Differential-difference Kadomtsev-Petviashvili equation: properties and integrability

K. M Tamizhmantand S. Kanaga Vel
Department of Mathonatics, Pondichery Inversity, Pondicherry 605 014, India
enad tamich yahoo com

Recelved on October 5. 1998

Abstract

We present a revew on cerlan miegrablity propertes of differental-diffecence Kadontsev-Petviashwil. (DAKP) equation We cxplan the differental-differcicce versem of Sato lucory and denve the DAKP equation as a first nontrivtai menter in the sugle-component KP famuly In this process, we explot the Sato theory to obaun conservacion laws and generaksed symmetres of the sarne We further show that the Wronskian form of the N -solton solutions and uar tonal solutions fotlow naturally from this approten Smianty reduction and Panleve-singularty confinement analyss, are peformed We also dscouss a galge equivalence of the D $\Delta K P$ equation and study cettan megrabulty properties of the resultong systeria as well

Keywords: Integrabilty, Sato theory, aoninear systens

1. Introduction

Modern nonlinear dynamics started with a fundamental question-when is the given model integrable? Can one define it precisely? The answer is obvously no. But, at the same tume, we try to find a close definition of integrability with the meaning of integrating and find the solutoon/existence theory lake Liouville. ${ }^{1,2}$ In contrast to the hnear theory it 15 well known that there is no general theory to handle nonlinear systems and get their solutions However, the present status is not bad, thanks to the discovery of Inverse Scattering Transform (IST) method ${ }^{3.4}$ through which a large class of noninear partial differental equatoons (NPDEs) had been solved and special solutons called solttons obtaned At first, Zabusky and Kruskal observed soliton solution, numerically in Korteweg-de Yries (KdV) equation. ${ }^{5}$ Gardner et al. ${ }^{6}$ developed IST method to solve the mitial value problem for the KdV equation This discovery becomes vital sunce, after KdV equation was solved explicitly, many more nonlinear systems of physical importance were also treated with IST method ${ }^{3,4}$ Again, this method was generalized to matrix formalism, notably by Zakharov and Shabat (ZS $)^{\dagger}$ and then by Ablowitz, Kanp, Newell and Segur (AKNS) ${ }^{8}$ These developments extended the applicability of TST to handle equations with complex potentals and coupled systems as well Lax first reformulated these settings of IST in terms of linear operators, now popularly called Lax pair or L-M parr. ${ }^{9}$ These operators satusfy certan linear ergenvalue problem Obtaning a suitable L-M par for a given nonlmear system is equivalent to say that the given NPDE has been linearized and thus solvability is feasible using IST Those equations solvable through IST are called integrable systems and
they possess soliton solutions, in fact N of them. After these proneering works, many mathematical tools such as Hurota's bilinear formalism, ${ }^{10-42}$ Pauleve tests, ${ }^{43-52}$ recursion operator, Le-Backlund symmetres and others ${ }^{53-73}$ were developed to identify the integrable systems and study further analytical and algebrac properties of them

In the case of infinite dimensional systems (PDEs), the system is considered integrable (working definition) if it satisfies one of the following crrtena.

1 The system st linearized through sutable variable transformation.
2. The system is solvable through IST method, ${ }^{3}$ after finding suitable Lax parr or eigenvalue problems.
3 The system possesses infinte number of conserved quantitues
4 In view of the symmetry approach, "An equation is integrable if it possesses infintely many time-independent non-Lie pont symmetries" These symmetries are called generalrzed syminetries or Lie-Backlund transformations. ${ }^{66}$
5 The system is br-or trilnearzable through sutable dependent vanable transformations and admers N-soliton solutions.
6. The system which passes the so-called Painlevé test is a good candidate of an integrable system In this comection, Ablowitz, Ramanı and Segur (ARS) fomulated the Pamlevé conjecture, "Every ordmary differential equation which arises as a reduction of a completely integrable system is of Paunlevé type (perhaps after a transformaton of variables)". 44 This conjecture provided a most useful megrability detector. Following thu conjecture, ARS proposed an algorithm whoch tests the Parnleve property This property states that a system of ODEs satusfies the necessary condtion for the Painlevé property, i.e havng no movable critucal pomts other than poles, if all its solutions can be expanded in the Laurent series near every one of ther movable singularitues This test was extended by Weiss et al ${ }^{\text {d7 }}$ to PDEs

In the followng, we briefly discuss vanous methods nsed to study the megrable systems

1.2. Lax method

The idea behund this approach is to denve the nonlinear evolution equation whech anses as the compatibility condition of two hear equations assocrated with a spectral problem The spectral problem and the tome evolution of the eagenfunction are given by the equations?

$$
\begin{equation*}
L \psi=\hat{\lambda} \psi \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial \psi}{\partial t}=M \psi \tag{2}
\end{equation*}
$$

respectively Assume that the spectral parameter λ is independent of t The compatibulyty condition of these two equations gives us

$$
\begin{equation*}
\frac{\partial L}{\partial t}=M L-L M=[M, L] \tag{3}
\end{equation*}
$$

where L and M are linear operators. Equaton (3) is called Lax equation. Lax ${ }^{\prime}$ explams how to derive operator M for given L Once this goal is acheved we can find the solution of the given nonlmear equation through IST method Numerous generalizanons of the egenvalue problems such as Zakharov and Shabat, ${ }^{7}$ Ablowitr, et al, ${ }^{8}$ Ablowity and Haberman, ${ }^{74}$ Kaup and Newell, ${ }^{75}$ Wadath, et al, ${ }^{76,{ }^{7 /}}$ Shmmzu and Wadat, ${ }^{78}$ Ishmor, ${ }^{79,80}$ Wadatu and Sogo, ${ }^{81}$ Konmo and Jeffrey ${ }^{82}$ are avatable in hlerature covenng a wide range of evolution equations

13 Hirota's bilonear method

Horota introdiced a more drect method ${ }^{[10-42}$ to derive soliton solutions of monlinear equatuons By introducing a suitable dependent variable transformation, the soliton equation becomes brLinear Applying the perturbation technique to the resultung bilucar equation one can systematically construct the N-soliton solution. In fact, if the system admuts N-soliton solution the senes expansion in terms of small parameter in the above perturbative analysus tuncates automatically In this process, we obtain a class of luear partal differential equations which can be solved successively to obtan the exact solution The soliton solution obtained through this techmique is a polynomal in exponentral functions. It is also noted that the N-soliton solutions of Hirota's blineat equation can be written in the form of Wronskian and Grammon determnants and Palfians ${ }^{21-28,28-16}$ The latter formalism is more compact and easy to handle Apart from finding N-soliton solution asung thas technique, we can also obtain the rational solutions in a direct way ${ }^{3} 3-96$ Recently, bilinear approach has been extended to multilinear form, in particular to trimear case. ${ }^{97}$, 95 Many uteresting integrable systems have been brought in this framework In some cascs, the trilmear forms cat be writen in bilinear forms by introducing extra t-functions

1.4 Conservation laws and generaltzed symmetries

For a given nonlinear evolution equation of the form

$$
\begin{equation*}
u_{x}=F\left(u, u_{x}, u_{x x},\right. \tag{6}
\end{equation*}
$$

a conservation law is defined in the form

$$
\begin{equation*}
T_{t}+X_{x}=0 \tag{7}
\end{equation*}
$$

which is satisfied by all sohtions of (6), where T 's the conserved density and X the flux. Here, T_{t} denotes the total dervative of T with respect to t, likewise, X_{x} denotes the same for X with respect to x It is noted that T involves u and its x derivatives only and the terms like $u_{i j} u_{u z}$, are replaced by u, u_{x}, $u_{x s}$ approprately using (6), the given equation. The existence of infinite number of conserved quantities which are in mvolution with respect to a suitable Porsson bracket assures the integrability of the given system. ${ }^{34,56,57,61,62}$ It is a well-establashed fact that there is a close connection between the symmetnes and conserved quantities through the symplectic operators used in Poisson brackets. ${ }^{60}$

15. Pamievé analysis

Paunlevé analysis is used to study the singularity structure of the given nonlinear equation. ${ }^{43-49}$ If only the movable cruscal singulantues of all solution of the given system are poles, then we say that the system passes the Panlevé test and hence it could be a good candidate of an inte-
grable system In practice, thas analysis is a very effective tool to classify possible integrable systems in a systematic way In recent times, the nature of singularities also dictates the form of the τ-function which is used to bilinearize the given system ${ }^{49,99,100}$ In addition, there is some evidence to show that this method can also be used to obtam Lax pairs and Backlund transformations. ${ }^{56}$ However, it is not yet establushed completely that one can obtain the last mentuoned properties systematically through thas approach.

16. Lie symmetries

The theory of Le pount symmetnes goes back to the 19 th century Sophus Lie studied the nuvariance properties of the symmetry groups and used them to solve/classify the differentaal equation. Using one-parameter Lie group of symmetres one can systematically reduce the order of the ordmary differentral equation by one Finding this group of symmetries which leaves the system mvariant is tedous and computationally complex, neverthcless, it is very much algonthmic and systernatic Due to the algonthme nature, this technque has been used widely to find special solutions to reduce the dimenson of the independent variables especrally in NPDEs, to adentify integrable systems to one of the sax. Painlevé equations By this method we can understand the underlying algebraic and geometric structure of the given system. ${ }^{53-73.101-110}$

1.7 Sato theory

Various methods developed so far to investigate the soliton equations indicate the moh mathematical structure of the solnton systems It is Sato who unvenled the algebrace structure behind them using the method of algebraic analysis ${ }^{111,122} \mathrm{He}$ notaced that the τ-function of the Kadomtsev-Petviashvili (KP) equation is connected with the Plucker coordinates appearing in the theory of Grassmann manffoids He also noticed that the totality of solutions of the KP equation as well as its generalization constitute an infinte-dmensional Grassmann manifold Ohta et al ${ }^{113}$ presented a clear description of Sato theory m an elementary way Starting from the pseudo-dtfferential operator they construct a linear homogeneous ordinary differentual equation and explicitly explau the connection between the coefficients and the solutions of the same They minoduce an infinte number of tume variables in the coefficients and impose certan tume dependence on the solutions and denve Sato, Lax, and $7 S$ equations and the linear eqgenvalue problem assoctated to the generalized Lax equatron. As a consequence, the KP hierarchy was denved in a systematic manner and varous reductions of it have been presented. They brought out the connection between the τ-function and the bilinear forms using Young diagram After the development of this grand theory, Date et al. ${ }^{114,115}$ and Jımbo and Miwa ${ }^{116}$ extended Sato's idea and developed the theory of transformation groups for soliton equations which essentally explains the group-theoretical foundation of Hurota's method and Sato theory. The mann am of this theory is to reveal the intimate relatoon between the KP herarchy and the infinte dimensional Lie algebra $g l(\infty)$ using the language of free Fermion operators They indeed had a big program to classify soliton hrerarches written in bilingar form according to varous realizations of Lie algebras Using Sato theory, recently a nuce method was developed to derive the generalızed symmetries and conserved quantues of KP herarchy ${ }^{117,119}$ Hence, it is clear that Sato theory is the most powerful method through which one can obtan systemati-
cally integrability propertes such as Lax pair, soliton solutions, conservation laws and symmetries of the megrable systems 10 an unfied way ${ }^{111-1.13,117-119}$ Using multicomponent version of this theory one can amve at Davey-Stewartson equation and nonlinear Schrodinger equatron in $2+1$ dmensions ${ }^{118,121, i 2 .}$

