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Stokes equation (NSE) in three dimensions one can prove the existence 01 a suitable global 
weak solution, but it is not known whether it is unique or not. This qucstion is related to the 
regularity of weak solutions, an issue which is not satisfactorily resolved in the case of many 
important nonlinear PDEs. 

Let us point out another inlportant direction which has I-ecelved less attention; it is the case 
of singular vf. A classical example is the 11-body problem. Another one arises if we wibh to 
define the dynamics of dye carried by fluid flow. One idea' is to cxpioir the variational charac- 
terization of the trajectories. Another is to approximate singular vf by smooth vfs. In DiPema 
and ~ions', this has been successfully ca~ried out with the notion of almost everywhere (ae) 
flows, i.e. the flow is defined omitting a null set of initial conditions (LC). As far as I know, this 
is the only work which follows the point of view of Poincnrd and throws away naturally an 
exceptional set of 'non-representative' trajectories. Many qualitative aspects discussed below 
are yet to he invcstigatcd in the caseof ac flows. 

Nonlinear hyperbolic equations give bib to another type of singular vfs. Because of the 
appearance of shocks and other singularities in these equations, the corresponding vfs are not 
well understood. Nevertheless, let us mention that there is another concept of solution, named 
after Fillipov, associated with singular vfs. It is defined pointwise and is useful in hyperbolic 
equations.' 

Because of these difficulties, in the sequel, we work with a compact tnanifold M without 
boundary and smooth vfs F. There are not many works which incorporate the elfects of bound- 
ary and the behaviour at infinity.' 

3. The main problem 

The goal is to draw the phase porlruig of the flow; especially, we are interested in its behaviour 
a? t -+ -. This fascinating subject has attracted the attention of several great mathematicians 
like Porncare who investigated the stability of the solar system. Fluid turbulence is anoiner 
model phenomenon. This prohlem remains essentially unsolved because of the rich and varied 
behaviour of DS. In olden days, resolution of ODES was achieved by obtaining smooth invnri- 
ants. This yielded positive results in cases now blown as coinplclely integrable systems. A 
major result in this area is Liouville's Theorem.' When it was realized that nonintegrable sys- 
tems are the order of the day, other approaches were sought. There are five major methods. 

(A) Geometric and topological point of view initiated by Poincare, 
(B) Statistical approach originating in the works of Boitzmaun and Maxwell, 
( C )  Algebraic formulation of Koopman for which wc refer to Arnold and 
(D) Numerical intcgration, and 
(E) Nonlinear functional analytical approach. 

(A), though old, is dominant even today. After the invention of computers, method (D) has 
become powerful and enabled scientists to get insight into the behaviour of DS. In the context 
ol' flnid turbulence. it has been Felt that (A) is helpful in understanding its onset while moder- 
ately excited regimes require new tools provided by (B). In fully developed tu;bulence, no 
method is found suitable except perhaps (Dl. Method (E) is relatively new and is proving very 
powerful in the analysis at !arge. It is especially very effective in the case of Hamiltonian sys- 
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tems when combined with other methods. The method invokes variational propertics of the 
trajectorics. In the sequel, we do not discuss this fast-growing approach excepl to give some 
important references.'' '-I' In the important field of infinite-dimensional DS, the techniques of 
nonlinear functional analysis are proving to be very useful whereas the other methods have 
their Iimitcltionr. 

Par t  A: Geometrical approach in finite-dimensional case 

The classification problem: Whatever be the method of altack, the canonical programme to- 
wards the understanding of the dynamics seems to be the following: 

STEP (I) Identify two dynamics with the same hehaviour, i.e. define an equivalence relation in 
V, the set of v k  on M. Present the phase diagram inside each equivalence class. Also obtain a 
canonical form of the vf in each equivalence class. Define a vf to be siabk if it has a neigh- 
bourhood of equivalents in Y. 

STEP (2) Prove that stable vfs are dense in V. 

STEP (3) Characterkc the stable classes in simple terms. Classify them in terms of invariants 
(algebraic, numerical, etc.). 
STEP (I) Classify thc unstahlc classes of codimension 1,2, .... 
STEP (5) Study the bifurcation at unstable classes and the nature of the unfolding. 

