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Abstract

We constder some basic wssues in the theory of dynamicil systems. We assess the progress achieved by citing some
Jandmark results with corresponding references. We briefly speculate on what could probably be unaccomplished mu-
Jor tasks for the future.

1. Introduction

The subject of dynamical systems (DS) is so vast and varied that it is impossible to address all
the problems and questions treated in it. We thus propose to confine oursclves to a certain im-
portant corner of the subject and discuss some significant issues. The discussion centres aronnd
questions arising in various applied fields such as classical mechanics (CM), fluid mechanics
(FM), econoimics, biology, electrical circuits, etc.

We start with a smooth manifold M which represents the state space of the system. In this
paper, by a DS, we mean either a smooth diffeomorphism f: M — M or a vector field (vf) F on

M. The evolution is then modelled by the iterates {f”(x); neZ } or the flow t ~> X(z, x) gen-

erated by F on M, i.e. dX/dt=F(X), X(0, x) = x. In the sequel, we will alternate between these
two depending on the simplicity of the presentation. As an immediate example, one can take
M =D where D is a smooth, bounded open set in R and Fisavfon D whichis tangent to
the boundary of D. The central problem of DS can be easily phrased as follows: what is the
behaviour of flows as ¢ — o or n — «? To bring out the difference in qualitative properties,
one must distinguish between the following cases: M finite or infinite dimensional, finvertible
or not, dissipative or conservative systems. In the case of PDEs, we will have infinite dimen-
sional manifold M.

2. Well-definedness of DS

To enable one to discuss the properties of dynamics, it is necessary that they be uniquely de-
fined for all times. Existence proof is usually carried out in two steps: first one obtains local
solution which can blow up in finite time. In order to prevent this, we try to establish a priori
estimates. If we succeed, then local solution becomes global. For example, unique local solu-
tions are assured if F is of class C'. They become global if F is Lipschitz or M is compact.
There are many examples of nonlinear PDEs where existence of suitable global solution is not
known. One also comes across another kind of difficulty. In the important case of Navier—



236 M. VANNINATHAN

Stokes equation (NSE) in three dimensions one can prove the existence of a suitable global
weak solution, but it is not known whether it is unique or not. This question is related to the
regularity of weak solutions, an issue which is not satisfactorily resolved in the case of many
important nonlinear PDEs.

Let us point out another important direction which has received less attention; it is the case
of singular vf. A classical example is the n-body problem. Another one arises if we wish to
define the dynamics of dye carried by fluid flow. One idea' is to exploit the variational charac-
terization of the trajectories. Another is to approximate singular v{ by smooth vfs. In DiPerna
and Lions?, this has been successfully carried out with the notion of almost everywhere (ac)
flows, i.e. the flow is defined omitting a null set of initial conditions (IC). As far as [ know, this
is the only work which follows the point of view of Poincaré and throws away naturally an
exceptional set of ‘non-representative’ trajectories. Many qualitative aspects discussed below
are vet to be investigated in the case of ac flows.

Nontinear hyperbolic equations give birth to another type of singular vfs. Because of the
appearance of shocks and other singularities in these equations, the corresponding vfs are not
well understood. Nevertheless, let us mention that there is another concept of solution, named
after Fillipov, associated with singular vfs. It is defined pointwise and is useful in hyperbolic
equations.’

Because of these difficulties, in the sequel, we work with a compact manifold M without
boundary and smooth vfs F. There are not many works which incorporate the effects of bound-
ary and the behaviour at infinity *

3. The main problem

The goal is to draw the phase porirait of the flow; especially, we are interested in its behaviour
as ¢t — co. This fascinating subject has attracted the attention of several great mathematicians
like Poincaré who investigated the stability of the solar system. Fluid turbulence is another
model phenomenon. This problem remains essentially unsolved because of the rich and varied
behaviour of DS. In olden days, resolution of ODEs was achieved by obtaining smooth invari-
ants. This yielded positive results in cases now known as completely integrable systems. A
major result in this area is Liouville’s Theorem.” When it was realized that nonintegrable sys-
tems are the order of the day, other approaches were sought. There are five major methods.

