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Abstract 

This paper develops a scheme to estimate the derivatives of a discretely sampled data more accurately than traditional 
methods. The method is based on applying singular-value decomposition to Taylor's expansion but in a matrix form. 
The validity and robustness to noise of the proposed scheme are illustrated by numerical experiments. 

1. Introduction 

'A picture is worth a thousand words'; so is an equation which is worth a million words. The 
truth of this statement becomes self-evident when one deals with a large amount of data. It has 
been the dream of every analyst of observational data since Keppler to find an equation which 
will fit the data. 

Both these ideas have been beautifully expressed by Packard et al.' in a fascinating paper 
appropriately titled 'geometry from a time series', later formalized by ~ a k e n s . ~  

Experimentally or numerically generated data often consists of a measurement of a single 
scalar variable at different times. For example, we might measure a variable X at different 
times leadimg to a sequence of scalar values: X&), X(t.z), X(t-3) ... at times t-1, t-2, t-g. ,... If a 
model equation is to be developed from the sequence and expect it to be of an order equal to N, 
where, let us assume, N is higher than 1 but less than, say 20, we would need to generate a set 
of vectors from these scalar data and then define the dynamics of the data with the help of this 
set, either in terms of difference of differential (or more complex) equations. 

In the Packard-Taken's method, the vectors are consmcted from the sequence of X itself. 
Thus, the first vector would have the first N data points as its components. This way we embed 
an R, space in an R, sequence. 

The method has been discussed extensively in literature. Its main drawback is its vulner- 
ability to experimental noise. We have an alternative method which is far more intuitive and 
seems to offer several advantages. It is based on a technique of state-space vectors which is 
quite well established. It is common to plot velocity vs displacement in mechanics. In higher 
dimensions, higher derivatives become higher components of the state space. The main draw- 
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back is the accurate determination of derivatives which has led to the Packard alternative. In 
what follows, we would demonstrate a singular-value decomposition technique3 to accurately 
determine even very high-order derivatives. 

Once this is achieved, we would show how to obtain state-space portraits from experimen- 
tal data. This method is robust as it can tolerate and, in fact, suppress a small amount of random 
noise. This is followed by an illustration of how to find unknown parameters (if the form of 
equations is known) using this method. 

2. Numerical differentiation 

The formulae for numerical differentiation are quite well known. For example, if the samples 
are at a uniform interval h, the central-difference formula gives: 

This formula is a little more accurate than just a forward or backward difference formula. An 
improvement involving t+ 2h and t -  2h terms can be easily derived using Taylor's series. 
However, even Numerical recipes3 claims that the algebra gets 'increasingly tedious' with 
additional terms. 

This objection, however, can now be easily overcome given our ability to invert and find 
singular-value decomposition of quite large matrices. We would show below how this can he 
done and how, in principle, extremely accurate determination to a very high degree of accuracy 
for a very large order of derivative is possible, provided certain underlying assumptions about 
reasonable smoothness, etc. are valid. 

This procedure works in the presence of a small amount of noise also. In fact, the very first 
output of the procedure is that it yields a filtered version of the X series! 

2.1. Taylor's expansion in a matrix form 

The Taylor series expansion is given by 

or in a compact notation 

If we take a series of samples, not necessarily at a uniform interval 

We can write this in a matrix form, if we define 
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and 

Then, 

or 

The pi-oblem now boils down to finding F given S and A. And since, in most cases, A is not 
square, and there are errors (noise) present, we would do this by means of Moore-Penrose gen- 
eralized inverse procedure. 

It should be noted that if the intervals are uniform (or of fixed ratio with one mother) a 
transformation of the type 

and 

makes A independent of h 

2.2. Finding derivutives accurately 

To illustrate the procedure, consider a data sequence (generated from the Lorenz's equation, 
although in this section this knowledge is not assumed) represented in Fig. 1. 

FIG. 1. A sample data sequence 
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At this stage all we need to know is the value of the samples and the step size h. In this exam- 
ple, the step size is 11200. Let us denote the pth sample of X by X-p. At this point, we calculate 
various derivatives of X. Since the sampling is uniform, one way to do this is to choose a set of 
N +  1 samples, with X-p at their centre. If we account for M derivatives in Taylor's expansion, 
using the rescaling with the sampling interval h, we get 

In this case, we choose 

and 

Then, A would have N + 1 rows and M + 1 columns. As described in the previous section, we 
need to find the generalized inverse of A. Many standard routines would do this. For example, 
using Mathcad, we get a matrix. 

SK = svd(A) 

which has (N + 1) + (M  + 1) rows (in our case, 70) and (M + 1) (our case 19) columns. 