Let me explain the above progranlme. Among the many equivalence relations used depend- 
ing on the context, we single out topological conjugncy which is defined in terms of homeo- 
morphism mapping the orbits onto themselves. Stability w.r.1. this equivalence is known as 
structural stability. Obviously, this is an important concept if our model is to represent the re- 
ality. If onr model is not stable then we must be able to choose a perturbation that is. This is 
Step (2) which has remained a dream in the theory of DS. Our equivalence relation should be 
fine enough to distinguish things that are qualitatively different but sufficiently coarse to prove 
Step (2). Secondly, weaker the topology on Vthe more chance we have to establish Step (2). It 
is a common practice to use ~ ~ - l ~ ~ c  topology on V hut now there is a weaker topology which is 
found more natural in view of Diperna and ~ions. '  

The unstable elements, hopefully, will form submanifolds of finite codimension which are 
Lo be classified. The significance is that any ;-parameter family of vfs inside V will generically 
cross only those submanifolds of codimension 2 r. At this crossing, one can expect bihrcation 
and new qualitative behaviour. 

Pbysical and numerical experiments exhibit various 'stable' phenomena which are not sta- 
ble structurally. In practice, one may thus run into difficulties with thc concept of structural 
stability because we oflen have to deal with a reslricled class of vfs in which case we will no1 
accept arbitrary small pernubations inside V. Stability is thus to be understood in a broad sense. 

In the classification problem it is always advocated to ignore vfs and orbits which are not 
representative. The genericity of a phenomenon is therefore usually evaluated from its salidity 
on a large set in a topological sense (e.g. Bake set) or in a measure sense. It is hue that there is 
no canonical measure on V, but, if we restrict our altention to vfs depending 011 a set of parame- 
ters we can take measure induced from the space of parameters. 
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In these qnesrions of classification, smoothness of vls plays an essential role. In partlcolar, 
one can see in the literature different behaviours depending on whether a vf is c', c'... hrr, Cr". 
Another related question of importance is the following: if a vf is smooth and it is equivalent to 
another, can one choose the equivalence map to be smooth? These questions are not answered 
in a gcneral way because of the presence of resonance~. '~ 

Local clussificution: The classification problem is solved at each point of M in a satisfactory 
manner.".l4 We are, of COUIS~, interebted in a global description which depends on the interac- 
tion between dynamics and the geometry of the manifold. The mterest in the local description 
is that a brings out certain fundamental concepts which are then generalized to attack the 
global problem. One such notion is that of equilibrium pomts, i.e. points at which vf F van- 
ishes. If it docs not then the flow is equivalent to a tubulurjZow. In the local study it is natural 
to linearize the tlow at an equilibrium point x'. Stability of orbits then depends on the distribu- 
tion of eigenvalues { A }  of the linearized operator. One realizes the importance of the notion of 
hypeholicity (i.e. Re * 0 Vi). Flow around x' is then governed by stabir and un.stuhle 
manfilds: WS(x*) and W"(x*). x" is a saddle if dim W'$O # dimWu. Nyperbolicity ia  a ge- 
neric property. A flow nzar its hyperbolic equilibrium point is equivalent to its linearization. 
Linear hyperbolic flows are esscnlially characterized by their indices (= dimW8'(x*)). At non- 
hyperbolic points. one has also to deal with the crnrre manifold. 

Gradient vrctorfields: Here we rcfer ro those systems where thc vf I; = - Vg for some function 
g called potential. In this category, it is natural to conslder perturbations of g rather than those 
oTF. The resulting stabihty concept is different from structural stability. A function is stable iC 
it has a finite number of critical points, each oondegenerate and having distinct critioal values. 
Thorn" has characteri~ed the unsvabie function classes of codimension < 4 in terms of singu- 
larities. They are just the elementary catasirophes! He also assumes that one can pass from the 
bihrcation of gradient dynamical systems to the unfolding of their potentla1 functions in 
studying catastrophes. This is not entirely correct. The unfoldings of gradient dynnmical sys- 
tems can be of higher dimension th3n the unfoldings of their potentids.16 