(A) Geometric and topological point of view initiated by Poincaré,

(B) Statistical approach originating in the works of Boltzmann and Maxwell,
(C) Algebraic formulation of Koopman for which we refer to Amold and Avez®,
(D) Numerical integration, and

(E) Nonlinear functional analytical approach.

{A), though old, is dominant even today. Afier the invention of computers, method (D) has
become powerful and enabled scientists to get insight into the behaviour of DS. In the context
of fluid turbulence, it has been felt that (A) is helpful in understanding its onset while moder-
ately excited regimes require new tools provided by (B). In fully developed turbulence, no
method is found suitable except perhaps (D). Method (E) is relatively new and is i)roving very
powerful in the analysis at large. It is especially very effective in the case of Hamiltonian sys-
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tems when combined with other methods. The method invokes vartational properties of the
trajectories. In the sequel, we do not discuss this fast-growing approach except to give some
important references.” ™" In the important field of infinite-dimensional DS, the techniques of
nonlinear functional analysis are proving to be very useful whereas the other methods have
their limitations.

Part A: Geometrical approach in finite-dimensional case

The classification problem: Whatever be the method of attack, the canonical programme to-
wards the understanding of the dynamics seems to be the following:

STEP (1) Identify two dynamics with the same behaviour, i.e. define an equivalence relation in
V, the set of vfs on M. Present the phase diagram inside each equivalence class. Also obtair a
canonical form of the vf in each equivalence class. Define a vf to be stable if it has a neigh-
bourhood of equivalents in V.

STEP (2) Prove that stable vfs are dense in V.

StEP (3) Characterize the stable classes in simple terms. Classify them in terms of invariants
(algebraic, numerical, etc.).

StEP (4) Classify the unstable classes of codimension 1,2, ....

STEP (5) Study the bifurcation at unstable classes and the nature of the unfolding.

Let me explain the above programme. Among the many equivalence relations used depend-
ing on the context, we single out topological conjugacy which is defined in terms of homeo-
morphism mapping the orbits onto themselves. Stability w.r.t. this equivalence is known as
structural stabiliry. Obviously, this is an important concept if our model is to represent the re-
ality. If our model is not stable then we must be able to choose a perturbation that is. This is
Step (2) which has remained a dream in the theory of DS. Our equivalence relation should be
fine enough to distinguish things that are qualitatively different but sufficiently coarse to prove
Step (2). Secondly, weaker the topclogy on V the more chance we have to establish Step (2). It
is a common practice to use C“-typc topology on V but now there is a weaker topology which is
found more natural in view of Diperna and Lions.”

The unstable elements, hopefully, will form submanifolds of finite codimension which are
to be classified. The significance is that any r-parameter family of vis inside V will genericaily
cross only those submanifolds of codimension < ». At this crossing, one can expect bifurcation
and new qualitative behaviour.

Physical and numerical experiments exhibit varions ‘stable’ phenomena which are not sta-
ble structurally. In practice, one may thus run into difficulties with the concept of structural
stability because we often have to deal with a restricled class of vfs in which case we will not
accept arbitrary small perturbations inside V. Stability is thus to be understood in a broad sense.

In the classification problem it is always advocated to ignore vfs and orbits which are not
representative. The genericity of a phenomenon is therefore usually evaluated from its validity
on a large set in a topological sense (e.g. Baire set) or in a measure sense. It is true that there is
no canonical measure on V, but, if we restrict our attention to vfs depending on a set of parame-
ters we can take measure induced from the space of parameters.
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In these questions of classification, smoothness of vis plays an essential role. In particular,
one can see in the literature different behaviours depending on whether a vf is C', C"... €7, C".
Another related question of importance is the following: if a vf is smooth and it is equivalent to
another, can one choose the equivalence map to be smooth? These questions are not answered
in a general way because of the presence of resonances.”