18 Differental-difference framework

In contrast to the contmuous equations wherem enormous amount of research has been done to mvesingate vanous aspects of integrability, differential-difference or fully discrete systems have not been studied in depth However, some attempts had been made by Hirota in looking at the bilinear formalism for many known sohton equations in differental-difference settings ${ }^{12-19}$ Also, Ablowtz and Ladik introduced differental-difference analogue of AKNS scheme and obtamed many differential-difference soliton systems like nonlinear Schrodinger equaton They also extended the IST method to differential-difference case ${ }^{122,123}$ In addution, many more important developments have taken place in this arca. ${ }^{1 / 5,124-55}$ Using grouptheoretic techniques, Date et al. ${ }^{115}$ proposed a method and denved a large class of contmuous, semi-continuous, discrete soliton equations More recently, there was a remarkable discovery of proposing singulanty structure analysis for nonlinear difference equation by Grammaticos et al ${ }^{\text {156 }}$ This technuque, now popularly called singularity confinement, is very powerful in Identifyng discrete integrable systems In particular, it is whterestung to see that the discrete versions of Painlevé equations have been oblaned through thus lechouque and other properties have been studned ${ }^{156-171}$ Soon after the discovery of sngularity confinement, Ramani et al ${ }^{137 \text {, }}$ ${ }^{138}$ synthesized both the classical Panlevé analysis and sungulanty confinement together and proposed the sugulanty confinement approach to test the nature of singulanty in differentialdoffrence equations Agan, thas has been successfully implemented for several differentaldifference systerns including integro-differentral equations ${ }^{139,172}$ In the same period, following the idea of Maeda, ${ }^{140-142}$ Levi and Winternitz proposed Lie symmetry analyss for differentialdifference systems ${ }^{143-145}$ which was studed by others also ${ }^{146-150}$ As in the continuous case, the existence of Lie point symmetres obtained through Lie's one-parameter transformation group for differental-difference equations agam becomes very mportant. Using this theory, as in the contmuous case, one could find simularty solutions and use them for reductions Though this method is still in the early stage many interesting results have already been obtaned.

19 Present work

In Section 2, we discuss the denvations of the djfferential-difference Kadomtsev-Petviashvili (DAKP) equation, conservation laws, generalued symmetnes and solutions. ${ }^{151,152}$ Next, we brefly mention singularty structures and Le symmetry analysis of D $\Delta K P$. Detals will be published elsewhere. ${ }^{154,} 155$ Fmally, we also discuss a gauge equivalence of the D $\triangle K P$ equation and study certam integrability properties of this system. ${ }^{153,} 55$

In Section 3, prehmmary definitions and results needed to develop the differentialdifference Sato theory are presented. Also, the Sato equation, generalized Lax equation, Zak-harov-Shabat equation, and D $\Delta K P$ herarchy are denved. The associated cigenvalue problem is considered and the conserved quantities and generalized symmetries of $D \triangle K P$ equatron are
obtained systematically. In Section $4, N$-soliton solution and the ratonal solutions of D $\Delta K \mathrm{KP}$ and its bierarchy are given in terms of a Wronskian determinant In Section 5, Lee-pont symmetry analysis is performed for the defferental-difference KP equation and the VeselovShabat equation ${ }^{173}$ is obtaned as a sumulanty redaction. Also, singulanty structure of the solution of DAKP equation is analysed using Paunleve-singulanty confinement method for the dif-ferential-difference equation. In Section 6, we denve a gauge equivalence of DAKP equation and study certain integrability propertues stach as Lax paur, conservation laws and generaluzed symmetries of the resulting system and perform Lie symmetry and singularity structure analysis

2. Differential-difference Sato theory

2.1 Introducton

The search for discrete or sem1-discrete integrable equations started after the identification of sointons in Toda lattice ${ }^{135}$ Toda lattice is a prototype model for the differential-difference soliton equation which possesses all integrabilty propertues such as Lax par representation, existence of mfinte number of conserved quantutues and N-soliton solution, etc as other soliton equations in continuous case Thus, various methods used to identify the integrable systens in the contunuous case were extended to sem-discrete case too For example, the IST method by Ablowtz and Ladjk, ${ }^{122,123}$ discrete bilmear forms by Hrota, ${ }^{12-20}$ group-theoretic method by Date et al. ${ }^{114,115}$ and Junbo and Mıwa, ${ }^{116}$ Lax method by Kupershmidt, ${ }^{136}$ Lue symmetry method of Maeda et al ${ }^{140-142}$, Lev and coworkers, ${ }^{143-146}$ Quispel and others ${ }^{147-149}$ and Gaeta ${ }^{150}$ and the Paulevé method by Rannan et al ${ }^{137-138}$ Since Sato theory unfies all these approaches in the continuous case, it is natural to expect that the Sato theory plays the same role for differentual-difference case also. This motryates as to look for the Sato theory for dif-ferental-difference integrable equations. Following the work of Ohta et al. ${ }^{113}$ we formulated a suitable framework to treat the differential-difference equations. In fact, using this approach we bave obtaned the Lax par, conservation laws and generalzzed symmetres of the D $\Delta K P$ equation systematically ${ }^{151}$

22 Preliminanes

We start from the definition of the forward difference operator Δ and the shift operator E given by

$$
\begin{gather*}
\Delta f(n)=f(n+1)-f(n) \\
E f(n)=f(n+1) \tag{8}
\end{gather*}
$$

for all values of n (real or complex), Here the step size is taken to be one. From (8) it is clear that $\Delta=E-1$. The Leibniz rule for the difference of product of two functions is given by

$$
\begin{equation*}
\Delta^{m}(f(n) g(n))=\sum_{r=0}^{m} \frac{m(m-1) \cdot \cdot(m-r+1)}{r^{\prime}}\left(\Delta^{r} E^{m-r} f(n)\right)\left(\Delta^{m-r} g(n)\right) \tag{9}
\end{equation*}
$$

or

$$
\begin{equation*}
\Delta^{m}(f(n) g(n))=\sum_{r=0}^{m} \frac{m(m-1) \cdot(m-r+1)}{r!}\left(\Delta^{r} f(n)\right)\left(\Delta^{m-r} E^{r} g(n)\right) \tag{10}
\end{equation*}
$$

for all integers m Using the Leibniz rule (9) for the dufference set-up we arnve at negative and posituve powers of Δ in the form.

$$
\begin{gather*}
\Delta^{-3}(f g)=\left(E^{-3} f\right) \Delta^{-3} g-3\left(E^{-4} \Delta f\right) \Delta^{-4} g+6\left(E^{-s} \Delta^{2} f\right) \Delta^{-5} g+\cdots \\
\Delta^{-2}(f g)=\left(E^{-2} f\right) \Delta^{-2} g-2\left(E^{-3} \Delta f\right) \Delta^{-3} g+3\left(E^{-4} \Delta^{2} f\right) \Delta^{-4} g+\cdots \\
\Delta^{-1}(f g)=\left(E^{-1} f\right) \Delta^{-1} g-\left(E^{-2} \Delta f\right) \Delta^{-2} g+\left(E^{-3} \Delta^{2} f\right) \Delta^{-3} g+\cdots \\
\Delta(f g)=(E f) \Delta g+(\Delta f) g \tag{11}\\
\Delta^{2}(f g)=\left(E^{2} f\right) \Delta^{2} g+2(E \Delta f) \Delta g+\left(\Delta^{2} f\right) g \\
\Delta^{3}(f g)=\left(E^{3} f\right) \Delta^{3} g+3\left(E^{2} \Delta f\right) \Delta^{2} g+3\left(E \Delta^{2} f\right) \Delta g+\left(\Delta^{3} f\right) g
\end{gather*}
$$

Throughout this paper, we use the following convention

$$
\begin{aligned}
\Delta^{l} f \Delta^{m} g & =\left(\Delta^{l} f\right)\left(\Delta^{m} g\right) \\
E^{l} \Delta^{m} f \Delta^{k} g & =\left(E^{l} \Delta^{m} f\right)\left(\Delta^{k} g\right) \\
E^{l} f E^{m} g & =\left(E^{l} f\right)\left(E^{m} g\right)
\end{aligned}
$$

where l, m and k are integers Now we define the formal inner product of the given functions $u(n), v(n)$ in such a way that

$$
\begin{equation*}
<u(n), v(n)>=\Delta^{-1}(u(n) v(n)) . \tag{12}
\end{equation*}
$$

Also, we assume that $u(n), v(n) \rightarrow 0$ as $n \rightarrow \infty$ The formal adjoint of the difference operator is defined by

$$
\begin{equation*}
\left(q(n) \Delta^{m} p(n)\right)=(-1)^{m} p(n) \Delta^{m} E^{-m} q(n) \tag{13}
\end{equation*}
$$

for all functions $p(n)$ and $q(n)$ Throughout this paper we assume that the difference operator Δ and the dufferential operator $\frac{\partial}{\partial x_{k}}$ commutes.