Two-dimensional/lows: The landmark results characterizing two-dimensional flows are theo- 
rems of Andrano~z-Pontryagin, Poincari-Bendixson and Peixoto. One of the new generic phe- 
nonlena exhibited is that of (hyperbo1ic)periodic orbits, i.e. the w and n limit sets can he only 
equilibrium or periodic orbits. Further, saddle connectioils are not allowed. For these results, 
see Palis and de ~ e 1 o . I ~  Though there are vfs which are uot stable (e.g. a quasi-periodic mo- 
tion on a 2-torus where the frequencies are independent over Q.  The orbit is then dense.), the 
stable ones are dense. What about the characterization of stable vfs in terms of invariants and 
the classification of unstable ones? It is not clear whether these questions have been completely 
answered. See, however, Hale and ~ 0 c a k . l ~  

If, instead of two-dimensional flows, we consider diffeomorphisms on one-dimensional 
manifolds, says ' ,  then rotutian number allows us to classify the maps.12 

Stubk systenzs: In trying to generalize the above to general flows, one runs into enormous dif- 
ficulties. This can bc vaguely explaiued as follows: 2d flows correspond to maps in Id and 
there is a natural ordering in R which can be exploited. Ir dimensions t 3, there are other 
stahle phenomena which will be described in this paragraph. Even after adding these, the den- 
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sity (Step (2)) is not m e .  The classification programme is a real challenge posed by natme to 
mathematicians. Effons me now on to collect various possible behaviours and it is hoped that 
the density will be proved some day in future. 

a male'^ was one of the first to group various known exan~ples aud generalize them to 
higher dimensions. It is known for a long time thar recurrence properties play an essential role 
in the sludy of asymplotic behaviour of a DS. Thus, non-wandering set which includes 
equilibria and periodic orhits was introduced. Next, MorseSmale systems were introduced 
where R consists of Cinitely many equilibria and periodic points (all hyperbolic). Next, the 
condition of' 'no-saddle connection' is replaced by the transversaliiy of stable and unstable 
manifolds of elements of 0.. We emphasize that thc intcrsections of the stable and tbe unstable 
manifolds have to he preserved by any topological equivalence. It is therefore natural to require 
that these intersections be transversal since this will guarantee that they persist under small 
perturbations. 

Even though M-S systems are s t a b ~ e , ' ~  they are far f~-om being dense. World is not as sim- 
ple as M-S systems. Indccd, a much richer stmcture was noticed by Poincark himself at a 
trunsverse homoclinic orbit. In particular, the system was sensitive to initial conditions (SIC) 
near it. Such systems are called chaotic. Smale noticed three main mechanisms responsible for 
this cffect: contraction, expansion and folding of state space volumc by trajcctories. Using 
these. he constructed his horseshoe where, in contrast to M-S systems, there are infinitely many 
periodic saddle points coexisting. Moreover, horseshoe is stable. It is worth remarking that the 
set of 1C atti-acted in a horseshoe has measure zero if the system is of class (I?. However, there 
are C' horseshoe examples of positive measure. 

Of course, there arc other types of sable systems, e.g. Anasov systems where B is the entire 
manifold. Examples include the geodesic flows on a manifold with negative curvature. 

Generalizing these objects, Smde introduced the notion o i  (uniformly) hyperbolic sets as- 
sociated with flowslmaps. They are compact invariant sets at every point of which there are 
contracting and expanding directions. Such sets are stable under perturbations of the map. Hy- 
perbolic systems are the ones for which R is a hyperbolic set. A system is said to satisfy h- 
iom-A if it is bypcrbolic and the set of periodic points is dense in B (which is true generi- 
c a ~ l ~ ' ~ ) .  For such systems, Smale obtained the following satisfying picture1R: there are finite 
number of attractors (compact inwiant sets whose basin of attraction contains a neighbour- 
hood of it). Basins put together cover a dense open subset of the manifold. Each attractor is 
transitive (it has a dense orbit) and is contained in (1. Further, attractors which are not just fixed 
or periodic sink exhibit SIC. They are called strange affractors. Thus, Axiom-A systems can be 
decomposed inlo Anasov pieces assembled together somewhat like M-S case! This result can 
be viewed as a nonlinear analogue of the decomposition of the space in terms of generalized 
eigenvectors of a matrix. 