Local classification: The classificaton problem is solved at each point of M in a satisfactory
manner.” ' We are, of course, interested in a global description which depends on the interac-
tion between dynamics and the geometry of the manifold. The interest in the local description
is that it brings out certain fundamental concepts which are then generalized to attack the
global problem. One such notion is that of equilibrium points, i.e. points at which vf F van-
ishes. If it does not then the flow is equivalent to a tubular flow. In the local study it is natural
to linearize the flow at an equilibrium point x*. Stability of orbits then depends on the distribu-
tion of eigenvalues {1,} of the linearized operator. One realizes the importance of the notion of
hyperbolicity (i.e. Re A, =0 Vi). Flow around x* is then governed by stable and unstable
manifolds: W*x*) and W*(x*). x* is a saddle if dim W* = 0 = dimW". Hyperbolicity is a ge-
neric property. A flow near its hyperbolic equilibrium point is equivalent to its linearization.
Linear hyperbolic flows are essentially characterized by their indices (=dimW"(x™)). At non-
hyperbolic points. one has also to deal with the centre manifold.

Gradient vector fields: Here we rcfer to those systems where the vi F =~ Vg for some function
g called potential. Tn this category, it is patural to consider perturbations of g rather than those
of F. The resulting stability concept is different from structural stability. A function is stable if
it has a finite number of critical points, each nondegenerate and having distinet critical values.
Thom'® has characterized the unstable function classes of codimension <4 in terms of singu-
larities. They are just the elementary catastrophes! He also assumes that one can pass from the
bifurcation of gradient dynamical systems to the unfolding of their potential functions in
studying catastrophes. This is not entirely correct. The unfoldings of gradient dynamical sys-
tems can be of higher dimension than the unfoldings of their potentials.'®

Two-dimensional flows: The landmark results characterizing two-dimensional flows are theo-
rems of Andranov—Pontryagin, Poincaré-Bendixson and Peixoto. One of the new generic phe-
nomena exhibited is that of (hyperbolic) periodic orbits, i.e. the @ and o limit sets can be only
equilibrium or periodic orbits. Further, saddle connections are not allowed. For these results,
see Palis and de Melo."” Though there are vfs which are not stable (e.g. a quasi-periodic mo-
tion on a 2-torus where the frequencies are independent over (). The orbit is then dense.), the
stable ones are dense. What about the characterization of stable vfs in terms of invariants and
the classification of unstable ones? It is not clear whether these questions have been completely
answered. See, however, Hale and Kocak.!?

If, instead of two-dimensional flows, we consider diffeomorphisms on one-dimensional
manifolds, say ', then rotation number allows us to classify the maps,'?

Stable systems: Tn trying to generalize the above to general flows, one runs into enormous dif-
ficulties. This can be vaguely explained as follows: 2d flows correspond to maps in 14 and
there is a natural ordering in R which can be exploited. In dimensions > 3, there are other
stable phenomena which will be described in this paragraph. Even after adding these, the den-
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sity (Step (2)) is not true, The classification programme is a real challenge posed by nature to
mathematicians. Efforts are now on to collect various possible behaviours and it is hoped that
the density will be proved some day in future.

Smale'® was one of the first to group various known examples and generalize them to
higher dimensions. It is known for a long time that recurrence properties play an essential role
in the study of asymplotic behaviour of a DS. Thus, non-wandering set £ which includes
equilibria and periodic orbits was introduced. Next, Morse~Smale systems were introduced
where Q consists of finitely many equilibria and periodic points (all hyperbolic). Next, the
condition of ‘no-saddle connection’ is replaced by the transversality of stable and unstable
manifolds of elements of Q. We emphasize that the intcrsections of the stable and the unstable
manifolds have to be preserved by any topological equivalence. It is therefore natural to require
that these intersections be transversal since this will guarantee that they persist under smail
perturbations.

Even though M-S systems are stable,'® they are far from being dense. World is not as sim-
ple as M-S systems. Indeed, a much richer structure was noticed by Poincaré himself at a
transverse homoclinic orbit. In particular, the system was sensitive to initial conditions (SIC)
near it. Such systems are called chaotic. Smale noticed three main mechanisms responsible for
this effect: contraction, expansion and folding of state space volume by trajectories. Using
these, he constiucted his horseshoe where, in contrast to M-S systems, there are infinitely many
periodic saddle points coexisting. Moreover, horseshoe is stable. It is worth remarking that the
set of IC attracted in a horseshoe has measure zero if the system is of class C* However, there
are C* horseshoe examples of positive measure,

Of course, there are other types of stable systems, e.g. Anasov systems where Q is the entire
manifold. Examples include the geodesic flows on a manifold with negative cucvature.