23. Pseudo-difference operator

In the contunuous case, the pseudo-differential operator plays a fundamental role in developing Sato theory. ${ }^{113}$ By proper mampulation of thus operator one can dernve Lax pair, conserved
quantitues and symmetries 1 n a systematic way. So, by analogy, with contisuous case it is natural and worth to start with the pseudo-dfference operator W, given by

$$
\begin{equation*}
W=1+w_{1} \Delta^{-1}+w_{2} \Delta^{-2}+ \tag{14}
\end{equation*}
$$

where $w_{p}, j=1,2$, are functions of n We expect that the nuverse of the pseudo-difference operator W is also of the same form and is given by

$$
\begin{equation*}
W^{-1}=1+v_{1} \Delta^{-1}+v_{2} \Delta^{-2}+ \tag{15}
\end{equation*}
$$

where $v_{p} j=1,2$ are functions of n. Since W and W^{-1} are formal inverse to each other, we have $W W^{-1}=W^{-1} W=1$.

Using the expressions im eqns (14) and (15) in $W W^{-1}=1$ and rearranging the terms and comparing the like powers of Δ on both sides we get an infinte number of equations for $\nu \mathrm{v}$ in terms of $w_{f} s, i, j=1,2$, which give the relationship between $v_{f} s$ and $w_{j} s, i, j=1,2$, We hist the first few of them below.

$$
\begin{align*}
v_{1}= & -w_{1} \\
v_{2}= & w_{1} E^{-1} w_{1}-w_{2} \\
v_{3}= & -w_{1} E^{-1} w_{1}+w_{1} E^{-2} w_{1}-w_{1} E^{-1} w_{1} E^{-2} w_{1}+w_{1} E^{-1} w_{2} \tag{16}\\
& +w_{2} E^{-2} w_{1}-w_{3}
\end{align*}
$$

For convenience, we restrict the operator W to only a finte number of terms say m and thus consider the m th order linear homogencous ordnary dufference equation given by

$$
\begin{equation*}
W_{n} \Delta^{\prime \prime \prime} f(n)=\left(\Delta^{m}+w_{1} \Delta^{m-1}+w_{2} \Delta^{m-2}+\cdot+w_{n 3}\right) f(n)=0 \tag{17}
\end{equation*}
$$

which bas m linearly independent solutions say, $f^{(1)}(n), f^{(2)}(n), f^{(m)}(n)$ Since these $f^{f(t)}(n)$ are solutions of eqn (17) and hence we have a system of m linear equations it m unknowns w_{1}, $w_{2}, \cdot w_{n n}$ given by

$$
\begin{gather*}
\Delta^{m-1} f^{(1)} w_{1}+\Delta^{m-2} f^{(1)} w_{2}+\cdots+f^{(1)} w_{m}=-\Delta^{m} f^{(1)} \\
\vdots \tag{18}\\
\vdots \\
\Delta^{m-1} f^{(m)} w_{1}+\Delta^{m+2} f^{(m)} w_{2}+\cdots+f^{(m)} w_{m}=-\Delta^{m} f^{(m)}
\end{gather*}
$$

Snlving this system of algebraic equations usteng Cramet's rule (thas is possbie because the determinant of the coefficient matrux of the above system (18) is nothug but the Casorati determinant which is nonzero, due to the fact that $f_{(n)}^{(n)}$ s are hnearly mdependent), we arrive at

$$
w_{J}=\left|\begin{array}{ccccc}
\Delta^{m-1} f^{(1)} & \cdots & -\Delta^{m} f^{(1)} & \cdots & f^{(n)} \tag{19}\\
\vdots & \cdots & \vdots & \cdot & \vdots \\
\Delta^{m-1} f^{(m)} & \cdots & -\Delta^{m} f^{(m)} & \cdot & f(m)
\end{array}\right|
$$

for $j=1,2, m$. Substututing the values of $w_{J} s \ln (17)$ and simplifying, we get

$$
W_{m}=\frac{\left|\begin{array}{cccc}
f^{(1)} & \cdot & f^{(m)} & \Delta^{-m} \tag{20}\\
\vdots & \cdots & \cdot & \vdots \\
\Delta^{m-1} f^{(1)} & \cdot & \Delta^{m-1} f^{(m)} & \Delta^{-1} \\
\Delta^{m} f^{(1)} & \cdots & \Delta^{m} f^{(m)} & 1
\end{array}\right|}{\left|\begin{array}{ccc}
f^{(1)} & \cdots & f^{(m)} \\
\vdots & \cdot & \vdots \\
\Delta^{m-1} f^{(1)} & \cdot & \Delta^{m-1} f^{(m)}
\end{array}\right|}
$$

In eqn (20), the operator $\Delta^{-1}, j=1,2, \cdot, m$ has to be put in the nghtmost position when we evaluate the determinant of the numerator.

We assume that the set of linearly independent solutions $f^{(i)}(n), j=1,2, \quad m$ of the m th order hnear difference equation (17) are analytic and hence can be expanded by using Newton-Gregory formula,

$$
\begin{equation*}
f^{(j)}(n)=\sum_{r=0}^{\infty} \frac{n^{(r)}}{r^{\prime}} \xi_{r}^{()}, \tag{21}
\end{equation*}
$$

where $\Delta^{r} f^{(j)}(0)=\xi_{r}^{(j)}$ and $n^{(r)}=n(n-1) \cdots(n-r+1)$ Using (18) and (21) we can wnite the system of lenear equations (17) as

$$
\begin{equation*}
W_{m} \Delta^{m}\left(1, \frac{n^{(1)}}{1!}, \frac{n^{(2)}}{2!}, \cdots\right) \Phi=0 \tag{22}
\end{equation*}
$$

where

$$
\Phi=\left(\begin{array}{cccc}
\xi_{0}^{(1)} & \xi_{0}^{(2)} & \ldots & \xi_{0}^{(m)} \tag{23}\\
\xi_{1}^{(1)} & \xi_{1}^{(2)} & . . & \xi_{1}^{(m)} \\
\vdots & \vdots & \ldots & \vdots
\end{array}\right)
$$

Here $\left(1, \frac{n^{(1)}}{11}, \frac{n^{(2)}}{2^{1}}, \cdot\right)$ is an $1 \times \infty$ matrix and Φ is an $\infty \times m$ matrix Let \AA be the shift matrix given by

$$
\Lambda=\left(\begin{array}{ccccc}
0 & 1 & 0 & 0 & . . \tag{24}\\
0 & 0 & 1 & 0 & \cdots \\
0 & 0 & 0 & 1 & \cdots \\
. & . & . & . & .
\end{array}\right)
$$

Using the above matnx, we can wnte

$$
\begin{align*}
& (1+\Lambda)^{n}=\sum_{r=0}^{\infty} \frac{n^{(r)}}{r^{1}} \Lambda^{r} \\
& \approx\left(\begin{array}{cccc}
1 & \frac{n^{(1)}}{1!} & \frac{n^{(2)}}{2!} & \\
1 & \frac{n^{(1)}}{1^{1}} & \\
& & 1 & \cdots \\
0 & & & \cdots
\end{array}\right)
\end{align*}
$$

Now, we define,

$$
\begin{gather*}
H(n)=(1+\Lambda)^{n^{\prime} \Phi} \\
=\sum_{r=0}^{\infty} \frac{n^{(r)}}{r} \Lambda^{r} \Phi \\
=\left(\begin{array}{cccc}
f^{(1)} & f^{(2)} & \cdots & f^{(m)} \\
\Delta f^{(1)} & \Delta f^{(2)} & \cdots & \Delta f^{\prime m)} \\
\Delta^{2} f^{(1)} & \Delta^{2} f(2) & \cdots & \Delta^{2} f^{(m)} \\
\vdots & \cdot & \ddots &
\end{array}\right) \tag{26}
\end{gather*}
$$

The determunant formed by the first m rows of $H(n)$ ss nothing but the denominator in W_{m} which is the Casoratu determinant for the solutions of the difference equation (17).

24. Time dependence

In this section, we discuss the impact of time dependence in the coefficients of the ordinary difference equatuon (17). We introduce an infinte number of tume varables $t=\left(t_{1}, t_{2}\right.$, in w_{t} as $w_{f}=w_{j}(n ; t), f=1,2, \quad$ As a consequence of this, we have

$$
\begin{equation*}
f^{(i)}=f^{(n)}(n ; t)=f^{(i)}\left(n, i_{1}, t_{2},\right) \tag{27}
\end{equation*}
$$

We consider the time evolution of $H(n)$ in the form

$$
\begin{equation*}
M(n ; t)=\left(\sum_{r=0}^{\infty} \frac{n^{(r)}}{r^{1}} \Lambda^{r}\right) \exp \eta(t, \Lambda) \Phi \tag{28}
\end{equation*}
$$

where $\pi(t, \Lambda)=\sum_{k=1}^{\infty} t_{k} \Lambda^{k}$ We wnte fonmally,

$$
\begin{equation*}
\left(\sum_{r=0}^{\infty} \frac{n^{i r)}}{r!} \Lambda^{r}\right) \exp \eta(t, \Lambda)=\sum_{k=0}^{\infty} P_{k} \Lambda^{k} \tag{29}
\end{equation*}
$$

Expanding the above expression (29) and comparing the coefficients of like powers of Λ on both sides, we get

$$
\begin{align*}
& P_{0}=1 \\
& P_{1}=n+t_{1} \\
& P_{2}=\frac{n(n-1)}{2!}+n t_{1}+\frac{1}{2!}\left(t_{1}^{2}+2 t_{2}\right) \\
& P_{3}=\frac{n(n-1)(n-2)}{3!}+\frac{n(n-1)}{2!} t_{1}+\frac{1}{2!}\left(t_{1}^{2}+2 t_{2}\right) n+\frac{1}{3!}\left(t_{1}^{3}+6 t_{1} t_{2}+6 t_{3}\right) \tag{30}\\
& P_{4}=\frac{n(n-1)(n-2)(n-3)}{4!}+\frac{n(n-1)(n-2)}{3!} t_{1}+\frac{1}{2!}\left(t_{1}^{2}+2 t_{2}\right) \frac{n(n-1)}{2!} \\
& +\frac{1}{3!}\left(t_{1}^{3}+6 t_{1} t_{2}+6 t_{3}\right) n+\frac{1}{4!}\left(t_{1}^{4}+12 t_{1}^{2} t_{2}+12 t_{2}^{2}+24 t_{3} t_{1}+24 t_{4}\right)
\end{align*}
$$

These polynomials are analogues to Schur polynomuals in the contmuous case. They have a spectal property

$$
\begin{equation*}
\frac{\partial P_{k}}{\partial t_{\mathrm{rz}}}=P_{k-m}, \quad P_{k}=0, \forall k<0 \text { and } \Delta P_{k}=P_{k-1} \tag{31}
\end{equation*}
$$