The culmination of this circle of ideas is the following remarkable result of ~ a t i i ~ ' :  a dif- 
feomorphism is C' structurally stable if it satisfies Axiom-A and all stable and unstable mani- 
folds are transversal. Thus, we have a grand picture of structurally stable diffeomorphisms and 
their dynamics. The role of hyperholicity in this cannot be overemphasized. The corresponding 
question for flows remains essentially unsolved. 



From this analysis, it is clear that one must have efficient algorithms to find equilibria, pe- 
riodic points, their stable and unstable manifolds, homo- and heteroclinic orbits and criteria to 
test their transversal intersection. Some tools are dynamical zeta function18. and Melnikov 
technique.22 Many more are required. 

Unstable systems: Having obtained a nice picture of stable systems, we might ask whether they 
are dense. It is known for a long time that they are not. Structural stability is thus of more lim- 
ited significance than anticipated. The world of dynamics is very rich and fascinating. The 
classification of unstable systems and the resulting bifurcation is a problem that remains essen- 
tially unsolved. Attempts are being made to understand them by looking through the bounda- 

ries of stable ones. For instance, one may consider one parameter family of systems { F , }  
ll6.R 

such that F, is stable for p < 0 and ,u > 0 and Fo is not stable. One expects a different qualita- 
tive behaviour as g -+ 0. To understand the situation, the concept of attractors is useful. At the 
bifurcation point p = 0 there is a change in the topology of the attractor. Multiparameter hifur- 
cations are poorly understood. 

In literatureZ3 24 one can observe a long list of unstable situations. On one hand, one consid- 
ers the cases where stable and unstable manifolds are not transversal or C2 loses hyperbolicity. 
On the other hand, there are scenarios obtained by Ruelle-Takens, Feigenbaum, Manneville- 
Pomeau, H6non, etc. In each of these scenarios, not only a description of the attractors involved 
is presented but also unfoldings of them (i.e. the route which yields them) are also given. In 
Ruelle-Takens scenario, it is shown how a stationary point becomes unstable and gives rise to 
a periodic orbit via Hopf bifurcation. A 2-toms then appears though another bifurcation. If 
another instability occurs then typically a strange attractor appears instead of 3-toms. This is in 
sharp contrast to the picture projected by Landau and Hopf in the context of the onset of turbu- 
lence. Period doubling cascades occur as unfoldings of Feigenbaum attractor. What is surpris- 
ing is that all these bifurcations are often really seen to follow each other and to converge as- 
ymptotically on a geometric sequence. In other words, in the space of maps of the interval there 
seems to exist a 'Feigenbaum manifold' of codimension 1 which is geometric limit of bifurca- 
tion manifolds corresponding to period doubling. In the intermittency route proposed by Man- 
neville-Pomeau, the system osciuates in a regular fashion and is stable under small perturba- 
tions up to a critical value of the parameter appearing in the system. Beyond this critical value, 
the system exhibits abnormal fluctuations from time to time. 

These systems are not structurally stable but are stable in some restricted sense. The big 
question is whether the union of these along with Axiom-A systems forms a dense subset in V. 
Are more phenomena to be included? There are several conjectures. 

