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Abstract 

Thrs paper gives an overview of the mathematical aspects of ~ 1 c m l  neural networks theory presenmg it broadly as a 
problem of constlucting dynamical systems with given propertm. It is also shown how computer simulations on a 
mathematical model have suggested a theory of dreams to the two biologists F. Crick and G. Mitcbison. 

1. Introduction 

The purpose of this paper is to present the basic ideas of the subject of artificial neural net- 
works from a purely mathematical point of view. For the sake of highlighting the mathematical 
structures without distractions we relegate to the background all biological motivations, hard- 
warelsoftware implementations, computer science considerations and application needs. Also 
we concentrate on the simplest possisble mathematical formulation. But, it is amazing how 
even such simple-minded models can lead to nontrivial insights inlo real phenomena. As an 
illustration we explain how the Crick-Mitchison theory of dreams arises from simulation shid- 
ies on a certain neural dynamical system. 

2. Neural maps 

An activation is a function g: R -+ R which is piece-wise continuous and has only Type I 

discontinuities. For any activation g and for any positive integer n, we define g": W n  -+ R " by 

x":(x~,xz .... ,x,)=(g(xl),g(x2h ..., g(x,)). 

Two standard examples of activations are the signum and thc sigmoid functions. The sig- 
num function is defined by 

The sigmoid function is defined by g(x) = - wberec>Oforal lx tR.  
I +em" 

A map f: R " -+ R is called a basic neural map with activation g iff is of the form g"oT 

where T: R " + R rn is affine linear and IR + R " . Compositions of basic neural maps 
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are called neural maps. A composition of k basic neural maps is called a neural map of level k. 
If all the basic neural maps involved in the composition of a neural map f have the same acti- 
vation g, we say that f is a neural map with activation g. 

Thus, a typical neural map f:  R "U + R " k  of level k and activation g is of the form: 

f =g"oTk og"oTk_, o...og"oT1 where T,:lRno + I R n l  ,..., q;lR"-' -+IRnk. The inte- 
gers no, ..., nk are called the dimensions off and nl ,  ..., are called the hidden dimensions of$ 

If the range of a neural map f is IR, we call f a neural function. Clearly, if a map 

f :R " -+ IRm is a neural map then each component is a neural function. 

Often neural functions are defined in terms of state spaces on directed graphs. However, di- 
rected graphs are only devices which help us to identify the neural map to be used in a given 
context. This is a detail which need not concern us in the bird's eye-view picture presented 
here. 

It is tempting to trace the lineage of neural functions through Kolmogorov to Hilbert. But 
this is disputed pedigree (see ~assoun'  for a discussion). A tbeorem similar in spirit to Kol- 
mogorov's theorem and indisputably pertinent is Cybenko's tbeorem" which assures us of the 
relative abundance of neural functions. 

Cybenko's Theorem: Let o be the distributionfunction of any continuous probability meas- 
ure on R or a Dirac distribution function. Then any continuous function h: K -t R (where 
K c  R" is compact) can be approximated uniformly as closely as necessary by a neural 

function of level 3 with activation o. 

The main theme in the study of artificial neural networks is the construction of dynamical 
systems having given properties. We recall some basic definitions below. 

Dejnition: (a) A (discrete) dynamical system is a triple (X, d, f )  where (X, 6) is a metric space 
and f :  X -+ Xis not necessarily continuous. 

@) (X, d,f) is a neural dynamical system if X c IRn, d is a metric on X and f : X + X is a 
neural map. 

Suppose (X, d,f)  is a dynamical system. 

(c) Forx E X the sequence {x,f(x), f2(x) =f(flx)), ...} is called the orbit of x. 

(d) f is said to be globally stable if every orbit is convergent. In this case we define 
T ( x )  =limn ,,f"(x). 

(e) A c X is an invariant set iff(A) c A. 

(0 If A is a closed invariant set the basin of A is defined by bas(A) = {x: d(F(x), A) -+ 0) 

The central problem in the study of neural networks may be formulated as follows: 
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Central problem: Given 

(i) X c R" and a metric don X 
(ii) pair-wise disjoint closed subsets A,, A2, ..., A, of X, and 

(iii) pair-wise disjoint subsets B1, B2, ..., B, of X such that A, c B, for all i ,  

to find a globally stable neural map f :  X + Xsuch that 

(a) XA,) c A, for all i, and 

(b) B, c bas(A,) for all i. 

We show below that two standard problems in the study of neural networks can be seen to 
be special cases of the Centralproblem stated above. 

Example: Multiple layerperceptron (MLP)problem 

This is essentially an interpolation problem, but there are subtle and important questions of 
'overfitting' and 'underfitting' which are hard to model mathematically and because of which it 
is more of an art than science to find the appropriate interpolation function. In the barest 
mathematical details the problem is as follows. 