Generalizing these objects, Smale introduced the notion of (uniformly) hyperbolic sets as-
sociated with flows/maps. They are compact invariant sets at every point of which there are
contracting and expanding directions. Such sets are stable under perturbations of the map. Hy-
perbolic systems are the ones for which € is a hyperbolic set. A system is said to satisfy Ax-
iom-A if it is byperbolic and the set of periodic points is dense in € (which is true generi-
cally'®). For such systems, Smale obtained the following satistying pictute'®: there are finite
number of artractors (compact invariant sets whose basin of attraction contains a neighbour-
hood of it). Basins put together cover a dense open subset of the manifold. Each attractor is
transitive (it has a dense orbit) and is contained in Q. Fusther, attractors which are not just fixed
or perjodic sink exhibit SIC. They are called strange attractors. Thus, Axiom-A systems can be
decomposed inlo Anasov pieces assembled together somewhat like M-S case! This result can
be viewed as a nonlinear analogue of the decomposition of the space in terms of generalized
eigenvectors of a matrix.

The culmination of this circle of ideas is the following remarkable result of Mafié™: a dif-

feomorphism is C' structurally stable if it satisfies Axiom-A and all stable and unstable mani-
folds are transversal. Thus, we have a grand picture of structurally stable diffeomorphisms and
their dynamics. The role of hyperbolicity in this cannot be overemphasized. The corresponding
question for flows remains essentially unsolved.
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From this analysis, it is clear that one must have efficient algorithms to find equilibria, pe-
riodic points, their stable and unstable manifolds, homo- and heteroclinic orbits and criteria to
test their transversal intersection. Some tools are dynamical zeta function' 2! and Melnikov
technique.”” Many more are required.

Unstable systems: Having obtained a nice picture of stable systems, we might ask whether they
are dense. It is known for a long time that they are not. Structural stability is thus of more lim-
ited significance than anticipated. The world of dypamics is very rich and fascinating. The
classification of unstable systems and the resulting bifurcation is a problem that remains essen-
tially unsolved. Attempts are being made to understand them by looking through the bounda-

ries of stable ones. For instance, one may consider one parameter family of systems {FH }ueﬂ?

such that F, is stable for 4 <0 and 4> 0 and Fy is not stable. One expects a different qualita-
tive behaviour as g ~» 0. To understand the situation, the concept of attractors is useful. At the
bifurcation point 4= 0 there is a change in the topology of the attractor. Multiparameter bifur-
cations are poorly understood.

In literature®™ * one can observe a long list of unstable situations. On one hand, one consid-

ers the cases where stable and unstable manifolds are not transversal or Q loses hyperbolicity.
On the other hand, there are scenarios obtained by Ruelle-Takens, Feigenbaum, Manneville-
Pomeau, Hénon, etc. In each of these scenarios, not only a description of the attractors involved
is presented but also unfoldings of them (i.e. the route which yields them) are also given. In
Ruelle-Takens scenario, it is shown how a stationary point becomes unstable and gives rise to
a periodic orbit via Hopf bifurcation. A 2-torus then appears through another bifurcation. If
another instability occurs then typically a strange attractor appears instead of 3-torus. This is in
sharp contrast to the picture projected by Landau and Hopf in the context of the onset of turbu-
lence. Period doubling cascades occur as unfoldings of Feigenbaum attractor. What is surpris-
ing is that all these bifurcations are often really seen to follow each other and to converge as-
ymptotically on a geometric sequence. In other words, in the space of maps of the interval there
seerns to exist a ‘Feigenbaum manifold’ of codimension 1 which is geometric limit of bifurca-
tion manifolds corresponding to period doubling. In the intermittency route proposed by Man-
neville-Pomeau, the system oscillates in a regular fashion and is stable under small pertarba-
tions up to a critical value of the parameter appearing in the system. Beyond this critical value,
the system exhibits abnormal fluctuations from time to time.

