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Abstract 

In this review, wc consider the appllcatlons of fractronal calculus to iractals. Some occurrences aod applications of 
fractals are hsted We also give selected definiuons of fractional derivatives and integrals. m e  rewew concentraks on 
works spxifically applying fractional differential equations to fractals. These mclude dlfiusion on fractalc. E v y  proc- 
esses, conttnuous time random walks, etc. We also consider the recent notion of local frdctional derivative and 1 0 4  
fractional analog of Fokkcr-Plaock equation. 

1. Introduction 

Fractal structures and processes' arc omnlprescnt in the field of nonlinear and nonequilibrium 
phenomena. Fractals are used to model many objects in nature such as clouds, coastlines, riv- 
ers, etc. Fractals arise in the phase space of Hamiltonian systems. Percolating clusters are frac- 
tals. In turbulent tluid [he energy is dissipated on the fractal set. Growing surfaces in non- 
equilibrum growth phenomena are modeled by fractals. Owing to frequent occurrences of 
fractals, various t o o l ~ u m e r i c a l  and analytical-are being developed to study such structures 
and processes. It is important to note that fractals, which are sets or objects having fractional 
dimension, are very irregular and the usual calculus fails to apply to such objects. 

On the other hand, fractional calculus is an area of classical mathematics which deals with 
generalization of derivatives and integrals to arbitrary orders. Since ordinary calculus has been 
so useful in handling objects with integer dimension it is natural to ask if the formalism of 
fractional calculus can be used succesfully to deal with fractals. One of the early applications of 
fractional calculus to a fractal process can be traced down to the work of Mandelbrot and Van 
Ness.' Recently, there has been a surge of activity which prohes this connection further. There 
have been many reports where fractional derivatives and integrals have been used to study 
fractals either directly or using equations involving them. In this review, we'll restrict our at- 
tention to those works where some kind of fractional differential equations (FDEs) have been 
used in connection with fractal structures or processes. Fractional calculus has also been found 
to be useful in many other areas which are not directly related to fractals. These include elec- 
tr~chemistr~,~%electrostatics,~~' acoustics8, Navier-Stokes equation?'' phase transitions". l2 

and other 

The plan of the review is as follows. In the next section we study various disciplines where 
fractals occur in science. It is planned to deal separately with two trends in fractional calculus. 
vix. the conventional fractional calculus (which is nonlocal) and Ule local fractional calculus. 
Accordingly, we introduce the conventional fractional calculus in Section 3 and the recent local 
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fractional calculus in Section 4. In this review, we focus on the applications of differential 
equations to fractals. So the next section, Section 5, deals with FDEs involving nonlocal frac- 
tional derivatives. Since fractional differential equations involving local fractional derivatives 
are fimdamenatlly different from those involving nonlocal fractional derivatives, their discus- 
sion is postponed to Section 6. In Section 7, we make some concluding remarks. 

2. Fractals 

The concept of fractals has found innumerable applications in pure as well as in applied sci- 
ences. We do not go into various definitions of fractal dimension apart from saying that they 
are sets having noninteger dimension (see   an deb rot' and ~alconer '~  for definitions). In the 
following we discuss some applications of fractals. More examples can be found in other refer- 
ences.Iaz' 

2.1. Fractalfunctions 

The graph of continuous but nowhere differentiable functions is known to have fractal dimen- 
sion. Such functions occur naturally and abundantly in formulations of physical theories. The 
work on Brownian motion" showed that the graphs of projections of Brownian paths are no- 
where differentiable and have dimension 312. A generalization of Brownian motion, called 
fractional Brownian motion,'.17 is lmown to give rise to graphs having dimension between 1 
and 2. It is also observed that typical Feynmann paths,". like the Brownian paths, are con- 
tinuous but nowhere differentiable. 

2.2. Turbulence 

In fluid systems, passive scalars advected by a turbulent fluid have been shownz4. 25 to have 
isoscalar surfaces which are highly irregular, in the limit of diffusion constant going to zero. 
Also points at which the energy is dissipated in the turbulent fluid forms a fractal set. 