We use the above property (31) to express the function $H(n, t)$ in terms of $P_{k} s$, which $1 s$ wntten in the form

$$
\begin{align*}
H(n ; t) & =\left(\begin{array}{cccc}
1 & P_{1} & P_{2} & \cdots \\
& 1 & P_{1} & \cdots \\
& & 1 & \\
0 & & & \ddots
\end{array}\right)\left(\begin{array}{cccc}
\xi_{0}^{(1)} & \xi_{0}^{(2)} & \cdot & \xi_{0}^{(m)} \\
\xi_{1}^{(1)} & \xi_{1}^{(2)} & \cdots & \xi_{1}^{(m)} \\
\vdots & . & \cdots & \vdots
\end{array}\right) \tag{32}\\
& =\left(\begin{array}{cccc}
h_{0}^{(0)}(n ; t) & h_{0}^{(2)}(n, t) & \cdots & h_{0}^{(m)}(n ; t) \\
h_{1}^{(1)}(n ; t) & h_{1}^{(2)}(n ; t) & \cdots & h_{1}^{(m)}(n ; t) \\
\vdots & & \cdots & \vdots
\end{array}\right)
\end{align*}
$$

where

$$
\begin{equation*}
h_{0}^{(j)}(n ; 0)=f^{(j)}(n) \tag{33}
\end{equation*}
$$

and

$$
\begin{equation*}
h_{k}^{(j)}(n ; t)=\frac{\partial h_{0}^{(j)}(n ; t)}{\partial t_{k}}=\Delta^{k} h_{0}^{(j)}(n, t) . \tag{34}
\end{equation*}
$$

It is easy to infer from (33) and (34) that $h(n ; t)=h_{0}^{(j)}(n ; t)$, and $j=1,2, \cdot m$ are solutions of a set of hnear partial differential-difference equations

$$
\begin{equation*}
\left(\frac{\partial}{\partial t_{k}}-\Delta^{k}\right) h(n, t)=0, \quad k=1,2, \cdot \tag{35}
\end{equation*}
$$

with the untal value $h(n, 0)=f^{(n)}(n)$ Hence, the linear difference equation (17) becomes,

$$
\begin{equation*}
W_{m} \Delta^{m} h_{0}^{(j)}(n, t)=\left(\Delta^{m}+w_{\mathrm{I}} \Delta^{m-1}+w_{2} \Delta^{m-2}+\cdot+w_{m}\right) h_{0}^{(j)}(n ; t)=0, j=1,2, \cdots m \tag{36}
\end{equation*}
$$

Solving these system of equations (36) as earher, we get,

$$
w_{1}=\frac{\left|\begin{array}{ccccc}
\Delta^{m-1} h_{0}^{(1)} & \cdot & -\Delta^{m} h_{0}^{(1)} & \cdot & h_{0}^{(1)} \tag{37}\\
\vdots & \cdots & \vdots & \cdots & \vdots \\
\Delta^{m-1} h_{0}^{(m)} & \cdots & -\Delta^{m} h_{0}^{(m)} & \cdots & h_{0}^{(m)}
\end{array}\right|}{\mid \Delta^{m-1} h_{0}^{(1)}} \cdot \cdots \quad \Delta^{m-j} h_{0}^{(1)} ~ c c c c\left|h_{0}^{(1)}\right|
$$

and bence

$$
W_{m 2}=\frac{\left|\begin{array}{cccc}
h_{0}^{(1]} & \cdots & h_{0}^{(m)} & \Delta^{-m} \tag{38}\\
\cdot & \cdots & & \vdots \\
\Delta^{m-1} h_{0}^{(1)} & \cdots & \Delta^{m-1} h_{0}^{(m)} & \Delta^{-1} \\
\Delta^{m} h_{0}^{(1)} & \cdots & \Delta^{m} h_{0}^{(m)} & 1
\end{array}\right|}{\left|\begin{array}{ccc}
h_{0}^{(1)} & & h_{0}^{(m)} \\
\vdots & & \vdots \\
\Delta^{m i-1} h_{0}^{(1)} & & \Delta^{m-1} h_{0}^{[m)}
\end{array}\right|}
$$

Now w_{3} and W_{m} are completely given in terms of differential-dyference analogues of Schur polynomals $P_{k} s$ using (30)

2.5. Sato, Lax, Zakharov and Shabat equations

It is well known that the negrability of the nonlmear systems is associated with the findung of appropnate Lax or Zakharov-Shabat equations As in the contmorous case, ${ }^{113}$ the differentraldifference version of Sato theory provides the Sato, Lax and Zakharov-Shabat equations naturally. To actueve this goal we proceed as follows: differentating equ (36) with respect to t_{k}, we obtain

$$
\begin{equation*}
\frac{\partial W_{m}}{\partial t_{k}} \Delta^{m} \hbar_{0}^{(j)}+W_{m} \Delta^{m} \frac{\partial t_{0}^{(\rho)}}{\partial t_{k}}=0 \tag{39}
\end{equation*}
$$

sunce Δ and $\frac{\partial}{\partial_{k}}$ commutes Using the relations (34), in (39), we get

$$
\begin{equation*}
\left(\frac{\partial W_{m}}{\partial t_{k}} \Delta^{m}+W_{m} \Delta^{m} \Delta^{k}\right) h_{0}^{(j)}(n, t)=0 \tag{40}
\end{equation*}
$$

We factonze the operatior in (40), as

$$
\begin{equation*}
\frac{\partial W_{m}}{\partial t_{k}} \Delta^{m}+W^{m} \Delta^{m} \Delta^{k}=B_{k} W_{m} \Delta^{n} \tag{41}
\end{equation*}
$$

where B_{k} is a kth-order difference operator. $B_{k} \mathrm{~s}$ can be obtaned by applying $\Delta^{-n t} W_{m}^{-1}$ from the night of eqn (41)

$$
\begin{equation*}
B_{k}=\frac{\partial W_{m}}{\partial t_{k}} W_{m}^{-1}+W_{m} \Delta^{k} W_{m}^{-1} \tag{42}
\end{equation*}
$$

From equ (42), we can obtain by multuplyug W_{m} from nght,

$$
\begin{equation*}
\frac{\partial W_{m}}{\partial t_{k}}=B_{k} W_{m}-W_{m} \Delta^{k} \tag{43}
\end{equation*}
$$

Hence the time evolution of the pseado-difference operator $W_{m}(n, t)$ is governed by

$$
\begin{equation*}
\frac{\partial W}{\partial t_{k}}=B_{k} W-W \Delta^{k} \tag{44}
\end{equation*}
$$

whica is the differential-difference version of the famous Sato equation ${ }^{\text {ta }}$ The B_{k} s in the Sato equation can be computed from W using the following relation

$$
\begin{equation*}
B_{k}=\left(W \Delta^{k} W^{-1}\right)^{+} \tag{45}
\end{equation*}
$$

where ($)^{+}$denotes the nonnegative powers of Δ only. We have discarded the first term of eqn (42), because it involves only negative powers of Δ, whereas B_{k} consists only nonnegative powers of Δ Using (45) we can denve the B_{k} explictly We list below a first few of them:

$$
\begin{align*}
B_{1}= & \Delta-\Delta w_{1} \\
B_{2}= & \Delta^{2}-\left(2 \Delta w_{1}+\Delta^{2} w_{1}\right) \Delta+\left(-2 \Delta w_{1}-2 \Delta^{2} w_{1}+\Delta w_{1} \Delta^{2} w_{1}+2\left(\Delta w_{1}\right)^{2}\right. \tag{46}\\
& \left.+w_{1} \Delta^{2} w_{1}+2 w_{1} \Delta w_{1}-\Delta^{2} w_{2}-2 \Delta w_{2}\right)
\end{align*}
$$

Next, we will derive the generalized Lax equation, involving infinte number of tume variables. For thus, we define

$$
\begin{equation*}
L=W \Delta W^{-1} \tag{47}
\end{equation*}
$$

Substituting the values of W and W^{-1} and rearranging the terms we cat wrute

$$
\begin{equation*}
L=\Delta+u_{0}+u_{1} \Lambda^{-1}+u_{2} \Delta^{-2}+\cdots \tag{48}
\end{equation*}
$$

where u_{s} s are expressed in terms of $w_{j} s t=0,1, j=1,2$, We present some $u_{t} s$

$$
\begin{align*}
& u_{0}=-\Delta w_{1} \\
& u_{1}=-\Delta w_{1}-\Delta w_{2}+w_{1} \Delta w_{1} \tag{49}\\
& u_{2}=-\Delta w_{2}-\Delta w_{3}+\Delta w_{1} E^{-1} w_{1}+w_{2} \Delta w_{1}+E^{-1} w_{1} \Delta w_{2}-w_{1} \Delta w_{1} E^{-1} w_{1}
\end{align*}
$$

Differentrating eqn (47) with respect to t_{k}, we get

$$
\begin{equation*}
\frac{\partial L}{\partial t_{k}}=\frac{\partial W}{\partial t_{k}} \Delta W^{-k}+W \Delta \frac{\partial W^{-1}}{\partial t_{k}} \tag{50}
\end{equation*}
$$

The first term on the nght-hand side of the above expression (50) will be replaced by the Sato equation (44) whereas for the second term we have to find $\frac{\partial \Psi^{-1}}{\lambda_{i}}$ For this, drfferentiating $W W^{-1}=1$ wth respect to t_{k} we have

$$
\begin{equation*}
\frac{\partial W}{\partial t_{k}} W^{-1}+W \frac{\partial W^{-1}}{\partial t_{k}}=0 \tag{51}
\end{equation*}
$$

Operating W^{-1} from the left of the above expression (51) and rearranging the terms we have

$$
\begin{equation*}
\frac{\partial W^{-1}}{\partial t_{k}}=-W^{-1} \frac{\partial W}{\partial t_{k}} W^{-1} \tag{52}
\end{equation*}
$$

Using (52) in (50), we obtam

$$
\begin{equation*}
\frac{\partial L}{\partial t_{k}}=\frac{\partial W}{\partial t_{k}} \Delta W^{-1}+W \Delta\left(-W^{-1} \frac{\partial W}{\partial t_{k}} W^{-1}\right) \tag{53}
\end{equation*}
$$