Suppose C1, ..., C, are pair-wise disjoint finite subsets of R "  . Let a,, ..., a, E IR " . It is r e  
quired to construct a neural map F: R " + W such that F(x) = a, for all x E C,, i = 1 ,  2, ..., p. 
More precisely, given an activation g we need to choose appropriate hidden dimensions n,, ..., 
nk, ,  and basic neural maps 

F 1 : R n  - + R n ' ,  

with common activation g such that, for F = Fk o...o Fk, it is true that Flci = ai, for all i = 1, ..., p. 

This is equivalent to a special case of the Central problem if 

N=n,,+nl+ ...+ nk 

d = the Euclidean metric on R 

1f f : R N  + R ~  isgivenby 



then f is a solution to the problem. Note that hereJP =f. 
Example: The Hopfield problem 

Let X be the 'bipolar' space {-l,l}N of dimension Nand let d(x, y) = #(i: x, # y,) be the Ham- 
ming distance. For x in X and r > 0 let B(x, r) denote the closed ball of radius r centred at x. 
Choose and ftw at,-, a, in X and r,,..., r, such that the closed balls B(a,, r,) are pair-wise dis- 
joint. Choose the activation to be the signum function. The problem then is to find a globally 
stable basic neural map f such that xu,) =a, for all i and B(a,, r,) c bas(a,) for all i. Equiva- 

lently, such that r(B(ai,  r,)) = {a,} for all i. (Note here that f" = f 2 N .  ) A variation is to re- 

quire thatflB(a, r,)) = {ai} for all i. In this case, the Hopfield problem is equivalent to a single- 
layer Perceptron p r~b lem.~  

The Hopfield problem is a very simple-minded model of the way the brain stores memories. 
If every neuron in the brain can be either 'on' or 'off then the state space of the set of all neu- 
rons can be modelled by X and any memory can be modelled by a particular pattern of 'on's 
and 'off s, i.e. an element of X. So each a, above can be considered to be a 'memory'. It is rea- 
sonable to think that any stimulus associated to the memory and which gives rise to the exact 
recall of the memory will be close to that memory in terms of the Hamming distance. So for 
modelling the activity of the brain by f we require the elements in B(a,, r,) to be carried to a, by 
the map5 f is called an associative memory because f associates elements of B(ai, rJ with a,. 

A graphic metaphor for an associative memory is to visualize a surface on X which has lo- 
cal minima at the memories and for which the valleys associated with the local minima are the 
basins of the memories. 

3. Learning 

There is a general method of approaching the Central problem of neural network theory which 
we now explain. Given (X, d) and the property P which the neural dynamical system is re- 
quired to satisfy, we first choose and fix the activation, the level of the neural map and the hid- 
den dimensions. Then the only variability left for the dynamical system is in the real coeffi- 
cients of the affine linear maps defining the system. Thus, we have essentially a family of dy- 
namical systems paramehized by elements of some Euclidean space, say W. Each w E W de- 
fines a dynamical system on X and w is called the weight vector of that system. 

Let W,, be the set of all dynamical systems satisfying the propeey P. The problem now re- 
duces to locating an element of WO, assuming WO is nonempty. This is sought to be done by 
constructing a map A : W + W (not necessarily a neural map) which is globally stable and is 
such that for any w E W, limn +, d(An(w), Wg) = 0. Then, Am(w) E q0. (Note that this is also a 

case of the Central problem.) However, such an ideal A is only rarely met in practice. One gen- 
erally writes down a plausible map A or a finite or infinite sequence of An's with the hope that 
starting from some carefully chosen wo and defining w,, = A,,(w..I). w. is close to Wo for some 
sufficiently large n. Such an algorithm is called a learning algorithm or a learning rule. The 
standard learning rule for the multiple layer Perceptron problem is called 'back-propagation' 
and the standard learning rule for the Hopfield problem is called 'Hebb's rule'. 
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4. Generalizations 

Keeplng the Central problem stated above in focus one can consider several po~sible gcnerali- 
zations. 

(i) Instead of affine maps in the formahon of neural maps one can consider quadratic or 
even general polynomial maps6 

(ii) In the place of dlscrete dynan~ical systems one can consider continuouslstochastic dy- 
namjcal systems?-' 

(iii) The condition of global stability may be generalized by considering systems with peri- 
odic or even chaotic a l~dctors . '~  

(iv) The real line R may be replaced by a topological ring R." 

(v) Instead or deterministic learning rules as above one can consider fuzzy or stochastic al- 
gorithms.", l 3  

A rich theory has grown along all the generalizations suggested above in the last few years. 
Some of these results are really breathtaking. For example, the EM-algorithm of slatistics can 
be identified, undcr certain conditions, with a suitable lcaming rule dcfined in terms of geodcs- 
ics in information geometry!'" 

5. Hebbian learning and unlearning 

We now return to concentrate on the Hopfield problem. Let X= {-I, 1IN. Let S denote the 
space of N x N real symmetric matrices (which are identified with linear endomorphisms of 
W N ) .  For each T E S, define f: X -> X by f = sin oT. Each f is a basic neural map on X. 

