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Abstract 

In this paper, different methods of computing Lyapunov exponents for contmnuous-time dynarmcal systems are briefly 
renewed. The relative merits and demerits of these mebods arr pointed out. 

1. Introduction 

The problem of detecting and quantifying chaos in a wide variety of systems is an ongoing and 
important activity. In this context, computing the spechnm of Lyapunov exponents has proven 
to be the most useful dynamical diagnostic for chaotic systems. 

The Lyapunov exponents give the average exponential rates of divergence or convergence 
of nearby orbits in the phasespace. In systems exhibiting exponential orbital divergence, small 
initial differences which we may not be able to resolve get magnified rapidly leading to loss of 
predictability. Any system containing at least one positive Lyapunov exponent is defined to be 
chaotic, with the magnitude of the exponent reflecting the time scale on which system dynam- 
ics become unpredictable. 

For systems whose equations of motions are explicitly known, there exist several methods 
for computing Lyapunov exponents. In this paper, we briefly describe the various methods, 
their advantages and disadvantages. 

Let us consider an n-dimensional continuous-time dynamical system, 

2 = F(z, t), 
dt 

where z = (zl, zz. ..., z,,) and F is a n-dimensional vector field. Let Z(t) = z(t)-a(t) denote devia- 
tions from the fiducial trajectory ~ ( t ) .  Linearizing eqn (1) around z&), we have 

dZ 
- = D F ( Z ~  (t), r). Z, 
dt 

where DF denotes then x n Jacobian matrix. 

The l i nuzed  equations are integrated along the fiducial trajectory to yield the tangent map 
M(za(t), t) which takes the set of initial variables 2'" into the time-evolved variables Z(t), where 
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The evolution equation of M is given by 

!.!!! = DFM. 
dt 

Let A be an n x n matrix given by 
Il2f 

A = l i r n ( ~ ~ ' )  
I+- 

where M' denotes the transpose of M. The Lyapunov exponents are the logarithm of the eigen- 
values of A,' 

All the methods of computing Lyapunov exponents are either based on QR or the singular- 
value decomposition. In the following sections, we will describe some of these methods. 

2. Singular-value decomposition method 

Let 

M = U F V  

be the singular-value decomposition (SVD) of M into the product of the otthogonal matrices U, 
V and the diagonal matrix F = diag(q(t), o2(t), ..., on(t)). The diagonal elements of F are called 
the singular values of M. The SVD is unique up to permutations of the corresponding columns, 
rows and diagonal elements of the matrices U, V and F. A unique decomposition can be 
achieved by requesting the singular-value spectrum to be strictly monotonically decreasing, i.e. 
q ( t )  > q( t )  >...>o,,,(t). Post-multiplying eqn (6) with M'= V F U' shows2 that the squares of 
the singular values q(t) of M are the eigenvalues of the matrix MML. Therefore, from eqn (3, 
we have the relation between the Lyapnnov exponents a,, the eigenvalues w,of A and the singu- 
lar values ~ ( t ) ,  i = 1,2 ,..., n as follows: 

The geometric intepretation of this method is explained in Benettin et aL3 

Following Benettin et al." we will now formulate the differential equations for the quanti- 
ties that are needed to compute the Lyapunov spectrum in terms of singular-value decomposi- 
tion. Let us introduce a matrix E, where 

E = log F = diag(ei, EZ ,..., G), (8) 
where the elements &i= logoz (i = 1, Z,.., n). Differentiating E with respect to time, yields 

S=F'F, (9)  
where 

F = U ' D F U F - ~ V F - F ( V ) ~ V .  (10) 

This is got by subtituting eqn (6) in eqn (4) and differentiating w.r.t time. Due to the or- 
thogonality of U and V, we have 
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Let us denote 

A = L" U' 
B=F-'AF, 

C = U ' D F U ,  

D = F ' C F .  

Also, E' + (Ef) '= 2 F  yields 

To compute the Lyapunov exponents, the diagonal elements of E' need to be calculated. For 
this, we see, from the above equation, that the elements of matrices B and D  are required. They 
are given by 

Since U is orthogonal, A is skew-symmetric and B,, = 0, i = 1, 2,.., n. The diagonal elements of 
E', therefore, satisfy the equation: 

E ;  = C,,. (20) 

The above equation can be used to compute the Lyapunov exponents lim,,,&,(t)/ti = 1, 2.., n 
provided U is known as a function of time. 

TO determine U(t), consider the off-diagonal elements in eqn (17), the n(n - 1)12 equations 

TO get rid of the exponentially growing quantities, eqn (21) is multiplied by 419. Let 

Therefore, we have 
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The time evolution of U can now be determined by integrating the following differential equa- 
tion 

U'= UA. (24) 
In case of a non-degenerate spectra, the singular values constitute a strictly monotonically de- 
creasing sequence for large time. 

When the above differential equation for U is solved, the orthogonality of U is quickly lost 
and one has to perform reorthogonalization evety now and then. In case of a degenerate 
Lyapunov spectra, matrix A becomes singular. This is another disadvantage of this method. 
Also, it requires more operations than the QR method, which will be described in the following 
section. Further, evaluation of a partial Lyapunov spectrum can be computationally costly be- 
yond a certain th~eshold.~ 

3. QR decomposition method 

We know that any non-singular matrix can be uniquely decomposed into a product of an or- 
thogonal matrix and an upper-triangular matrix with positive diagonal elements. Using this 
knowledge, we decompose the tangent map M as 

where Q  is an n x n orthogonal matrix and R  is an n x n upper-triangular matrix with positive 
diagonal elements R,,. The Lyapunov exponents are given by 

In general, in the limit t + rn the Lyapunov exponents constitute a monotonically decreasing 
sequence.4 

Substituting eqn (25) in eqn (4), we have 

Q'R+QR'=DFQR. (27) 

Pre- and post-multiplying the above equation with Q-' = Q' and R', respectively, we have 

QQ'-Q'DFQ=-R'K'.  (28) 

The right-hand side is an upper-triangular matrix with diagonal elements -R; l R,. , while the 

Q' Q' is a skew-symmetric matrix. Let 

S=QfQ'. (29) 

Therefore, the differential equation for Q is given by 

Q' = Q  5'. 