Nowadays, attention is focused on non-hyperbolic systems. Homoclinic bifurcation then 
becomes important and this can be obtained through homoclinic tangencies, for instance. The 
work of ~ewhouse '~  is pioneering in this context. Another important breakthrough 1s achieved 
to understand the Htnon map." There is also a progress towards mathematical basis to explain 
Feigenbaum cascades and universality." However, a lot remains to be done. Lorenz attractor is 
poorly under~tood,'~ and there are many  conjecture^.^ Intensive research is on to prove them. 
Only time will tell if they are a success or a failure. 
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Even though several mechanisms producing instabilities are known, it is not clear whether a 
given system undergoes bifurcations when the parameters cross through critical va!ues. It is an 
open problem whether a given model exhibits SIC. Bifurcations in the presence of symmetry is 
another vast area which we have not touched.'" " 

In dynamical problems, the following questions are usually raised and thc answers are hard 
to obtain: how the trajectories are attracted towards the attractors, the rate of attraction, the na- 
ture of motion on the attractor, topology and geometry of attractors and their basins, etc. These 
things keep changing as parameten are varied and at the bifurcation point, one expects drastic 
changes. ~andelbrot~ '  has been advocatingfiactal geometry to study atmctors. 

Another question that may be posed is the lollowing: what happens to the dynamics under 
stochastic perturhations? In other words, we replace ODES by stochastic differential equations 
and ask similar questions. There is also intense activity to generalize the above to delay differ- 
ential equations.3' 

Part B: Statistical approach 

As in Part A, we concentrate here on finite-dimensional DS. The geometric approach presented 
in Patt A has enabled one to attack problems with a few degrees of freedom and thereby ex- 
plain the onset of turbulence. There are difficulties with large degrees of frcedom. For instance, 
fully developed turbulence is out of reach for the moment. However, there are physical models 
where only a moderate number of modes are excited, e.g. flamc propagation and combustion 
problems. To understand such chaotic systems we require new tools provided by ergodic the- 
ory such as dimensions, entropy and Lyapunov characteristic exponents. Dimension represents 
the number of excited modes. The inverse of entropy quantifies the time up to which the stale 
can be predicted with precision O(E) if IC is specified with tolerance E. Characteristic exponents 
describe sensitivity to IC (SIC). In this approach, one deals with a measure ,u invariant under 
the dynamics which replaces invariant sets of P~I? A. It is then natural to generalize hyper- 
bolicity as follows: p is hyperbolic if p-almost all points are hyperbolic, i.e. characteristic ex- 
ponents are non-zero p ae. The goal of this approach is to prove that these quautities exist, dis- 
cover the relations between them and usc thcm to extract qualitative hehaviour of DS. The the- 
ory is quite developed5. "2"4 especially w.r.1. nonunifom1 hyperbolic altractors. A spectacular 
application of these tools will be pointed out in Part C. One of the major problems for the fu- 
ture is to know how the descriptions given in Parts A and B change when one takes, say ther- 
modynamic limit, i.e. when the number of degrees of freeedom goes to infinity in a certain 
sense. Does it give a reasonable picture of continuous systems? What properties are lost in this 
passage? Reversihility? Another major difficulty is that there are too many measures invariant 
under the dynamics (e.g. HCnon map). Which one is the most relevant? In this context, SRB 
measures were introduced but proving their existence is a hard mathematical problem. 
Roughly, these measures represent the time spent by the orbits near the attractor. For Axiom-A 
systems, such measures exist and this is the content of the Boweu-Ruelle Theorem. 

Most of the mathematical work in this approach has been restricted to either completely in- 
tegrahle or completely chaotic (ergodic) systems. Little work has been done in the case of in- 
termediate systems which form the hulk of what is encountered in practice. 



Pact C : Infinite-dimensional systems 

There is a large and growing industry to extend whatever we have said about finite- 
dimensional systems in Parts A and B to the infinite-dimensional case, in particular, to the 
systems of nonlinear PDES.~~.~' One of the impressive results is that the NS equation in two 
dimensions has a finite-dimensional attractor. The same is also trne in three dimensions pro- 
vided we assume the existence of a unique solution. The estimate on the number of degrees of 
freedom predicted by Kolmogorov theory of turbulence is thus recovered. We are not going to 
dwell on how this result is proved. We merely point out two radically new aspects in infinite 
dimensions of which little is known. 

(i) We have been discussing about what are known as temporal chaos. In PDEs one can 
also have spatial chaos. Examples include flow past a sphere where chaos develops in the 
wake region. Similar situations arise in turbulent jets and plumes. 