Substuting the value of $\frac{\partial y}{\partial_{k}}$ from the Sato equation (44), we have

$$
\begin{align*}
\frac{\partial L}{\partial t_{k}} & =\left(B_{k} W-W \Delta^{k}\right) \Delta W^{-1}-W \Delta W^{-1}\left(B_{k} W-W \Delta^{k}\right) W^{-1} \\
& =B_{k} W \Delta W^{-1}-W \Delta^{k+1} W^{-1}-W \Delta W^{-1} B_{k}+W \Delta^{k+1} W^{-1} \\
& =B_{k} L-L B_{k} \tag{54}\\
& =\left[B_{k}, L\right]
\end{align*}
$$

Thus, we have the gencralzed Lax equation

$$
\begin{equation*}
\frac{\partial L}{\partial t_{k}}=\left[B_{k}, L\right], k=1,2, \cdots \tag{55}
\end{equation*}
$$

It is noted from (47) that

$$
\begin{equation*}
L^{k}=W \Delta^{k} W^{-1} \tag{56}
\end{equation*}
$$

and hence

$$
\begin{equation*}
B_{k}=\left(L^{k}\right)^{+} \tag{57}
\end{equation*}
$$

From $B_{k}=\left(L^{k}\right)^{+}$, it is now immediate that

$$
\begin{align*}
B_{1}= & \Delta+u_{0} \\
B_{2}= & \Delta^{2}+\left(2 u_{0}+\Delta u_{0}\right) \Delta+\left(\Delta u_{0}+u_{0}^{2}+2 u_{1}+\Delta u_{1}\right) \\
B_{3}= & \Delta^{3}+\left(3 u_{0}+3 \Delta u_{0}+\Delta^{2} u_{0}\right) \Delta^{2}+\left(2 \Delta^{2} u_{0}+3 \Delta u_{0}+3 u_{0}^{2}+3 u_{0} \Delta u_{0}+\left(\Delta u_{0}\right)^{2}\right. \\
& \left.+3 u_{1}+3 \Delta u_{1}+\Delta^{2} u_{1}\right) \Delta+\left(\Delta^{2} u_{0}+5 u_{1} u_{0}+3 u_{0} \Delta u_{0}+u_{0}^{3}+\left(\Delta u_{0}\right)^{2}+\Delta u_{0} \Delta u_{1}\right. \\
& \left.+3 u_{0} \Delta u_{1}+u_{1} \Delta u_{0}+u_{1} E^{-1} u_{0}+2 \Delta^{2} u_{1}+3 \Delta u_{1}+3 u_{2}+3 \Delta u_{2}+\Delta^{2} u_{2}\right) \tag{58}
\end{align*}
$$

We can show that using (55) and (56),

$$
\begin{equation*}
\frac{\partial L^{m}}{\partial t_{k}}=\left[B_{k}, L^{m}\right], m, k=1,2, \cdot \tag{59}
\end{equation*}
$$

is also true Now, we will oblain the Zakharov-Shabat equation. From (59) we can show that

$$
\begin{equation*}
\frac{\partial L^{m}}{\partial t_{k}}-\frac{\partial L^{k}}{\partial t_{m}}=\left[B_{k}, L^{m}\right]-\left[B_{n}, L^{k}\right] \tag{60}
\end{equation*}
$$

holds true We denote $B_{k}^{c}=B_{k}-L^{k}$ which contains only terms with $\Delta^{-j}, j>0$. Employmg thes relation m eqn (60), we arrive at.

$$
\begin{align*}
\frac{\partial L^{m}}{\partial t_{k}}-\frac{\partial L^{k}}{\partial t_{m}} & =\left[B_{k}, L^{m}\right]-\left[B_{m}, L^{k}\right] \\
& =\left[L^{k}+B_{k}^{c}, L^{m}\right]-\left[B_{m}, B_{k}-B_{k}^{c}\right] \\
& =L^{k} L^{m}+B_{k}^{c} L^{m}-L^{m} L^{k}-L^{m} B_{k}^{c}-B_{m} B_{k}+B_{m} B_{k}^{c}+B_{k} B_{m}-B_{k}^{c} B_{m} \\
& =B_{k}^{c} L^{m}-L^{m} B_{k}^{c}-B_{m} B_{k}+B_{m} B_{k}^{c}+B_{k} B_{m}-B_{k}^{c} B_{m} \\
& =B_{k}^{c} B_{m}-B_{k}^{c} B_{m}^{c}-B_{m} B_{k}^{c}+B_{m}^{c} B_{k}^{c}-B_{m} B_{k}+B_{m} B_{k}^{c}+B_{k} B_{m}-B_{k}^{c} B_{m} \\
& =B_{k} B_{m}-B_{m} B_{k}-B_{k}^{c} B_{m}^{c}+B_{m}^{c} B_{k}^{c} \\
& =\left[B_{k}, B_{m}\right]-\left[B_{k}^{c}, B_{m}^{c}\right] \tag{61}
\end{align*}
$$

But, from $X^{k}=B_{k}-B_{k}^{c}$, we have

$$
\begin{equation*}
\frac{\partial B_{m}}{\partial t_{k}}-\frac{\partial B_{m}^{c}}{\partial t_{k}}-\frac{\partial B_{k}}{\partial t_{m}}+\frac{\partial B_{k}^{c}}{\partial t_{m}}=\left[B_{k}, B_{m}\right]-\left[B_{k}^{c}, B_{m}^{c}\right] \tag{62}
\end{equation*}
$$

Equating the difference part on both sides of (62), we find that

$$
\begin{equation*}
\frac{\partial B_{m}}{\partial t_{k}}-\frac{\partial B_{k}}{\partial t_{m}}=\left[B_{k}, B_{m}\right] \tag{63}
\end{equation*}
$$

which is the Zakharov-Shabat equation ${ }^{113}$

26. Differential-difference KP equanon

In the previous section, we derved the Sato, Lax and Zakharov-Shabat equations in a systematuc way. In this section, we obtain a hierarchy of differential-difference soliton equations using Sato theory Since the first non trivial member in this hierarchy is DAKP equation, we call this as D $\triangle K P$ hierarchy. Consider the L operator and the operators $B_{k}, k=1,2$, Using the generalized Lax equation (55), for a given B_{k}, we can derive a set of infinte number of equations involving u_{0}, u_{1}, So, it is possible to generate mfinte set of infinite number of equatons for $u_{0} u_{1}$, By appropnately choosing the equations in different sets, we can denve utegrable nondinear differentual-difference equations We wish to remind the reader that not every member in these sets is individually integrable. For example, taking $k=1$ in eqn (55) we get an infinute set of equations given by

$$
\begin{align*}
& \frac{\partial u_{0}}{\partial t_{1}}=\Delta u_{1} \\
& \frac{\partial u_{1}}{\partial t_{1}}=\Delta u_{1}+\Delta u_{2}+u_{0} u_{1}-u_{1} E^{-1} u_{0} \tag{64}\\
& \frac{\partial u_{2}}{\partial t_{1}}=\Delta u_{2}+\Delta u_{3}+u_{0} u_{2}+u_{1} E^{-1} u_{0}-u_{1} E^{-2} u_{0}-u_{2} E^{-2} u_{0}
\end{align*}
$$

Also, for $k=2$, we have

$$
\begin{align*}
\frac{\partial u_{0}}{\partial t_{2}}= & \Delta^{2} u_{1}+2 \Delta u_{2}+\Delta^{2} u_{2}+u_{1} \Delta u_{0}+2 u_{0} \Delta u_{1}+\Delta u_{0} \Delta u_{1}+u_{0} u_{1}-u_{1} E^{-1} u_{0} \\
\frac{\partial u_{1}}{\partial t_{2}}= & \Delta^{2} u_{1}+2 \Delta u_{2}+2 \Delta^{2} u_{2}+2 \Delta u_{3}+\Delta^{2} u_{3}+2 u_{0} \Delta u_{1}+\Delta u_{0} u_{1}+2 u_{0} u_{2} \\
& +u_{2} \Delta u_{0}+2 u_{0} \Delta u_{2}+\Delta u_{2} \Delta u_{0}+u_{1} \Delta u_{0}+u_{1} u_{0}^{2}+u_{1}^{2}+u_{1} \Delta u_{1} \tag{65}\\
& -u_{7} E^{-2} u_{0}+u_{1} E^{-1} u_{0}-u_{1}\left(E^{-1} u_{0}\right)^{2}-u_{1} E^{-1} u_{1}-u_{2} E^{-1} u_{0}-u_{2} E^{-2} u_{0}
\end{align*}
$$

Now, we consider the first two equations from the set of equations given an (64) and the first equation in (65). Solving these equations for u_{0} we arrive at the D $\Delta K P$ equation

$$
\begin{equation*}
\Delta\left(\frac{\partial u_{0}}{\partial t_{2}}+2 \frac{\partial u_{0}}{\partial t_{1}}-2 u_{0} \frac{\partial u_{0}}{\partial t_{1}}\right)=(2+\Delta) \frac{\partial^{2} u_{0}}{\partial t_{1}^{2}} \tag{66}
\end{equation*}
$$

Thus equation was first derived by Date et al through group of transformations approach. ${ }^{\text {t/5 }}$

2.7 Conserved quantities

Once we have the Lax pair, it is natural to ask for the existence of infinite number of conservation laws, a basic property of untegrable systems Agan we utilize the Sato's framework to derive them Matsukidaua et al ${ }^{117}$ developed a method to denve conservation laws of the KP equation through Sato theory and the same method was implemented ${ }^{19}$ to derive the conserved quantutes of Toda lattice. We follow a similar approach and derive the infinte number of conserved quantites for DAKP equation through Sato theory. For this purpose, we first constder the linear engenvalue problem assoctated with the generalized Lax equation (55)

$$
\begin{align*}
& L \psi=\lambda \psi \\
& \frac{\partial \psi}{\partial t_{k}}=B_{k} \psi \tag{67}
\end{align*}
$$

and $\lambda_{L_{k}}=0$ Using $B_{k}=L^{k}+B_{k}^{c}$, we rewrite eqn (67), as

$$
\begin{equation*}
\frac{\partial \psi}{\partial t_{k}}=\left(L^{k}+B_{k}^{c}\right) \psi \tag{68}
\end{equation*}
$$

We recall that B_{k}^{c} consists only the negative powers of Δ. Now we will express $\Delta^{\top}, j=1,2$, in terms of L^{-J}. For thes purpose first we find L^{-1} We assume that L^{-1} is of the form

$$
\begin{equation*}
L^{-1}=\Delta^{-1}+q_{2} \Delta^{-2}+q_{3} \Delta^{-3}+\cdots \tag{69}
\end{equation*}
$$

