer et 01." Let Alx < bl he the 2-matching constraints whicb force 
exactly two edges to meet every node. Let A2x < b2 be the subtour elimination constraints 
which force the tour to he a single loop. Both sets have an exponential number of constraints. 
The linea programming relaxation consisting of just A, and AL (along with upper and lowcr 
bounds on the variables) does not necessarily give an optimal solution to the TSP, for there 
may be fractional optimal solulions. Previously, applying the ellipsoid algorithm directly was 
the only polynomial algorithm for solving this relaxation. 

(Primal ellipsoid): Solve F with the ellipsoid algorithm, solving the matching separation 
and subtour elimination separation problem at each iteration. 

Our results give an alternative polynomial method. 

(Dual ellipsoid): Solvc F' with the ellipsoid algorithm and Lagrangean decomposition 
solving a matching optimization problem and a subtour elimination optimization problem at 
each iteration. 

The separation algorithms required by the primal ellipsoid algorithm are quite complex. 
The suhtoor elimination separation algorithm is a series of minimum cuts of a graph. The 
matching separation algorithm is even more complex and, generally, heuristics are used to 
identify violated constraints. 

In contrast, the optimization algorithms required by thc dual ellipsoid are quite simple. Thc 
subtour elimination optimization algorithm is very efficient, being simply the greedy algorithm. 
The matching oplimi~ation algorithm is another well-known algorithm ( ~ d m o n d s ~ ~ )  with e f i -  
cient implementations widely available. 

It does not seem possible to determine a priori which of the alternatives is the most efficient 
for a given set of valid inequalities, as the number of iterations each algorithm requires is nut 
known. In cases where the optimization algorithms are very effective, however, the dual ellip- 
soid method is a promising altcrnative. 

6.  Computational results 

In this section, we give computational results for linding optimal multipliers for the one-tree 
relaxation of the TSP. The ellipsoid algorithm finds very good, but not optimal, solutions very 
quickly. This makcs the ellipsoid algorithm very attractive in applications like branch and 
bound where good solutions are required quickly and the marginal advantage of optimal solu- 
tions is small. However, the ellipsoid algorithm is slower by a factor of two to three in finding 
the optimal multipliers on the problems examined, making the algorithm inferior in cases 
where the optimal solution is required. The ellipsoid algorithm also has the practical advantage 
of being almost parameterless. Subgradient optimization, in contrast, has numerous parameters 
that must bc 'fine-tuned' for eff~cient operation. 
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First, we give a brief description of the one-tree relaxation for the TSP. A more detailed de- 
scription is in Held and ~ a ~ ~ ~ . ~ ~ .  

For an undirected graph G, with costs on each edge, the TSP is to find a minimum cost set 
H of edges of G such that: 

1. exactly two edges of H are adjacent to each node, and 
2. FI forms a connected, spanning suhgraph of G. 

Condition 1 certainly implies: 

3. exactly two edges of H are adjacent to node 1, and 
4. H has n edges, where n is the number of nodes in G. 

We now relax Condition I .  The problem of satisfying Conditions 2, 3 and 4 i s  the mmimum 
cost one-tree problem, for any graph that satisfies these conditions is a spanning tree plus an 
extra edge. 

We can easily find the minimum cost one-tree as follows: 

Step 1. find the minimum spanning tree in G-{ I) .  

Step 2. find thc two smallest cost edgcs incident to node 1. 

The edges in the spanning tree in Step 1 together with the cdges in Stcp 2 form the optinlal 
one-tree. 

If the constraints associated with Condition 1 are placed in the objective with Lagrangean 
multipliers, we get the one-tree Lagrangean relaxation Tor the TSP. We will use this relaxation 
to determine the elfectiveness of the ellipsoid algorithm Tor finding Lagrangean multipliers. 

Wc use straightforward implemcntation of the ellipsoid algorithm with just a single pamnle- 
ter: the radius of the initial ellipsoid. 

In conuast, we had to do extensive testing to determine the best method of inlple~nenting 
subgradien~ optimization for the problems we were interested in. The details of the choice of 
step size are In the appendix. Fo~rr pararncters are required: 

(a) an overestimate of the optimal cost; 
(b) an initial step multiplier; 
(c) an iteration limit; and 
id) a step length divisor. 

We chose values for b, c and d by experimentation. The overestimate of the optimal cost 
was based on the historical optimal costs generated by our problem generators. 

We created two problem generators: first, the random gencrator assigns costs randomly 
&awn from a uuiform distribution; second, the Euclidean gencrator places nodes randomly in a 
square with the cost on the edge between two nodes equalling the distance between the nodes. 
All testing was done on an IBM PC/XT* with a math co-processor. 