2.3. Kinetic aggregation 

The diffusion-limited aggregation (DLA) model2'. 26 is a simple model of a fractal, generated 
by diffusion of particles in the following manner. One starts with a 'seed' particle which is 
fmed at a point. A second particle s t m  on the border of a circle around this point and performs 
a random walk. When it comes near the seed it sticks to it and a cluster of two particles is 
formed. Then a third particle performs a similar random walk and forms a cluster of three par- 
ticles. This procedure is repeated many times, thereby giving rise to a large cluster having the 
shape of a fractal. DLA models many phenomena in nature, such as viscous fingering, dielec- 
tric breakdown, snowflake growth, etc. 

2.4. Biological system 

There is abundance of fractal structures and processes in biological systems. Human lungs, 
branching of trees, root system in plants, etc. have a self-similar branching structure which is 
typical of fractals." The above-mentioned DLA model has also been used to understand the 
shape of a neuron, growth of bacterial colonies, etc. Long-range correlations, which are be- 
lieved to give rise to fractal geometry, are found in DNA sequences, human heart beats, etc. 
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2.5. Percolation 

Consider a large square lattice where each site is occupied randomly with probability p  and 
empty with probability 1 - p .  At low values of p, the occupied sites form small clusters. As one 
increases p there exists a threshold p, at which a large (macroscopic) cluster appears and which 
connects opposite edges of the lattice. This is called the percolation cluster. This percolation 
cluster is self-similar in nature and hence has fractal structure. 

3. Conventional fractional calculus 

There are various ways in which an operator D" can be constructed which gives derivative of 
order n for positive integer n and/or an integral of order n for negative integer n. Once one has 
such an operator it raises an interesting question if this operator can be generalized to all real 
values (or even complex) of the order. The branch of mathematics which deals with such a 
generalization is called fractional calculus. 

Though the idea of such a calculus dates back to 1695, as evidenced in a letter by Leibniz to 
L'Hospital, there were confusions about the definition. It was only at the end of the last centuiy 
that this confusion was cleared and an understanding of the connection among different defini- 
tions was obtained (see Miller and RossZs for a historical survey). In this section, we'll review 
some of the definitions of fractional derivatives and integrals and study some of their proper- 
ties. Details can be found in Miller and Oldham and ~ ~ a n i e ? ~  and Samko  eta^.^' 

There are various definitions of derivatives and integrals of fractional order not necessarily 
equivalent to each other. All these definitions have different origin. The definitions introduced 
in this section have one thing in common, viz. they are nonlocal. 

3.1.1. Grunwald's definition 

The simplest definition can be given by generalizing the first-principle defbition of derivative 
and integral, viz. difference quotients and Riemann sums, respectively. According to this 
definition, first given by Grunwald, the qth derivative of a real-valued function f of real- 
variable is given by 

where q, a E 1R and T@) is the usual gamma function defined by the integral 

and by the relation T(p + 1) z p T @ ) .  For q > 0 the above formula yields derivatives of order q, 
and for q < 0 it gives integrals of order q. It can be easily checked, using the properties of the 
gamma functions, that when q = 1 one gets back the first-principle definition of the derivative 
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of first order and when q = -1, eqn (1) reduccs to the Riemann sum. The above definition in- 
volves the fewest restrictions on the functions to which it applies and, unlike some other defi- 
nitions introduced below, does not use ordinary derivatives and integrals of the function. How- 
ever, in practice it is somewhat difficult to use this definition, except in cases of simple func- 
tions. 

3.1.2. Riemann-Liouville definition 

The most frequently used definition of a fractional integral is that of Riemann-Liouville 
according to which a fractional integral of order q of a function f is given by 

where the lower limit a is some real numher. The fractional derivative of order q is 

As is clear, this definition uses the concepts of ordinary derivatives and integration. Since it 
mounts to evaluating an integral, it is more convenient to use. It can he shown2' that the 
Grunwald and Riemann-Liouville definitions are equivalent to each other. 

3.1.3. Weyl's definition 

Hermann Weyl defined fractional integral of order q of a function f by 

This definition is suitable for periodic functions as it leaves the periodicity of the function unaf- 
fected, unlike in the cases of previous two definitions. Because of this propedy, ~ ~ g m u n d ~ '  has 
used this definition extensively in working with trigonometric series. 

3.1.4. Other variants 

Generalizahon of Cauchy's integral: The Cauchy's integral formula for nth order der~vative of 
a complex-valued function is given by 
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where Cis a closed contour surrounding point z and enclosing a region of analyticity off: This 
formula can be generalized to give derivative of fractional order by replacing n by a real num- 
ber q. Note that at the point = z the integmnd no longer has a pole but a branch point and 
contour C cannot be deformed freely. The integral will depend on the point where C crosses the 
branch cut. 