The equations for the diagonal elements of R  are given by 
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Using the above equations, the Lyapunov exponents can be computed. This method is dis- 
cussed in detail in Benettin et al.' This method also suffers from most of the disadvantages of 
the previous method. 

In the following section, we shall see how things get simplified by using group-theoretical 
representations of the orthogonal matrix. 

4. MM' method 

In this section, we describe a method utilizing representations of orthogonal matrices applied to 
the decompositions of the tangent map product MM'. In this method? a matrix A is introduced,' 
where 

The time-evolution of A is given by the following equation: 

Since this matrix is symmetric and positive definite, it can be written as an exponential of a 
symmetric matrix S. Moreover, any symmetric matrix can be diagonalised by an orthogonal 
matrix. Therefore, we have 

A = exp(B) (34) 

= exp(0 D 0') (35) 

= 0 exp(D)O', (36) 

where 0 is an n x n orthogonal matrix, and D, an n x n diagonal matrix, whose diagonal ele- 
ments are the Lyapunov exponents multiplied by time. Since D is already in the exponent, 
there is no need for rescaling. 

An easy to obtain group-theoretical representation of the orthogonal matrix is used for ma- 
trix 06. This ensures that the number of variables used to characterize the system is minimal. 
The number of parameters needed to characterize 0 and D are n(n - l)/2 and n, respectively, 
giving a total of n(n + 1)/2. This method also maintains the orthogonality without any need for 
rescaling. Hence, the numerical errors can never lead to loss of orthogonality. 

The working of this method can be explained by taking the example of n = 2 case. 0 is rep- 
resented by the following matrix: 

D is given by 

The Jacobian mauix DF is given by 
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Substituting these expressions for A in eqn (33), we have 

Simlarly, the differential equation for Bcan also be obtamed. The next method to he discussed 
is a vaiant of the above method with further advantages. 

5. Continuous QR method wing representations of orthogonal matrices 

In this method: the orthogonal matrix Q is represented as a product of n(n - 1)/2 orthogonal 
matrices, each of which conesponds to a simple rotation in the i,$h plane (i < j). Denoting tile 
the matrix corresponding lo this rotation by Q", its matrix elements are given by: 

where @is an angle variable. Then, the matrix Q is represented by: 

Q = ~ ( 1 2 )  ~e"", , .  Q W  ~ ( 2 3 ) , , ,  Q<-I."), 

Q$' = 

So, we have n(n - 1)12 angle variables denoted by Oi, i = I,.., n(n - 1112. Here, Q is represented 
by a special orthogonal matrix because of the choice of initial conditions. We choose t l~e iden- 
tity matrix as the initial orthogonal matrix. Since we start with a nratrix from the SO(n) compo- 
nent of the group of orthogonal matrices, due to continuity, we remain in the same component 
for all tune. Hence, we are jnstified in choosing Q to be an SO(n) matrix. Since the upper- 
triangular matrix has positive diagonal elements, it can be represented as follows: 

'1 if k = 1 # i, j ;  

c o s @ i f k = l = i o r j ;  

sin 8 if k = i ,  l = j ;  

- s i n B i f k = j , l = i ;  

0, otherwise 

'expa, r ... ... 'in 

0 expa, rZ3 ... r2, 
. . .  . . . .  . 
. . .  . . . .  . 

\ O  0 0 O e x p A ,  

Using the representation of Q, Q' Q' is given by 
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0 - f 1 ( q  ... -fn-,(Of) 

I '  0 

- 1  ' 1  . . . f - 2 '  0 

where O'=(O;,O;, ..., @:(,_lj,2) 

Substituting the above matnces in eqn (27). we have 

The equations Tor the angles are given by 

The Lyapunov exponents are given by 

Here again, we need a minimum number of parameters to characterize the system and there is 
no need for resealing. Furthermore, numerical errors can never lead to loss of orthogonality. 
This method has other advantages over the previous ones. The equations for 0, are deconpled 
from the equations for &. Hence, we need not worry about degenerate spectra. Another very 
iuteresting feature of this method is the dependence of 1; on the first (n- 1) 4s. 1; on 

the first (2n - 3) 0;s and so on. Therefore, to obtain the first two As, one needs to solve only 
(2n - 1) equations. In general, to solve for the Tist m Lyapunov exponents, one has to solve 
m(2n -m + 1112 equations which is always less than n(n + 1)/2 for m < n. Therefore, the partial 
spectrum can be easily calculated unlike in the methods listed above. This is a major advantage 
of this method. 

In the n = 2 case, Q is parametrized as 

cos0, sinel 

-sin@, cos8, ' 

R is written as, 

The Jacohian matrix DF may be written as: 
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Substituting the above into eqn (27), we have 

The equation for 0, is given by 

The above equations are numerically integrated till the desired convergence for the Lyapunov 

exponents % and is achieved. This method also preserves the global invariances of the 

Lyapunov spectrum. This method is discussed in detail in Rangarajan rt nL4 

6. Conclusion 

In this paper, we have briefly reviewed some of the methods for computing the Lyapunov ex- 
ponents of continuous-time dynamical systems. The advantages that accrue by using a group- 
theoretical representation of orthogonal matrices were brought out. It should also be noted that 
the methods reviewed can be applied to discrete maps with appropriate  modification^.^.' 
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