*These experiments were c m e d  out when the authors were attendmg a m m e r  school and the only machine ava~lahle 
to them was an IBM PCXT. Clearly, with today's supzriast machioer, the CPU tirrullgs would shtmk to a smdll factor 
of those reported here. However, the relative periomance of lhc methods tcated, i e.  the subgadient and ellipsoid 
mcthods, would rcmain unchanged. 
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Table I 
Time to optimlity 

Problem qpe  Average time to optimaliq (s) 

Ellimoid Subzradienr Rorio 

Random20 nodes 219 68 3.23 
Random50 nodes 2916 937 3.11 
Euclidean-20 nodes 105 83 1.27 
Euclidean-50 nodes 2677 898 2.98 

Two sets of problems were created by each generator, one with 20-node problems and an- 
other with 50. Five problems were generated in each set, and the results were averaged over the 
five. Table I gives the time required to find the optimal solution, defined to be within one of the 
optimal solutions. The ellipsoid method was two to three times slower than the subgradient 
optimization. 

The ellipsoid method seems to have great difficulty in the final stages of the algorithm. 
While it found very good solutions quickly, it required a large number of iterations to find the 
optimal solution. Subgradient optimization did poorer initially but once good solutions were 
created, it found optimal solutions quickly. This is shown in Figs 1 (20-node) and 2 (50-node). 
The vertical axis is best objective function found, expressed as a percentage of the optimal so- 
lution. The horizontal axis represents time. The results shown are for the random problems; the 
Euclidean results are similar. 

In some applications, getting the optimal solution is not as important as getting very good 
solutions quickly. For instance, in branch and bound, the objective function is used to identify 
search directions that do not need to be explored further. In general, a small difference in the 
objective function will not significantly affect the decision on whether or not completely search 
the tree. In this case, it may be better to stop quickly with suboptimal solution rather than spend 
excessive time fmding an optimal solution which will rarely affect the search decision. The 

0 ao a m s  [a) 60 0 Time ( 8 )  la 16 

0 subgradid + ELIipsoid s n b p d k n c  + EUiproid 

hc. 1. 20-node results. Rc. 2. 50-node results. 
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ellipsoid algorithm is a good approach in these cases. For example, in our random 50-node 
problems, terminating the ellipsoid algorithm after two minutes gives solutions that are 95% of 
the optimal value. Terminating subgradient optimization at that time gives only 75% of the 
optimal value. We would have to use subgradient optimization for more than six minutes to get 
a 95% solution. 

In other applications, getting the optimal solution is more important. In those applications, 
subgradient optimization may be better. 

One further advantage of the ellipsoid method is the lack of parameters. Computational 
times for subgradient optimization depend heavily on the choice of values for the parameters. 
For instance, choosing the number of iterations to he 25 rather than 10 almost doubled the 
average time to optimality for thc 50-node problems in our tests. The results given here use 
finely tuned parameters. A poor choice of parameters will degrade the effectiveness of suhgra- 
dient optimization. In contrast, the ellipsoid method has just one parameter: the radius of the 
initial ellipsoid. If this parameter is too small, then the optimal multipliers will occur on the 
boundary of the initial ellipsoid. This condition can easily be checked and re-optimization can 
take place. Providing this value is large enough, the algorithm is relatively insensitive to spe- 
cific values. 

An interesting possibility is to combine the best features of the two approaches. A hybrid 
algorithm that begins with ellipsoid algorithm to get a very good solution and then uses sub- 
gradient optimization to find an optimal solution might dominate each algorithm individually. 

7. Conclusion 

In this paper we have examined the theoretical (worst-case) complexity of the Lag~angean 
relawation method. l l e  main result shown is that the ellipsoid method is a theoretically eft? 
cient method for choosing optimal multiplier values. This result is shown to have both theoreti- 
cal and practical implications. As topics for further investigation we present two recommenda- 
tions. 

The first is to identify Lagrangean consbuctions that involve polynomial time-solvable 
subproblems and to attempt reformulation of the Lagrangean dual problems with the objective 
of obtaining small-size linear programming descriptions. Some preliminary results along 
these lines have been obtained by  arti in'^. The second recommendation concerns computa- 
tional testing along the lines of Section 6 for other examples of Lagrangean relaxation. The 
results of this paper were addressed to general-purpose methods for finding good Lagrangean 
multipliers. Additional testing on problems other than the TSP is needed to ascertain the true 
contribution of the framework presented in this paper to practical computation in discrete op- 
timization. 
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Appendix 1: The step size 

As mentioned in an earlier section, subgradient optimization requires a sequence of step sizes 
{t,} to determine the sequence of multipliers OL,}. The most effective method we found was: 

(a) Let p be the zero vector and define n' to be the optimal solution to DM (the Lagrangean 
subproblem associated with f l ;  

(b) Let w* be an overestimate of v(D) and 1%) a sequence of scalms such that 0 < n; 5 2; 

(c) Let 

where 

v(.) = the optimal value of problem '), 
I . I =the Euclidean norm of ., 
A s =  bz = the relaxed constraints. 

We tried various alternatives for n; before deciding on setting no = 1 and decreasing fz ! Y  b a 
factor of two whenever a fixed number of iterations has passed without an improvement in the 
objective (this is based on a suggestion in  ish her"). The best value for this number of iterations 
was 10 for all problems we examined. 