These systems are not structurally stable but are stable in some restricted sense. The big
question is whether the union of these along with Axiom-A systems forms a dense subset in V.
Are more phenomena to be included? There are several conjectures.

Nowadays, attention is focused on non-hyperbolic systems. Homoclinic bifurcation then
becomes important and this can be obtained through homoclinic tangencies, for instance. The
work of Newhouse™ is pioneering in this context. Another important breakthrough is achieved
to understand the Hénon map.” There is also a progress towards mathematical basis to explain
Feigenbaum cascades and universality.”* However, a lot remains to be done. Lorenz attractor is
poorly understood,” and there are many conjectures.® Intensive research is on to prove them.
Only time will tell if they are a success or a failure.
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Even though several mechanisms producing instabilities are known, it is not clear whether a
given system undergoes bifurcations when the parameters cross through critical values. It is an
open problem whether a given model exhibits SIC. Bifurcations in the presence of symimetry is
another vast area which we have not touched.” ?

In dynamical problems, the following questions are usually raised and the answers are hard
to obtain: how the trajectories are attracted towards the attractors, the rate of attraction, the na-
ture of motion on the attractor, topology and geometry of attractors and their basins, etc. These
things keep changing as parameters are varied and at the bifurcation point, one expects drastic
changes. Mandelbrot™ has been advocating fractal geometry to study atractors.

Another question that may be posed is the following: what happens to the dynamics under
stochastic perturbations? In other words, we replace ODEs by stochastic differential equations
and ask similar questions. There is also intense activity to generalize the above to delay differ-
ential equations.*

Part B: Statistical approach

As in Part A, we concentrate here on finite-dimensional DS. The geometric approach presented
in Part A has enabled one to attack problems with a few degrees of freedom and thereby ex-
plain the onset of turbulence. There are difficulties with large degrees of freedom. For instance,
folly developed turbulence is out of reach for the moment. However, there are physical models
where only a moderate number of modes are excited, e.g. flame propagation and combustion
problems. To understand such chaotic systems we require new tools provided by ergodic the-
ory such as dimensions, entropy and Lyapunov characteristic exponents. Dimension represents
the number of excited modes. The inverse of entropy quantifies the time up to which the state
can be predicted with precision 0(€) if IC is specified with tolerance €. Characteristic exponents
describe sensitivity to IC (SIC). In this approach, one deals with a measure g invariant under
the dynamics which replaces invariant sets of Part A. It is then natural to generalize hyper-
bolicity as follows: u is hyperbolic if y-almost all points are hyperbolic, i.e. characteristic ex-
ponents are non-zero 4 ae. The goal of this approach is to prove that these quantities exist, dis-
cover the relations between them and use them to extract qualitative behaviour of DS. The the-
ory is quite developed™ *=* especially w.r.t. nonuniform hyperbolic attractors. A spectacular
application of these tools will be pointed out in Part C. One of the major problems for the fu-
ture is to know how the descriptions given in Parts A and B change when one takes, say ther-
modynamic limit, i.e. when the number of degrees of freeedom goes to infinity in a certain
sense. Does it give a reasonable picture of continuous systems? What properties are lost in this
passage? Reversibility? Another major difficulty is that there are too many measures invariant
under the dynamics (e.g. Hénon map). Which one is the most relevant? In this context, SRB
measures were introduced but proving their existence is a hard mathematical problem.
Roughly, these measures represent the time spent by the orbits near the attractor. For Axiom-A
systems, such measures exist and this is the content of the Bowen-Ruelle Theorem.

Most of the mathematical work in this approach has been restricted to either completely in-
tegrable or completely chaotic (ergodic) systems. Little work has been done in the case of in-
termediate systems which form the bulk of what is encountered in practice.
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Pact C : Infinite-dimensional systems

There is a large and growing industry to extend whatever we have said about finite-
dimensional systems in Parts A and B to the infinite-dimensional case, in particular, to the
systems of nonlinear PDEs.*** One of the impressive results is that the NS equation in two
dimensions has a finite-dimensional attractor. The same is also true in three dimensions pro-
vided we assume the existence of a unique solution. The estimate on the number of degrees of
freedom predicted by Kolmogorov theory of turbulence is thus recovered. We are not going to
dwell on how this result is proved. We merely point out two radically new aspects in infinite
dimensions of which little is known.