Definition arising from Fourier transforms: If we deonote by f" the Fourier transform of the 

function f then it is well known that f"" = (ik)"? where? is the nth derivative off. This can 

be generalized to give a definition of the fractional order derivative by replacing integer n by a 
real number q. This definition is equivalent to the Weyl's definition infxoduced above. 

There are many other vanants introduced by various authors with a specific application in 
mind. It is not possible to list all the definitions over here but may be mentioned whenever 
needed in the following. We refer the reader to some for more definitions. 

3.2. Some properties and examples 

Many properties of the fractional integrals and derivatives, like chain rule, Liebniz rule, com- 
position law, etc. have been studied.z9 Here we note one property which is useful in the context 
of scaling functions. When the argument of the function is scaled by a factor P, the differinte- 
gral (differentiation and integration of arbitrary order) satisfies 

For a more general formula, with nonzero lower limit a, see Oldham and ~panier.'~ 

In general, it is difficult to evaluate a derivative or integral of fractional order except in a 
few cases. We consider one example below which may be needed later in the review. If we 
choosefix) = XP then using Riemann-Liouville definition it can be shown that 

4. Local fractional calculus 

Recently, a new notion called local fractional derivative (LFD) was introduced with the moti- 
vation of studying the local properties of fractal structures and processes. An interesting feature 
of the LFD is that it naturally appears in fractional Taylor expansion suitable for local ap- 
proximations of scaling functions. 

4.1. Definitions 

The definitions of the fractional derivative were discussed in the last section. These derivatives 
differ in some aspects from integer-order derivatives. In order to see this, one may note, from 
eqn (1) or (4), that except when q is a positive integer, the qth derivative is nonlocal as it d e  
pends on the lower limit a. The same feature is also shown by other defmitions. However, if 



280 KJRAN M. KOLWANKAR 

one wants to study local scaling properties then those definitions are not suitable and one has to 
modify them accordingly. Secondly, from eqn (9) it is clear that the fractional derivative of a 
constant function is not zero. Therefore, adding a constant to a function alters the value of the 
fractional derivative. Such a dependence on origin is again undesirable. While constructing the 
LFD operator, we have to correct for these two features. This forces one to choose the lower 
limit as well as the additive constant before hand. The most natural choices are as follows: (i) 
We subtract, from the function, the value of the function a1 the point where we want to study 
the local scaling property. This makes the value of the function zero at that point, canceling the 
effect of any constant term, and (ii) The natural choice of a lower limit will again be that point 
itself where we intend to examine the local scaling. 

Definition 1. I f ,  for afunction f:[0,1] + R, the lirniz 

exists and isfinite, then we say that the LFD of order q (denoted by D f ( y ) ) ,  at y, exists. 

This defines the LFD for 0 < q S 1. It was first introduced in Kolwankar and ~ a n ~ a l ~ ~  and 
later generalized33 to include all positive values of q as follows. 

Definition 2. If, for afunction f :  [O, 11 + R , the limit 

N f ' " ' (y )  dq( f (x ) -Xn=o r n ( x - y ) " )  
LDqf(y)= lim 

X.+y [ d ( ~  -Y)I' 

exists and isfinite, where N is the largest integer for which Nth derivative off(x) at y exists and 
isfinite, then we say that the LFD of order q (N < q S N +  I), at x = y ,  exists. 

We subtract the Taylor series term in the above definition for the same reason as one sub- 
tracts&) in Definition 1. We do this to suppress any regular behavior that may mask the local 
singularity. 

4.2. Fractional Taylorexpansion 

Following the usual procedure to derive Taylor expansion with a remai~lde?~ one arrives at the 
fractional Taylor expansion for N < q 9 N +  1 (provided D exists), given by, 

where 

where 
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We note that the LFD (not just fractional derivative) as defined above provides the coefficient 
A in the approximation of Xx) by the function fi) + A(x - y)*iT(q + l), for 0 < q < 1, in the 
vicinity of y. We further note that the terms on the RHS of eqn (12) are nontrivial and fiuite 
only in the case q = cl. 