(ii) There is a possible occurrence of singularities in space. For instance, it has been conjec- 
tured that curl of the fluid velocity (obeying incompressible Euler equation) can become infi- 
nite in some parts of lR3 at finite time. It has been proved that this set has to be But 
one does not know whether this is empty or not. It is also conjectured that such a set is fractal. 
There is some numerical evidence supporting this. Another example is the appearance of 
shock waves. In these cases, the space in which dynamics takes place is to be so chosen as to 
include these singularities. Unfortunately, one then risks to lose the uniqueness of solution if 
the nature of the singularities is not properly understood. In many practical problems, this diffi- 
culty exists. 

Part D: Numerical approach 

The biggest question is how to do stable numerical computations in nonlinear systems which 
exhibit instabilities, bifurcation and SIC, and even if we can do, is there a basis to rely on 
them? In the hyperbolic case, there is shadowing Non-hyperbolic situations should be 
looked into. If the system is governed by PDE and the dimension of the attractor is large 
(which is usually the case) then the power of present-day computers does not allow us to inte- 
grate the equations for long times. That is where the insight gained out of the theories devel- 
oped in Parts A, B and C is going to be very useful. Long-time integration demands a good 
approximation of the attractor. When it has a complicated structure, this is not going to he easy. 
Thus was horn the concept of inertial manifold which contains the attractor, is reasonably 
smooth and amacts orbits in an exponential way.36 If N is the dimension of the attractor, it does 
not mean that the fust N Fourier modes are sufficient to describe the motion. Because of the 
complicated geometry, the choice of the modes is subtle. Let us briefly indicate the ideas: split 
the unknown u into large and small 'eddies': u = y + z. Inertial manifolds are sought in the form 
z = 90. Next, the idea is to project our equations onto this manifold. These projections can be 
done in various set-ups: finite-difference method (FDM), finite-element method (FEM), spec- 
tral method (SM) and wavelet method. In literature, one sees at least two ways of achieving 
inertial projections: nonlinear Galerkin method4' using SM and incremental unknown 
method4' using FDM. These are worked out and tested in only some examples. Much more 
remains to he done; for instance, one can employ wavelets here. 
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Numerical computations also offer some frst-hand clues on the possible behaviour of dy- 
namical systems.  anf ford^' has given computer-assisted proof of Feigenbaum's conjectures. 

Part E: Dynamical system and some applications 

The theory of dynamical systems plays an important role in computation and allied subjects, 
most notably in the area of 'analog' computation. There have been several interesting devel- 
opments in this interface in recent years and this remains one of the most active areas of 
'applications' of dynamical systems theory. Some of the notable topics are: 

( 1 )  'Analog' algorithms: Traditionally, these are continuous time, i.e. differential equation 
analogs of the classical algorithms for numerical analysis and optimi~ation~~ because of the 
advances in analog device technology and the hope of embedding hard discrete algorithms into 
more tractable analog 'relaxations'. This, in turn, has spawned much mathematical activity of 
independent interest. Two 'high points' of this trend are: 

(a) Global Newton methods: Originally studied as schemes for computing market equilibria 
in mathematical  economic^,^ these have attracted much attention since. A related topic 
is the 'homotopy' method for optimization where one tracks the global minimum of a 
convex function to a 'good' local minimum of the function to be minimized as the for- 
mer gets homotopically distorted into the latter.45 This trajectory satisfies a differential 
equation similar to the global Newton method. 

(b) Broken's double brackets: These equations are of the type x = [x,[s,  h] ]  on a Lie group 
and originally arose out of efforts to embed discrete optimization problems into con- 
tinuous flows. They are also related to Kmarkar's interior point method.-' These 
have led to much sophisticated mathematics of independent i n t e re~ t .~~ .~ '  

(2) Complexity theory for analog computation: Computational complexity theory for discrete 
computation based on the Turing machine formalism is a mature subject. Efforts are on to de- 
velop a continuous 

(3) Neural network Analog neural networks for classification problems provide interesting 
inverse problems?3s 54 A related activity is a study of cooperative/competitive phenomena 
leading to self-organization or otherwise in interesting systems of differential equations. These 
are of interest to evolutionary biologists, economists and engineers in addition to mathemati- 
cian~?~"' 