(i) We have been discussing about what are known as temporal chaos. In PDEs one can
also have spatial chaos. Examples include flow past a sphere where chaos develops in the
wake region. Similar situations arise in turbulent jets and plumes.

(if) There is a possible occurrence of singularities in space. For instance, it has been conjec-
tured that curl of the fluid velocity (obeying incompressible Euler equation) can become infi-
nite in some paits of IR® at finite time. It has been proved that this set has to be small.*® But
one does not know whether this is empty or not. It is also conjectured that such a set is fractal.
There is some numerical evidence supporting this. Another example is the dppearance of
shock waves. In these cases, the space in which dynamics takes place is to be so chosen as to
include these singularities. Unfortunately, one then risks to lose the uniqueness of solution if
the nature of the singularities is not properly understood. In many practical problems, this diffi-
culty exists.

Part D: Numerical approach

The biggest question is how to do stable numerical computations in nonlinear systems which
exhibit instabilities, bifurcation and SIC, and even if we can do, is there a basis to rely on
them? In the hyperbolic case, there is shadowing lemma.'® Non-hyperbolic situations should be
looked into. If the system is govemned by PDE and the dimension of the attractor is large
(which is usually the case) then the power of present-day computers does not allow us to inte-
grate the equations for long times. That is where the insight gained out of the theories devel-
oped in Parts A, B and C is going to be very useful. Long-time integration demands a good
approximation of the attractor. When it has a complicated structure, this is not going to be easy.
Thus was born the concept of inertial manifold which contains the attractor, is reasonably
smooth and attracts orbits in an exponential way. > If N is the dimension of the attractor, it does
not mean that the first N Fourier modes are sufficient to describe the motion. Because of the
complicated geometry, the choice of the modes is subtle. Let us briefly indicate the ideas: split
the unknown u into large and small ‘eddies’: u = y + z. Inertial manifolds are sought in the form
z= @(y). Next, the idea is to project our equations onto this manifold. These projections can be
done in various set-ups: finite-difference method (FDM), finite-element method (FEM), spec-
tral method (SM) and wavelet method. In literature, one sees at least two ways of achieving
inertial projections: nonlinear Galerkin method® using SM and incremental unknown
method* using FDM. These are worked out and tested in only some examples. Much more
remains to be done; for instance, one can employ wavelets here.
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Numerical computations also offer some first-hand clues on the possible behaviour of dy-
namical systems. Lanford* has given computer-assisted proof of Feigenbaum’s conjectures.

Part E: Dynamical system and some applications

The theory of dynamical systems plays an important role in computation and allied subjects,
most notably in the area of ‘analog” computation. There have been several interesting devel-
opments in this interface in recent years and this remains one of the most active areas of
‘applications’ of dynamical systems theory. Some of the notable topics are:

(1) ‘Analog’ algorithms: Traditionally, these are continuous time, i.e. differential equation
analogs of the classical algorithms for numerical analysis and optimization® because of the
advances in analog device technology and the hope of embedding hard discrete algorithms into
more tractable analog ‘relaxations’. This, in turn, has spawned much mathematical activity of
independent interest. Two ‘high points” of this trend are:

(2) Global Newton methods: Originally studied as schemes for computing market equilibria
in mathematical economics,* these have attracted much attention since. A related topic
is the ‘homotopy’ method for optimization where one tracks the global minimum of a
convex function to a ‘good’ local minimum of the function to be minimized as the for-
mer gets homotopically distorted into the latter.*> This trajectory satisfies a differential
equation similar to the global Newton method.