This is to be separated into two matrices: 

U: = snbmatix x(SV, 0, N, 0, M) 

V:=submatrixr(SV,N+l,N+M+ l,O,M) 

We also form a diagonal matrix W from the singular values given by 

SVS: = svds (A) 

W: = diag(SV.9) 

Now the singular-value procedure ensures that U x W x vT will be equal to A. In the numerical 
example, we can check this by seeing that 

is indeed very small. 

In practice, we often need to modify W to take care of very small eigenvalues by an interest- 
ing procedure. (see, for example, Numerical recipes3 which includes a delightful comment: "it 
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is not very often that one gets to set infinity = O!"). For the sake of easy reference, a sample 
algorithm would be 

where the value of 1 was chosen by observing the spectrum of the singular values. Now the 
generalized inverse is given by 

AI: = V.WIUT 

We now do this at each p and get the F matrix which would have esOnates of the M deriva- 
tives. For the rest of the paper, we would use the following notation for some of the early de- 
rivatives: 

With this notation, we can plot the results for the first 2 , 0 0 0 ~ ~  (Fig. 2). 

These are not the usual state space pictures of the Lorenz's attractor. However, they are just 
as fascinating The original goal of Packard of amving at the geometry from data has been 
achieved. 

P 
P 

(4 
FIG. 2. Statespace pornnits 



2.3. Finding Y and Z 

Now, let us, for the first time in the numerical example, assume that we know that our data is 
from the Lorenz's equation: 

As a first step, let us for now assume that we do know the parameters of the equation. In that 
case, it is easy to show that, if 

I S:= - 
d 

the best estimates of X ,  Y, Z would be 

x2,: = P, 

n,,: = Q..s + P, 

[-R, . s -Q,  .(I+"] 
22 P '  , = p - l +  

PP 

we can see that these do indeed Nm out to be very good estimates (Fig. 3). 

Now, we can plot the familiar statespace pictures (Fig. 4). 

2.4. Noise reduction 

One of the main problems with the Packard-Taken's procedure is that it is sensitive to the er- 
rors caused to extraneous noise, which, at least in experimental situation is inevitable. Once 
again choosing the Lorenz's equation, and using a finer step size of 112,000, a uniform random 
noise of range of +0.001 was added to X. 

The same procedure was followed with a high N of 200 and somewhat lower M of 10 (one 
can justify both these numerical observations by means of some reasonable ad boc arguments). 
The results can be seen in Fig. 5. 

In this figure, P i s  the estimate of X at the centre of the block, X2 is the value obtained after 
adding the random noise. It is easily seen that the procedure gives an estimate, which is much 
closer to the acNal X, thus removing a lot of noise. 

2.5. Finding parameters and initial conditions 

Another recent development deals with the possibility of rapidly identifying parameters of the 
Lorenz's quation.' 1t has been shown that following the above notation, we get the following 
relationship 
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P 
(e) 
RG. 3. Comparison of estimates of derivatives. 

Since we can calculate P, Q, R, etc. with a high level of accuracy, we can evaluate them at 
consecutive points and just with a few points amve at the following set of equations which can 
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(a) (h) 
FIG. 4 Statespace portraits. 

bc solved. The following worked-out example shows how this can be done with just a few 
points from the X set. and substituting the values P, Q, R and S at each point (again, using 
Mathcad): 

Given 

(-3451.6 - 229.29B.s + P.(p t 22.179) + 281.19 = 0 (1) 

(-4701.7 - 270.1 l .P).s + /T(p + 25.588) + 408.04 = 0 (2) 

(-7075.5 - 328.24m.s + P.(p + 30.755) + 647.19 = 0 (3) 

find the parameters with a minimum error: 

min err@, p, s) = 24.837 [: 1 
These turn out to be quite close to the ones used. 

3. Conclusions 

We have demonstrated in this paper how to calculate the derivatives of a disuretely sampled 
data, far more accurately than the usual central difference formulas do. This is accomplished by 
setting the Taylor's series formulation in a mahx form and then using singular-value decom- 
position. These derivatives are used to generate a set of vectors from scalar data. Thia method 
is clearly seen to have several advantages over the conventional method of embedding data. 
Using the example o i  a numerically generated data, it has been shown how to obtain state- 



DERNATIVBS OF A DISCKETELY SAMPLED DATA 

P 

Fo 5 Example of a uoisy data sequence 

space portraits from sampled data. It is also shown that this method is robust in the sense that it 
can tolerate and, in fact, suppress a small amount of random noise. This is followed by an illus- 
tration of how to find unknown parameters, if the form of equations is known, using this 
method. 
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