(4) Control theory: The long-standing relationship between control theory and dynamical sys- 
tems theory continues unabated, with some of the more exciting developments being the use of 
differential geometric techniquesSB and nonsmooth a n ~ i l ~ s i s . ~ ~ . ~ ~  

( 5 )  Inverse problems: In engineering sciences, one is not interested in chaos as such but in 
ways to control it. Indeed, by choosing properly the control parameters present in the system, 
we wish to have a prescribed behaviour. In other words, the attractor is given and one is re- 
quired to produce a suitable and meaningful system whose behaviour is described by the given 
att~actor.~' Another related question is the compression of data which is represented by the at- 
tractor. The attractor is, the general, difficult to describe and store. If we can get hold of the 



corresponding maplvf then life becomes easy. Research activities in this direction are in full 
swing. 

(6 )  Connection with nonlinear hyperbolic conservation laws: A characteristic fcature of thesc 
systems of equations is the appearance of shocks. Physically, these are limits of suitable vis- 
cous proHes as viscosity goes to zero. Finding these viscous protiles leads one to finding a 
heteroclinic orbit connecting the two states of a shock.62 

Part F: Hamiltmian systems 

Hamiltonian systems are special DS in which the vf is given in tenns of a function H (called 
Hamiltonian) def ied  on the manifold. Celeslial mechanics provides the first examples. Since 
His  a constant of motion, it is natural to restrict our attention to M =  (H = constant). The natt- 
ral measure on this is preserved by the flow. Under suitable hypotheses, Poincari recurrence 
theorem then shows that almost ail points on this constant energy surface x e  non-wandering 
points. Of course, the big classical questions are to know statistical properties of the system 
(Pat B): for example, whether a given system is ergodic on M; if not, can one obtain it at the 
thermodynamic limit? If so, it will justify the traditional apparatus of Gibbs ensemble in statis- 
tical physics of many paaicles. 

In the case of Hamiltonian DS, it is customary to pe11u1-h the Hamiltonian and look for sta- 
ble properties. Note that this is a restricted perturbation. Hence, we may expect new stahle 
pheomena. Indeed, the new concept emerging is that of elliptic equilibria and periodic orbits 
whereas hypcrbolicity is crucial in Part A. The celebrated W M  t h ~ o r y ~ ~ , "  studies thc effect of 
pertul-bations on a completely integrable system near an elliptic point. 

Quasi-periodic motions arc shown to be stable depending on how irrational thcir frequen- 
cies are. This is a surprising result establishing some unexpected connections with number the- 
ory. The rate of ralional quasi-periodic motion is described by Poincari-Birkhof theorem. 
They break into 'island chains' with elliptic and hyperbolic points alternately placed. As in Part 
A, one can expect SIC near hyperbolic points. As the perturbation increases, Aubry and Mather 
have shown that even the irrational quasi-periodic motions disintegrate.'"n higher dimensions, 
there is an additional phenomena called Arnold diffusion. There are many numerical experi- 
ments' which give a picture of possible instabilities and bifurcations. 

In the context of numerical integration of Hamiltonian systems, let us mention that the 
usual algorithms do not work as they do not preserve the Hamiltonian mature of the system. 
Hence, special efficient algorithms are needed for long-term numerical studies. In this context, 
let us mention the Lie algebraic perturbation theory of ~ r a ~ t - ~ i n n . " '  See also yoshidab6 and 
Sanz-Serna and ~alvo.6' 

4. Conclusion 

We have presented very rapidly some unportant phenomena occurring in dynamical systems. 
Various approaches to analyse them are outlined. Apart from highlighting the progress made so 
far, we have also pointed out the limitations of various approaches. Through this description, it 
is hoped to make clear the major remaining tasks to achieve further progress in the field. Un- 
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doubtedly infinite-dimensional dynamical systems constitute a major challenge of the future. 
To handle them, on one hand, various existing approaches will have to be generlrlized and 
strengthened and on the other, new approaches have to be discovered. 
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