The existence of such Taylor expansion assigns a geometrical interpretation to the LFD. In 
order to see this note that when q is set equal to unity in eqn (12) one gets the equation of the 
tangent. It may be recalled that all the c w e s  passing through a pointy and having the same 
tangent form an equivalence class (which is modeled by a linear behavior). Analogously, all 
the functions (curves) with the same critical order a and the same lDa will form an equiva- 
lence class modeled by xa. This is how one may generalize the geometric interpretation of de- 
rivatives in terms of 'tangents'. 

A fractional Taylor expansion was also given by 0sler3* which involved Riemann- 
Liouville definition. But this Taylor series is valid only for analytic functions. Further, it also 
contains terms with negative powers of (x - y). Hence, this Taylor series is not useful for local 
approximations. 

5. Fractional differential equations 

Once we have a definition of fractional derivatives and integrals it is natural to ask a question if 
we can write equations in terms of such quantities. And will such equations have applications? 
In the last decade or so, many fractional differential equations have been proposed. Many of 
them are generalizations of the differential equations of mathematical physics. In these gener- 
alizations one replaces the usual integer order derivative by a fractional one. This replacement 
is either ad hoc or involves some plausible arguments. In this section, we review some of the 
works involving the applications of EDEs to fractals. The instances of IDES not directly related 
to fractals include ~ ~ s s ~ ~ ,  Schneider and W y ~ s ~ ~  and ~ u m a r i e . ~ ~  There is also a prominent a o  
tivity trying to generalize various relaxation equations to fractional orders.3w3 Stability and 
controllability properties of fractional differential equations have been studied.w6 It should be 
pointed out that since fractional derivative can be written in terms of ordinary integral, the 
FDEs are nothing but integral equations. 

5.1. Fractional diffusion equations 

In recent years, studies of diffusion on fractals has attracted attention owing to possible appli- 
cations in various phenomena such as diffusion in porous media, adsorption kinetics across 
interfaces, etc. The probability distribution P(r, t), which gives the probability to find the ran- 
dom walker at time t at distance r from its starting point at t = 0, is given by 

1 
P(r, t )  --exp[-const. ( r l  A)'] 

~~f 
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when t -+ - and rlR -+ -, where df is a fractal dimension. In this equation, u = dJ(d,-  1) 
where do> 2 is a diffusion exponent, i.e. the root-mean-square displacement of the random 
wak R(t) - t1ld" . The form of P(r, t )  above is known as stretched gaussian. 

It is of natural interest to formulate a suitable diffusion equation to describe diffusion on 
fractals. Earlier attempts to modify the diffusion constant in the usual diffusion equation did 
not yield expected results. Another way is to make orders of derivatives in the diffusion equa- 
tion noninteger. First such attempt was perhaps by Le ~ e h a u t e . ~ ~  Giona and ~ o r n a n ~ ~ " ~  also 
considered the modification of the diffusion equation by replacing the integer order derivatives 
by those of fractional order. Thus, they postulated a fractional diffusion equation 

where G > 0 and K is argued to be equal to (d j -  1)/2. The solution of this equation results in 
expected behavior asymptotically. There have been other works which relate the fractional dif- 
fusion equations to continuous time random wak5'"' 

5.2. Fractional Fokker-Plnilck-Ko1111o~qoroi~ cquation 

The purpose of this section is to review the work of Zaslavsky and  coworker^.'^^' Zaslavsky 
argued that the trajectory of the weakly chaotic Hamiltonian system in the phase space can he 
described by a fractional generalization of the Fokker-Planck-Kolmogorov (also known as 
Fokker-Planck or forward Kolmogorov) equation. In the case of strongly chaotic Hamiltonian 
system the transport in the phase space can be described by usual FPK equation; this descrip- 
tion fails in the case of incomplete chaos owing to the presence of canton. Cantori are fractal 
structures of invariant tori which, due to their stickiness, change the kinetics to something 
called strange kinetics." Therefore, a new kinetic equation is needed to describe the transport 
properties in such a phase space. 

He starts with a Chapman-Kolmogorov consistency condition for Markov processes given 
by 

where W(x, t )  is a probability density at time t given that W(xo, 0) = &), P(xl, t l h .  fJ is a 
transition probability from X I  at time tl to x2 at time t2 and z 2  0. Different notations, P and W, 
have been used to emphasize the fact that the former is the transition probability for small times 
compared to the latter. Then, assuming the expansions 

1 P(X, t + T I  x', t )  = &x- x')+A(x', ~)6(~,,(, - x  - B z a  ( x  - x (19) 2 
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where 0 < a, p S 1, and following the usual procedure59 to dcrive the Fokker-Planck equation 
one arrives at the equation 

where 

and 

The o in thc above equation denotes average. 