Using $L^{-1} L=1$ we can determine q_{p} s and we list some of them:

$$
\begin{aligned}
q_{2}= & -E^{-1} u_{0} \\
q_{3}= & E^{-1} u_{0}-E^{-2} u_{0}-E^{-1} u_{1}+E^{-1} u_{0} E^{-2} u_{0} \\
q_{4} & =-E^{-1} u_{0}+2 E^{-2} u_{0}-E^{-3} u_{0}+E^{-1} u_{1}-E^{-2} u_{1}-E^{-1} u_{2}-2 E^{-1} u_{0} E^{-2} u_{0} \\
& +E^{-1} u_{0} E^{-3} u_{0}+E^{-1} u_{0} E^{-2} u_{1}+E^{-2} u_{0} E^{-3} u_{0}+E^{-1} u_{1} E^{-3} u_{0} \\
& -E^{-1} u_{0} E^{-2} u_{0} E^{-3} u_{0} \\
q_{5}= & E^{-1} u_{0}-3 E^{-2} u_{0}+3 E^{-3} u_{0}-E^{-4} u_{0}-E^{-1} u_{1}+2 E^{-2} u_{1}-E^{-3} u_{1}+E^{-1} u_{2} \\
& -E^{-2} u_{2}-E^{-1} u_{3}+3 E^{-1} u_{0} E^{-2} u_{0}-3 E^{-1} u_{0} E^{-3} u_{0}-2 E^{-1} u_{0} E^{-2} u_{1} \\
& +2 E^{-1} u_{0} E^{-3} u_{1}+E^{-1} u_{0} E^{-2} u_{2}-3 E^{-2} u_{0} E^{-3} u_{0}-3 E^{-1} u_{1} E^{-3} u_{0} \\
& +3 E^{-1} u_{0} E^{-2} u_{0} E^{-3} u_{0}+E^{-2} u_{0} E^{-4} u_{0}+3 E^{-1} u_{1} E^{-4} u_{0}-E^{-1} u_{0} E^{-2} u_{0} E^{-4} u_{0}
\end{aligned}
$$

$$
\begin{align*}
& -E^{-1} u_{0} E^{-3} u_{1}+E^{-2} u_{0} E^{-3} u_{1}+E^{-1} u_{1} E^{-3} u_{1}-E^{-1} u_{0} E^{-2} u_{0} E^{-3} u_{1} \\
& +E^{-1} u_{0} E^{-4} u_{0}+E^{-3} u_{0} E^{-4} u_{0}-E^{-1} u_{1} E^{-4} u_{0}+E^{-2} u_{1} E^{-4} u_{0}+E^{-3} u_{2} E^{-4} u_{0} \\
& -E^{-1} u_{0} E^{-3} u_{0} E^{-4} u_{0}-E^{-1} u_{0} E^{-2} u_{1} E^{-4} u_{0}-E^{-2} u_{0} E^{-3} u_{0} E^{-4} u_{0} \\
& -E^{-1} u_{1} E^{-3} u_{0} E^{-4} u_{0}+E^{-1} u_{0} E^{-2} u_{0} E^{-3} u_{0} E^{-4} u_{0} \tag{70}
\end{align*}
$$

Using the Lerbnuz rule (9) and (69) we can denve the higher powers of $L^{-7}, J=1,2$. We list some of them below.

$$
\begin{align*}
L^{-2}= & \Delta^{-2}+\left(E^{-1} q_{2}+q_{2}\right) \Delta^{-3}+\left(-E^{1} q_{2}+E^{-2} q_{2}+E^{-1} q_{3}+q_{2} E^{-2} q_{2}+q_{3}\right) \Delta^{-4} \\
& +\left(E^{-3} q_{2}-2 E^{-2} q_{2}+E^{-3} q_{2}-E^{-1} q_{3}+E^{-2} q_{3}+E^{-3} q_{1}-2 q_{2} E^{-2} q_{2}\right. \\
& \left.+2 q_{2} E^{-3} q_{2}+q_{2} E^{-2} q_{3}+q_{3} E^{-3} q_{2}+q_{4}\right) \Delta^{-5}+ \\
L^{-3}= & \Delta^{-3}+\left(E^{-2} q_{2}+E^{-1} q_{2}+q_{2}\right) \Delta^{-4}+\left(-2 E^{-2} q_{2}+2 E^{-3} q_{2}+E^{-2} q_{3}+q_{2} E^{-3} q_{2}\right. \tag{71}\\
& \left.+E^{-1} q_{2} E^{-3} q_{2}-E^{-1} q_{2}+E^{-2} q_{2}+E^{-1} q_{3}+q_{2} E^{-2} q_{2}+q_{3}\right) \Delta^{-5}+ \\
L^{-4}= & \Delta^{-4}+\left(E^{-3} q_{2}+E^{-2} q_{2}+E^{-1} q_{2}+q_{2}\right) \Delta^{-5}+. \\
L^{-5}= & \Delta^{-5}+
\end{align*}
$$

Using the expressions for L^{-j} and (70), we can express $\Delta^{-1}, J=1,2$, :

$$
\begin{aligned}
A^{-1}= & \mathcal{L}^{-1}+E^{-1} u_{0} E^{-2}+\left(E^{-1} u_{0}^{2}-E^{-1} u_{0}+E^{-2} u_{0}+E^{-1} u_{1}\right) E^{-3}+\left(E^{-1} u_{0}^{3}-2 E^{-1} u_{0}^{2}\right. \\
& +2 E^{-1} u_{0} E^{-7} u_{1}+E^{-2} u_{0}^{2}+E^{-2} u_{0} E^{-1} u_{1}+E^{-1} u_{0}-2 E^{-2} u_{0}+E^{3} u_{0}-E^{-1} u_{1} \\
& \left.+E^{-2} u_{1}+E^{-1} u_{2}+E^{-1} u_{0} E^{-2} u_{0}\right) L^{-4}+\left(E^{-1} u_{0}^{4}+E^{-1} u_{0}^{3} E^{-3} u_{0}-3 E^{-1} u_{0}^{3}\right. \\
& -E^{-1} u_{0}^{3} E^{-2} u_{0}+3 E^{-1} u_{0}^{2} E^{-1} u_{1}-E^{-1} u_{0}^{2} E^{-2} u_{0} E^{-3} u_{0}+3 E^{-1} u_{0}^{2}-4 E^{-1} u_{0} E^{-2} u_{0} \\
& -4 E^{-1} u_{0} E^{-1} u_{1}+2 E^{-1} u_{0} E^{-1} u_{2}+E^{-2} u_{0}^{3}+E^{-2} u_{0}^{2} E^{-1} u_{1}-E^{-1} u_{0}^{2} E^{-2} u_{0}^{2} \\
& +2 E^{-1} u_{0} E^{-2} u_{0} E^{-1} u_{1}-E^{-1} u_{1} E^{-2} u_{0}+2 E^{-1} u_{0} E^{-4} u_{0}-4 E^{-2} u_{0} E^{-4} u_{0} \\
& +4 E^{-1} u_{0} E^{-2} u_{0} E^{-4} u_{0}-4 E^{-1} u_{0} E^{-1} u_{1}+E^{-2} u_{0} E^{-3} u_{0}+E^{-3} u_{0} E^{-1} u_{1} \\
& +E^{-1} u_{1} E^{-2} u_{1}+E^{-1} u_{0}^{2} E^{-2} u_{0}+E^{-1} u_{1}^{2}+E^{-3} u_{0}^{2}+E^{-3} u_{0} E^{-2} u_{1}+E^{-3} u_{0} E^{-1} u_{2} \\
& -3 E^{-2} u_{0}^{2}+E^{-2} u_{0} E^{-1} u_{2}+E^{-1} u_{0} E^{-2} u_{0}^{2}-E^{-1} u_{0}+3 E^{-2} u_{0}-3 E^{-3} u_{0}+E^{-4} u_{0} \\
& +E^{-1} u_{1}-2 E^{-2} u_{1}+E^{-3} u_{1}-E^{-1} u_{2}+E^{-2} u_{2}+E^{-1} u_{3}+4 E^{-1} u_{0} E^{-3} u_{0}
\end{aligned}
$$

gol

$$
\begin{aligned}
& \left.+E^{-1} u_{0} E^{-2} u_{1}\right) L^{-5}+\cdots \\
\Delta^{-2}= & L^{-2}+\left(E^{-2} u_{0}+E^{-1} u_{0}\right) L^{-3}+\left(E^{-2} u_{0}^{2}+E^{-1} u_{0} E^{-2} u_{0}+E^{-1} u_{0}^{2}-E^{-1} u_{0}\right. \\
& \left.+E^{-1} u_{1}-E^{-2} u_{0}+2 E^{-3} u_{0}+E^{-2} u_{1}\right) L^{-4}+\left(E^{-2} u_{0}^{3}-2 E^{-2} u_{0}^{2}+2 E^{-2} u_{0} E^{-3} u_{0}\right. \\
& +2 E^{-2} u_{0} E^{-2} u_{1}-2 E^{-2} u_{0} E^{-1} u_{0}+2 E^{-2} u_{0} E^{-1} u_{1}+E^{-1} u_{0}^{3}+E^{-1} u_{0}^{2} E^{-3} u_{0} \\
& -E^{-1} u_{0} E^{-2} u_{0} E^{-3} u_{0}+E^{-1} u_{0} E^{-2} u_{1}-2 E^{-1} u_{0}^{2}+2 E^{-1} u_{0} E^{-1} u_{1}+2 E^{-3} u_{0}^{2} \\
& +E^{-3} u_{0} E^{-2} u_{1}+2 E^{-1} u_{0} E^{-3} u_{0}-E^{-2} u_{1}+2 E^{-3} u_{1}+E^{-1} u_{0}-E^{-1} u_{1}+E^{-1} u_{2} \\
& \left.-2 E^{-3} u_{0}+E^{-4} u_{0}+E^{-2} u_{2}\right) L^{-5}+\cdots \\
A^{-3}= & E^{-3}+\left(E^{-3} u_{0}+E^{-2} u_{0}+E^{-1} u_{0}\right) L^{-4}+\left(E^{-3} u_{0}^{2}+E^{-2} u_{0} E^{-3} u_{0}+E^{-1} u_{0} E^{-3} u_{0}\right. \\
& +E^{-2} u_{0}^{2}+E^{-1} u_{0} E^{-2} u_{0}+E^{-1} u_{0}^{2}-E^{-3} u_{0}+3 E^{-4} u_{0}-E^{-2} u_{0}-E^{-1} u_{0}+E^{-3} u_{1} \\
& \left.+E^{-2} u_{1}+E^{-1} u_{1}\right) L^{-5}+.
\end{aligned}
$$