(b) Brokett’s double brackets: These equations are of the type x =[x.[s, 2]} on a Lie group
and originally arose out of efforts to embed discrete optimization problems into con-
tinuous flows. They are also related to Karmarkar’s interior point method.**® These
have led to much sophisticated mathematics of independent interest.** %

(2) Complexity theory for analog computation: Computational complexity theory for discrete
computation based on the Turing machine formalism is a mature subject. Efforts are on to de-
velop a continuous counterpart.*’ >

(3) Neural networks: Analog peural networks for classification problems provide interesting
inverse problems.’® * A related activity is a study of cooperative/competitive phenomena
leading to self-organization or otherwise in interesting systems of differential equations. These
are of5 s'ugt_’erest to evolutionary biologists, economists and engineers in addition to mathemati-
cians.

(4) Control theory: The long-standing relationship between control theory and dynamical sys-
tems theory continues unabated, with some of the more exciting developments being the use of
differential geometric techniques® and nonsmooth analysis.** ©*

(5) Inverse problems: In engineering sciences, one is not interested in chaos as such but in
ways to contro] it. Indeed, by choosing properly the control parameters present in the system,
we wish to have a prescribed behaviour. In other words, the attractor is given and one is re-
quired to produce a suitable and meaningful system whose behaviour is described by the given
attractor.®! Another related question is the compression of data which is represented by the at-
tractor. The attractor is, the general, difficult to describe and store. If we can get hold of the
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corresponding map/vf then life becomes easy. Research activities in this direction are in full
swing.

(6) Connection with nonlinear hyperbolic conservation laws: A characteristic feature of these
systems of equations is the appearance of shocks. Physically, these are limits of suitable vis-
cous profiles as viscosity goes to zero. Finding these viscous protiles leads one to finding a
heteroclinic orbit connecting the two states of a shock.”

Part F: Hamiltenian systems

Hamiltonian systems are special DS in which the v{ is given in terms of a function H (called
Hamiltonian) defined on the manifold. Celestial mechanics provides the first examples. Since
H is a constant of motion, it is natural to restrict our attention to M = {H = constant}. The natu-
ral measure on this is preserved by the flow. Under suitable hypotheses, Poincaré recurrence
theorem. then shows that almost all points on this constant energy surface are non-wandering
points. Of course, the big classical questions are to know statistical properties of the system
(Paxt B): for example, whether a given system is ergodic on M; if not, can one obtain it at the
thermodynamic Hmit? If so, it will justify the traditional apparatus of Gibbs ensemble in statis-
tical physics of many particles.

In the case of Hamiltonian DS, it is customary to perturb the Hamiltonian and look for sta-
ble properties. Note that this is a restricted perturbation. Hence, we may expect new stable
pheomena. Indeed, the new concept emerging is that of elliptic equilibria and periodic orbits
whereas hyperbolicity is crucial in Part A. The celebrated KAM theory® * studies the effect of
perturbations on a completely integrable system near an elliptic point.

Quasi-periodic motions arc shown to be stable depending on how irrational their frequen-
cies are. This is a sarprising result establishing some unexpected connections with number the-
ory. The fate of rational quasi-periodic motion is described by Poincaré—Birkhoff theorem.
They break into “island chains’ with elliptic and hyperbolic points alternately placed. As in Part
A, one can expect SIC near hyperbolic points. As the perturbation increases, Aubry and Mather
have shown that even the irrational quasi-periodic motions disintegrate.’ In higher dimensions,
there is an additional phenomena called Arnold diffusion. There are many numerical experi-
ments® which give a picture of possible instabilities and bifurcations.

In the context of numerical integration of Hamiltonian systems, let us mention that the
usual algorithms do not work as they do not preserve the Hamiltonian nature of the system.
Hence, special efficient algorithms are needed for long-term numerical studies. In this context,
let us mention the Lie algebraic perturbation theory of Dragt-Finn.%® See also Yoshida® and
Sanz-Serna and Calvo.

4. Conclusion

We have presented very rapidly some important phenomena occurring in dynamical systems.
Various approaches to analyse them are outlined. Apart from highlighting the progress made so
far, we have also pointed out the limitations of various approaches. Through this description, it
is hoped to make clear the major remaining tasks to achieve further progress in the field. Un-
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doubtedly infinite-dimensional dynamical systems constitute a major challenge of the future.
To handle them, on one hand, various existing approaches will have to be generalized and
strengthened and on the other, new approaches have to be discovered.
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