5.3. Levy processes and FDEs 

LKvy processes have €ound many applications58.60 ranging from fluid dynamics6'.62 to poly- 
m e r ~ . ~ ~  Since LCvy processes do not possess second moment the derivation of the Fokker- 
Planck equation fails and one has to look for alternative formulations of kinetic equations for 
their description. In this section, we first give a brief introduction to the E v y  processes and 
then review various attempts to derive fractional differential equations to describe LCvy proc- 
esses. 

5.3.1. Introduction to Lkvy processes 

For translationally invariant stationary Markov process the transition probability P(x, t + zlx', t) 
in eqn (17) can be replaced by P(x - x', t) since it depends only on the differcnce between thc 
initial and final positions and time only. If the characterslic function Nk,  1) is defined as the 
Fourier Lransform of Ule probability density, 

then eqn (17) becomes 

The most general form of the solution of the above equation is given by (see Seshadri and 
westM and references therein) 

where 0 S p 2 2, b 2 0 and -1 5 c 2 1. The function w(k, p) is defined by 

w(k, p) = tan(npf2) if p t 1 (26) 
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The processes whose characteristic functions satisfy eqn (25) are called LBvy processes. 

The important feature of these processes is that except for f l =  2 they do not possess finite 
moments of all orders. All the hemoments defined by 

are finite for a< p and are infinite for he> y. The asymptotic behavior of the Ldvy distribution 
is given by 

~ ( x ,  t )  - i'.!' x large. (29) 

If we consider a random walk in which the step size is drawn from a L&y distribution then the 
trace of sites visited by the walker is a fractal with dimension p. 

As mentioned above, since the second moment of the Uvy distribution does not exist one 
cannot write a simple evolution equation of the diffusion type for the probability densities. 
However, it is knownM that the Ldvy distlibution satisfies an integral equation of the form 

It is also known" that when p is rational, differential evolution equations can be obtained, with 
some specific values of c, for the probability density involving higher time derivatives. Thus, 
when c = 0 and p = mln, P(x, t )  satisfies 

and 

These observations give a hint for developing fractional differential equations for Ldvy distri- 
butions. Now that many applications of Ldvy processes have been found it becomes even more 
interesting to find such equations. 

5.3.2. Fractional differential equations in relation to U v y  processes 

Uvy processes and the corresponding fractional differential equations have been the topic of 
many recent investigations?. ~onnennache r~~  has shown that the class of one-sided G v y  
type probability densities 
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is a solution of the fractional integral equation 

with Riemann-Liouville definition on the right-hand side. An interesting point of this observa- 
tion is that the Levy index appears as an order of the fractional integration in the equation 
which is also the fractal dimension of the set of points visited by the random walker with eqn 
(33) as transition probability. 

It is clear that eqn (30) can be immediately put formally in the form of fractional differen- 
tial equation if we use the Weyl definition of the fractional derivative to give 

Getting such an equation, following a different approach, is the aim of ~haves." 

In another interesting development, West et derive a fractional differential equation for 
the reduced probability density uo(x, t) of the variable x(t) in the stochastic differential equation 
i ( t )  = ~ ( t ) .  They choose a power-law waiting-time distribution as in eqn (29) and hence 
power-law behavior in correlation function and arrive at the equation 

The equation is solved giving ~ i s e  to superdiffusive behavior and with suitable constraint it 
reduces to the integral eqn (30) for the U v y  processes. 

6.  Local fractional differential equations 

In section 4, we have reviewed tbe definition of LFD which generalizes usual derivatives to 
fractional order keeping their local nature intact. In this section, we consider equations67 in 
terms of the LFDs called local fractional differential eqnations (LFDE). Thcsc are new kind of 
equations and unlike FDEs considered in the last section are not just integral equations. 