Hence, eqn (68) becomes

$$
\begin{equation*}
\frac{\partial \psi}{\partial t_{k}}=\left(L^{k}+\sigma_{1}^{(k]} L^{-1}+\sigma_{2}^{[k]} L^{-2}+\cdots\right) \psi \tag{73}
\end{equation*}
$$

where $\sigma_{j}^{(k)} \mathrm{s}$ are functions of $u_{s} \mathrm{~s}$ for all $j, k=1,2,, l=0, \mathrm{t}, \cdots$, On using $L^{\prime} \psi=\mathcal{R}^{\prime} \psi$ in (73), we obtain

$$
\begin{equation*}
\frac{\partial \psi}{\partial t_{k}}=\left(\lambda^{m}+\frac{\sigma_{i}^{(k)}}{\lambda}+\frac{\sigma_{2}^{(k)}}{\lambda^{2}}+\cdots\right) \psi . \tag{74}
\end{equation*}
$$

From this, we get

$$
\begin{equation*}
\frac{\partial}{\partial t_{k}} \log \psi=\lambda^{k}+\sum_{j=1}^{\infty} \frac{\sigma_{j}^{(k)}}{\lambda^{\prime}} . \tag{75}
\end{equation*}
$$

We denote $\sigma^{(k)}=\sum_{j=1}^{\infty} \sigma_{j}^{(k)} \lambda^{-y}$ and hence eqn (75) becomes

$$
\begin{equation*}
\sigma^{(k)}=\frac{\partial(\log \psi)}{\partial t_{k}}-\lambda^{k} \tag{76}
\end{equation*}
$$

Differentiating eqn (76) with respect to the time variable $t_{m s}$ we will arrive at the conservation laws

$$
\begin{equation*}
\frac{\partial \sigma^{(k)}}{\partial t_{m}}=\frac{\partial}{\partial t_{k}}\left(\frac{\partial \log \psi}{\partial t_{m}}\right), m, k=1,2, \tag{77}
\end{equation*}
$$

Notce that $\sigma^{(k)}$ and $\frac{\partial \log \Psi}{\partial_{m}}$ correspond to conserved quantity and flux, respectively. We list the first few of the $\sigma_{j}^{(1)} \mathrm{s}$:

$$
\begin{align*}
\sigma_{1}^{(1)}= & -u_{1} \\
\sigma_{2}^{(1)}= & -u_{1} E^{-1} u_{0}-u_{2} \tag{78}\\
\sigma_{3}^{(1)}= & -u_{1}\left(E^{-1} u_{0}\right)^{2}+u_{1} E^{-1} u_{0}-u_{1} E^{-2} u_{0}-u_{1} E^{-1} u_{1}-u_{2} E^{-2} u_{0} \\
& -u_{2} E^{-1} u_{0}-u_{3}
\end{align*}
$$

It is known from Section 2.6 that the Lax equation with $k=1$ gives

$$
\begin{align*}
& \frac{\partial u_{0}}{\partial t_{1}}=\Delta u_{1} \\
& \frac{\partial u_{1}}{\partial t_{1}}=\Delta u_{1}+\Delta u_{2}+u_{0} u_{1}-u_{1} E^{-1} u_{0} \\
& \frac{\partial u_{2}}{\partial t_{1}}=\Delta u_{2}+\Delta u_{3}+u_{0} u_{2}+u_{1} E^{-1} u_{0}-u_{1} E^{-2} u_{0}-u_{2} E^{-2} u_{0} \tag{79}
\end{align*}
$$

From the above equations (79), we can express u_{1}, u_{2}, u_{3}, in terms of u_{0}, and we list the first few of u_{j} for $j=1,2$. .

$$
\begin{align*}
u_{\mathrm{L}}= & \Delta^{-1} \frac{\partial u_{0}}{\partial t_{1}} \\
u_{2}= & \Delta^{-2} \frac{\partial^{2} u_{0}}{\partial t_{1}^{2}}-\Delta^{-1} \frac{\partial u_{0}}{\partial t_{1}}-E^{-1} u_{0} \Delta^{-1} \frac{\partial u_{0}}{\partial t_{1}}+\Delta^{-1}\left(u_{0} \frac{\partial u_{0}}{\partial t_{1}}\right) \\
u_{3}= & \Delta^{-3} \frac{\partial^{3} u_{0}}{\partial t_{1}^{3}}-2 \Delta^{-2} \frac{\partial^{2} u_{0}}{\partial t_{1}^{2}}+\Delta^{-1} \frac{\partial u_{0}}{\partial t_{1}}-E^{-1} u_{0} \Delta^{2} \frac{\partial^{2} u_{0}}{\partial t_{1}^{2}}+E^{-2} u_{0} \Delta^{-2} \frac{\partial^{2} u_{0}}{\partial t_{1}^{2}} \\
& +2 E^{-1} u_{0} \Delta^{-1} \frac{\partial u_{0}}{\partial t_{1}}-E^{-2} u_{0} \Delta^{-1}\left(u_{0} \frac{\partial u_{0}}{\partial t_{1}}\right)+\Delta^{-1}\left(\left(\frac{\partial u_{0}}{\partial t_{1}}\right)^{2}+u_{0} \frac{\partial^{2} u_{0}}{\partial t_{1}^{2}}\right) \tag{80}\\
& -\Delta^{-1}\left(E^{-1} \frac{\partial u_{0}}{\partial t_{1}} \Delta^{-1} \frac{\partial u_{0}}{\partial t_{1}}+E^{-1} u_{0} \Delta^{-1} \frac{\partial^{2} u_{0}}{\partial t_{1}^{2}}\right)+\Delta^{-1}\left(u_{0} \Delta^{-1} \frac{\partial^{2} u_{0}}{\partial t_{1}^{2}}\right) \\
& +\Delta^{-1}\left(E^{-1} u_{0} \Delta^{-1} \frac{\partial^{2} u_{0}}{\partial t_{1}^{2}}\right)-2 \Delta^{-1}\left(u_{0} \frac{\partial u_{0}}{\partial t_{1}}\right)+\Delta^{-1}\left(u_{0} E^{-1} u_{0} \frac{\partial u_{0}}{\partial t_{1}}\right)
\end{align*}
$$

$$
+\Delta^{-1}\left(u_{0}^{2} \frac{\partial u_{0}}{\partial t_{1}}\right)+\Delta^{-1}\left(u_{0} E^{-1} u_{0} \Delta^{-1} \frac{\partial u_{0}}{\partial t_{1}}\right)-\Delta^{-1}\left(E^{-2} u_{0} E^{-1} u_{0} \Delta^{-1} \frac{\partial u_{0}}{\partial t_{1}}\right)
$$

Now substutung these values in $\sigma_{j}^{(t)}$, we obtain the conserved denstues of the D $\Delta K P$ equaton (66). We list below some of them:

$$
\begin{align*}
\sigma_{1}^{(1)}= & -\Delta^{-1} \frac{\partial u_{0}}{\partial t_{1}} \\
\sigma_{2}^{(1)}= & -\Delta^{-2} \frac{\partial^{2} u_{0}}{\partial t_{1}^{2}}+\Delta^{-1} \frac{\partial u_{0}}{\partial t_{1}}-\Delta^{-1}\left(u_{0} \frac{\partial u_{0}}{\partial t_{1}}\right) \\
\sigma_{3}^{(1)}= & -\left(E^{-1} u_{0}\right)^{2} \Delta^{-1} \frac{\partial u_{0}}{\partial t_{1}}+E^{-1} u_{0} \Delta^{-1} \frac{\partial u_{0}}{\partial t_{1}}-E^{-2} u_{0} \Delta^{-1} \frac{\partial u_{0}}{\partial t_{1}} \tag{8i}\\
& -\Delta^{-1} \frac{\partial u_{0}}{\partial t_{1}} E^{-1} \Delta^{-1} \frac{\partial u_{0}}{\partial t_{1}}-E^{-2} u_{0} \Delta^{2} \frac{\partial^{2} u_{0}}{\partial t_{1}^{2}}+E^{-2} u_{0} \Delta^{-1} \frac{\partial u_{0}}{\partial t_{1}} \\
& +E^{-1} u_{0} E^{-2} u_{0} \Delta^{-1} \frac{\partial u_{0}}{\partial t_{1}}-E^{-2} u_{0} \Delta^{-1}\left(u_{0} \frac{\partial u_{0}}{\partial t_{1}}\right)
\end{align*}
$$

2.8 Generaluzed symntetres

Another important feature of the integrable system is that it admits mfinutely many tumemdependent non-Lie point symmetries called generaized symmetres Agann it is sumple to derive the generaluzed symmetries using the theory of Sato. In fact, Matsukidaira et al. ${ }^{177}$ proposed a method to denve the generalized symmetries of the KP equation using Sato theory They expluctly obtaned the eigenfunction of the associated linear elgenvalue problem and showed that the squared etgenfunction generates generaluzed symmetres. We show that thus strategy can also be adopted here and derve the generalzed symmetries for DAKP equation Before domg so, we give a bref review of the basic notions in this theory. We consider an evolution equation

$$
\begin{equation*}
u_{t}=K(u) \tag{82}
\end{equation*}
$$

where K is a functional of u. We call the functional $S(u)$ a symmetry of (82) if it satisfies the lneanzed equation given by

$$
\begin{equation*}
S_{z}=K^{\prime}(u)[S], \tag{83}
\end{equation*}
$$

where the Fréchet derivatuve $K^{\prime}(u)$ is defined by

$$
\begin{equation*}
K^{\prime}(u)[S]=\left.\frac{\partial}{\partial \epsilon} K(u+\in S)\right|_{\epsilon=0} . \tag{84}
\end{equation*}
$$

It can be shown that a symmerry S must satisfy

$$
\begin{equation*}
[S, K]=S^{\prime}[K]-K^{\prime}[S]=0 \tag{85}
\end{equation*}
$$

This means that ary symmetry S commutes with $K(u)$.
We will show that the eigenfunction of the linear eigenvalue problem (67) and its adjoint generate the symmetries of the $D \Delta K P$ equation Notuce that $L=W \Delta W^{-1}$. Hence, we rewrite eqn (67) in the form

$$
\begin{align*}
L \psi & =\lambda \psi \\
\text { 1e. } W \Delta W^{-1} \psi & =\lambda \psi \tag{86}
\end{align*}
$$