Note that if c > 0 then (cf) = 7'. 

Let now a finite set A = {al, az;-, a,}c X be given. We are asked to Fmd-T E S such that 
7' is globally stable and each element of A is a memory (i.e. a fixed point) of T . 

I-Iebb's learning rule is given by A,, k =  1, 2;-,  p wherc Ak: 5-+ S, Ak(n= T +  aka: 

(here, 4: denotes the transpose of the column vector ak). Ak is called the mle for learning ai. 

H is said to be given by Hebb's auk. I t  is not difficult to show that if the ais arc pair-wise 
orthogonal then cach ak is a memory of N . Jn the general case, aks need not be fixed points of 
H . However, in practice one usually starts with Has  above (because, Hebb's rule is motivated 
by neurobiological considerations) and tries to modify H in get a solution to Hopfield's prob- 
lem. 

It is known that H is always g!ohqy stable. The trouble with H is that apart from the fact 
that a# need not be n~ernories of H , H has, in general, fixed points which are not in A. These 
are called spurious memories. The problem now is to modify H so that true memories are learnt 
and spurious memories are unlemt. 



A paper of Hopfield et al.lS (which does not seem to have been given sufficient recognition 
in literature) suggests a procedure which may not eliminate spurious memories but reduces 
their ill effects. To be precise, for$ X + X define for each fixed point a off, the accessibility 
of a as the ratio # ba~(a) /2~ .  

Consider now the 'unlearning' procedure given below, which is a special case of the classi- 
cal method of stochastic approximation. 

1. Let Ho = H. 

2. Given H,, choose x, E X at random (with equal probabilities) and E, > 0 'small'. Let 

Then for large n, fin gives low accessibility to spurious memories and equalizes the ac- 

cessibilities of the m e  memories. 

In terms of the graphic metaphor suggested earlier according to which we visualize the 
memories as the local minima of a surface defined on X, the unlearning procedure can be un- 
derstood in the following way.I6 Imagine the true memories to have deeper valleys as com- 
pared to the spurious ones. Throw a marble at random on the surface and let it run into a valley. 
Put a bucketful of sand in that valley. This has the effect of making the valley less deep. Keep 
throwing marbles as above. Then after some time, the valleys corresponding to spurious 
memories get filled up, because they are shallower, leaving only the true memory valleys. 
(Actually, the true valleys tend to become equal in size also, according to mathematical proce- 
dure. But you can push a metaphor only so far). 

6. The Crick-hZitcbison theory of dreams 

The contents of the last section may be summarized as follows: 

The brain's problems of storing and recalling memories is modelled, however, crudely and 
inadequately, by Hopfield's problem. Since we expect the brain to function according to 
Hebb's rule, we initialize the solution to Hopfield's problem at Ho = H. Simulations suggest 
that 'unleaming' leads to an improved solution. 

This viewpoint suggested a natural (and at the same time bold) conjecture to Crick and 
~ i tch ison: '~ . '~  Perhaps the brain too nee& to unlearn? Is that what happenr in dreams? 

To explain the basic idea of their theory, we f i s t  present some biological observations. All 
quotations are from Crick and Mitchison.18 

REM (rapid eye movement) sleep has been found to be strongly associated with dreaming 
in human subjects*. REM sleep (and by inference, dreaming) has been observed not only in- 
new-born human babies but also in "almost all mammals and in most buds". So REM sleep 
probably has some "important function and this function is biological in nature and not specifi- 

* h a m s  can apparently occur in non-REM sleep also. So readers having their own pet theories of dreams need not be 
overly disconcerted by the Crick-Mitehison theory. 
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cally human". Further, "it has been known for many years that during REM sleep a series of 
impulses, called PGO (ponto-geniculo-occipital) waves, appear m the brain". 

Considering everything together Crick and Milchison suggest that perhaps the PGO waves 
implement the randomization mechanism of 'unlearning' and that the resultant brain activity is 
dreaming. This will have the effect of minimizing spurious memories and equalizing the ac- 
cessibility of trnc memories, thus making the brain more efficient in storing memories. Calling 
a spurious memory a 'fantasy' and a true memory with a disproportionately large basin an 
'obsession', they sumarize their theory with the slogan "We dream to reduce fantasy and oh- 
session". 

In the references cited they examine the case for the plausibility of their theory. But irre- 
spective of that, the point we we wish to emphasize is that the "idea did not come from an ex- 
plicit consideration of REM sleep and dreams but from lheoretical studies on the way large 
groups of neumns might interact together" (emphasis added).18 Thus, the thcory is a beautiful 
example of the use of mathematical modelling and computer simulation at its best. 

7. Conclusion 

We have outlined the theory of artificial neural networks theory from a mathematical view 
point and have also explained briefly an interesting application to the biology of sleep. It is 
hoped that this will be of help to the mathematically oriented readers to get an idea of what the 
study of neural systems is all about and why it is so exciting. 
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