6.1. A simple localfractional differential equation 

In order to understand the meaning of these equations we conslder a ~imple equatlon 

D,"f(x) = g W .  (37) 

We note6" that the ahove equation with g(x)= const. does not have a finite solution when 
0 < q < 1. Interestingly, the solutions to (37) can exist, when g(x) has a fractal suppolt. For in- 
stance, when g(x) =xc(n), the membership function of a cantor set C (i.e. g(x) = 1 i f n  is in C 
and g(x) = 0 otherwise), the solution with initial condition f(0) = 0 exists if q = a- dim&. 
Explicitly, generalizing the Riemann integration procedure, 
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where xt are subdivision points of the interval [xo = 0, XN = X] and F: is a flag function which 

takes value 1 if the interval [x,, x,, ,I contains a point of the set C and 0, otheewise. Note that 
P&) is a Lebesgue-Cantor (staircase) function and satisfies the bounds a? 5 Pdx)  2 bxa 
where a and b are suitable positive constants. The above procedure of integration works only 
when the box dimension of C is the same as that of Hausdotif dimension. 

6.2. Localfractional Fokker-Planck equalion 

Now we again follow the usual procedure5g to derive the Fokker-Planck equation. But in place 
of the Taylor expansion in the nsual procedure and instead of expansions (1 8) and (19) in Sec- 
tion 5.2 we use the fractional Taylor expansion ( 1  2). This leads us to an equation 

where the operator ,t is given by 

where 

and 

A: (x, t) =A:+ (x, t) +A:- (x, t ) .  

Here, corresponding A& are assumed to exist. The ~ g f ( x ,  t , z )  in the above equation are 

transitional moinents defined by 

and 
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Equation (39) can be identified as generalizations of the Fokker-Planck equation in one space 
variable. It is clear- that when u = 1 and ,8 = 2, we get back the usual Fokker-Planck operator. 

Now, we consider one specific example of the transition probability and study the corre- 
sponding LFFP equation. Let, 

where APc(t, r) = Pc(t + r) - Pdt). This transition probability describes a nonstationary process 
which corresponds to transitions occurring only at times which lie on a fractal set. Such a 
transition probability can be used to model phenomenon where transition is very rare; for in- 
stance, diffusion in the presence of traps. 

This gives us the following local fractional Fokker-Planck equation (in this case an analog 
of a diffusion equation). 

We note that even though the variable t is taking all real positive values the actual evolution 
takes place only for values o f t  in the fractal set C. The solution of eqn (42) can easily be ob- 
tained as 

W, t )  = P,-,,, WX, t" (43) 

where 

Therefore, 

Its consistency can easily be checked by substituting this in Chapman-Kolmogorov equation. 
This solution satisfies the bounds 

for some 0 < a  < b. This is a model solution of a subdiffusive behavior. It is clear that when 
a= 1, we get back the typical solution of the ordinary diffusion equation which is (m)-'12exp 
(-21t). 
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7. Conclusions 

The fractional calculus, a generalization of derivatives and integrals to arbitraq orders, has 
found many applications in various fields of science. We have reviewed some of the applica- 
tions of fractional calculus to fractals. Though the first such application appeared in 1968 in the 
work of Mandelbrot and Van Ness,' most of the activity in this direction is not even a decade 
old. The approach followed by most of the workers in this field is to formulate some fractional 
differential equation to deal wilh phenomena related to fractal structures and processes such as 
Levy pmcesses, diffusion on fractals, elc. Different authors have used various definitions of 
fractional derivatives which are nonlocal in nature. Ways to solve these equations have been 
developed (see, for example, West et a ~ ' ~ ,  GlocMe and ~onnemacher~' and Metzler et ~ 1 , ' ~ )  
which essentially give rise to Fox functions70 as solutions. The solution of the Fractional differ- 
ential equation should display asymptotic scaling behavior. Ibereforc, such equations naturally 
bccome oseful whenever asymptotic scaling is involved; for instance, waiting time distribution 
in fractal time process, distribution function of Levy processes, etc. Owing to the nonlocal na- 
ture of the definition of the fractional derivatives, they a e  not suitable to study local scaling 
properlies. Therefore, a snitable local definition of fractional derivative was introduced by 
modifying a nonlocal definition. Again, the diiferential equations involving this local fractional 
delivative have been considercd and solved. Such an equation is fundamentally different from 
the ones discussed above since this equation is intrinsically local. The use of these kinds of 
equations has been demonstratcd by deriving a local fractional analog of the Fokker-Planck 
equation and considering the example of diffusion in fractal time. Various works like path inte- 
gral formulation of fractional Brownian motion?'. 73 fractal time random wa~ks,~"~'  fractional 
dynamics?8,79 apply fractional calcuius to fractals. 
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