Applying W^{1} on both sides of (86), we have

$$
\begin{equation*}
\Delta W^{-1} \psi=W^{-1} \lambda \psi=\lambda W^{-1} \psi \tag{87}
\end{equation*}
$$

By taking $y_{0}=W^{-1} \Psi$ in the above equation (88), we artive at

$$
\begin{equation*}
\Delta \psi_{0}=\lambda \psi_{0} \tag{88}
\end{equation*}
$$

The above equation (88) is just a first-order ordinary linear difference equation, whose solution is given by

$$
\begin{equation*}
\psi_{0}=g\left(t_{1}, t_{2} \cdot \cdots, \lambda\right)(1+\lambda)^{n} \tag{89}
\end{equation*}
$$

where $g\left(t_{1}, t_{2}, ; \lambda\right)$ is an integration function. From the result it follows that

$$
\begin{equation*}
W^{-1} \psi=\psi_{0}=g\left(\lambda, t_{1}, t_{2 v}\right)(1+\lambda)^{x} \tag{90}
\end{equation*}
$$

and hence the engenfunction is given by

$$
\begin{align*}
\psi & =W g\left(t_{1}, t_{2} ; ; \lambda\right)(1+\lambda)^{n} \\
& =\left(1+w_{1} \Delta^{-1}+w_{2} \Delta^{-2}+\right)(1+\lambda)^{n} g\left(t_{1}, t_{2}, \cdot, \lambda\right) . \tag{91}
\end{align*}
$$

To find the eigenfunction we need the value of $\Delta^{-7}(1+\lambda)^{n}$. For this purpose, first we derive $\Delta^{-1}(1+\lambda)^{\pi}$. Now we compute $\Delta(1+\lambda)^{n}$.

$$
\begin{align*}
\Delta(1+\lambda)^{n} & =(1+\lambda)^{n+1}-(1+\lambda)^{n} \\
& =(1+\lambda)^{n}(1+\lambda-1) \tag{92}\\
& =(1+\lambda)^{n} \lambda
\end{align*}
$$

Operating $\frac{1}{\lambda} \Delta^{-1}$ on both sides of (92), we arrive at

$$
\begin{equation*}
\Delta^{-1}(1+\lambda)^{n}=\frac{1}{\lambda}(1+\lambda)^{n} \tag{93}
\end{equation*}
$$

Applying A ${ }^{-1}$ repeatedly on (93), we have

$$
\begin{equation*}
\Delta^{-3}(1+\lambda)^{n}=\frac{(1+\lambda)^{n}}{\lambda^{3}}, j=1,2, \cdots \tag{94}
\end{equation*}
$$

Using (94) in (91), we have

$$
\begin{equation*}
\psi=\left(1+\frac{w_{1}}{\lambda}+\frac{w_{2}}{\lambda^{2}}+\cdots\right)(1+\lambda)^{n} g\left(t_{1}, t_{2}, \cdots ; \lambda\right) \tag{95}
\end{equation*}
$$

But, we have,

$$
\begin{equation*}
\frac{\partial \psi}{\partial t_{k}}=\left(L^{k}+q_{1} L^{-1}+q_{2} L^{-2}+\cdots\right) \psi \tag{96}
\end{equation*}
$$

where q, s are appropriate functions of $\lambda, t_{1}, t_{2},$. On using $L^{\prime} \psi=\lambda^{\prime} \psi, j=1,2$, , we obtain

$$
\begin{equation*}
\frac{\partial \psi}{\partial t_{k}}=\left(\lambda^{k}+\frac{q_{\mathrm{L}}}{\lambda}+\frac{q_{2}}{\lambda^{2}}+\cdot\right) \psi \tag{97}
\end{equation*}
$$

This implies

$$
\begin{equation*}
\frac{\partial \log \psi}{\partial t_{k}}=\lambda^{k}+\frac{q_{1}}{\lambda}+\frac{q_{2}}{\lambda^{2}}+ \tag{98}
\end{equation*}
$$

Thes is tue for any integer $k>0$. On integrating the set of equations, we finally find,

$$
\begin{equation*}
\psi=\exp \left(\sum_{j=i}^{\infty} \lambda^{j} t_{j}+t_{0}+\sum_{j=1}^{\infty} \tilde{q}_{j} \lambda^{-j}\right) \tag{99}
\end{equation*}
$$

where $\tilde{q}_{J} 15$ agam approprate functions Comparing eqn (99) with (95) at $t_{J}=0, \forall f=1,2, \cdots$ we get $\tilde{q}_{f}^{\prime}=w_{f}, \forall j=1,2, \cdots$, and

$$
\begin{equation*}
g\left(t_{1}, t_{2}, \cdots, \lambda\right)=\exp \left(\sum_{j=1}^{\infty} \lambda^{j} t_{J}\right) \tag{100}
\end{equation*}
$$

Hence

$$
\begin{equation*}
\psi=\left(1+\frac{w_{1}}{\lambda}+\frac{w_{2}}{\lambda^{2}}+\cdots\right)(1+\lambda)^{n} \exp \left(\sum_{j=1}^{\infty} \lambda^{\gamma} t_{j}\right) \tag{101}
\end{equation*}
$$

We will obtain the formal adjont of ψ as

$$
\begin{equation*}
\psi^{*}=\left(1+\frac{w_{1}^{*}}{\lambda}+\frac{w_{2}^{*}}{\lambda^{2}}+\cdot \cdot\right)(1+\lambda)^{-n} \exp \left(-\sum_{s=1}^{\infty} \lambda^{t} t_{j}\right) \tag{102}
\end{equation*}
$$

To find the value of ψ^{*} we have to determine $w_{j}^{*}, \forall j=1,2$, For this purpose, we consider

$$
L^{*} \psi^{*}=\lambda \psi^{*}
$$

$$
\begin{align*}
\left(W \Delta W^{-1}\right) \psi^{*} & =\lambda \psi^{*} \\
\left(W^{-1}\right)^{*}\left(-\Delta E^{-1}\right)\left(W^{*}\right) \psi^{*} & =\lambda \psi^{*} \tag{103}\\
-\Delta E^{-1} W^{*} \psi^{*} & =\lambda W^{*} \psi^{*}
\end{align*}
$$

Taking $W^{*} \psi^{*}=\psi_{0}^{*}$ we amrve at a Imear difference equation

$$
\begin{equation*}
-\Delta E^{-1} \psi_{0}^{*}=\lambda \psi_{0}^{*} \tag{104}
\end{equation*}
$$

Solving the above equation (104) we armve at

$$
\begin{equation*}
\psi_{0}^{*}=W^{*} \psi^{*}=h\left(t_{1}, t_{2}, \cdot, \lambda\right)(1+\lambda)^{-n} \tag{105}
\end{equation*}
$$

and hence we have

$$
\begin{equation*}
\psi^{*}=\left(W^{-1}\right)^{*} h\left(t_{1}, t_{2}, \cdot, \lambda\right)(1+\lambda)^{-n} \tag{106}
\end{equation*}
$$

Using (13) and (15) in (106), we have

$$
\begin{align*}
\psi^{*} & =\left(1+v_{1} \Delta^{-1}+v_{2} \Delta^{-2}+\right)^{*} h\left(t_{1}, t_{2}, \cdot, \lambda\right)(1+\lambda)^{-n} \\
& =\left(1-\Delta^{-1} E_{v 1}+\Delta^{-2} E^{2} v_{2}+\cdot\right) h\left(t_{1}, t_{2}, \cdots, \lambda\right)(1+\lambda)^{-n} \tag{107}
\end{align*}
$$

Expanding the above equation (107), using Leibnz rule (10), we have

$$
\begin{gather*}
\psi^{+}=\left(1-E\left(v_{1} \Delta^{-1}-\Delta v_{1} E \Delta^{-2}+\Delta^{2} v_{1} E^{2} \Delta^{-3}+\right)\right. \\
+E^{2}\left(v_{2} \Delta^{-2}-2 \Delta v_{2} E \Delta^{-3}+\cdots\right) \tag{108}\\
\left.-E^{3}\left(v_{3} \Delta^{-3}+\cdots\right)+\cdots\right) h\left(t_{1}, t_{2}, \quad \lambda\right)(1+\lambda)^{-a} \\
\psi^{*}=\left(1-E v_{1} E \Delta^{-1}+\left(E \Delta v_{1}+E^{2} v_{2}\right) E^{2} \Delta^{-2}\right. \\
-\left(E \Delta^{2} v_{1}+2 \Delta E^{2} v_{2}+E^{3} v_{3}\right) E^{3} \Delta^{-3}+\cdot h\left(t_{1}, t_{2} \cdot \lambda\right)(1+\lambda)^{-n} \tag{109}
\end{gather*}
$$

Now, we compute $\Delta E^{-1}(1+\lambda)^{-n}$.

$$
\begin{align*}
\Delta E^{-1}(1+\lambda)^{-n} & =\Delta(1+\lambda)^{-n+1} \\
& =(1+\lambda)^{-n \cdot 1+1}-(1+\hat{\lambda})^{-n+1} \\
& =(1+\lambda)^{-n}(1-\{1+\lambda)\} \tag{110}\\
& =-\lambda(1+\lambda)^{-n}
\end{align*}
$$

Operating $-\frac{1}{2} \Delta^{-1} E$ on both sides of (110), we have

$$
\begin{equation*}
\Lambda^{-1} E(1+\lambda)^{-n}=-\frac{(1+\lambda)^{-n}}{\lambda} \tag{111}
\end{equation*}
$$

and hence

$$
\begin{equation*}
A^{-J} E^{J}(1+\lambda)^{-n}=\frac{(-1)^{J}(1+\lambda)^{-n}}{\lambda^{J}}, \forall j=1,2, \cdots \tag{112}
\end{equation*}
$$

Using the above result (112) in (109), we have,

$$
\begin{align*}
\psi^{\prime \prime}= & \left(1+\frac{E v_{1}}{\lambda}+\frac{\left(E \Delta v_{1}+E^{2} v_{2}\right)}{\lambda^{2}}\right. \\
& \left.+\frac{\left(E \Delta^{2} v_{1}+2 \Delta E^{2} v_{2}+E^{3} v_{3}\right)}{\lambda^{3}}+\cdot\right) h\left(t_{1}, t_{2}, \cdot \lambda\right)(1+\lambda)^{-n} \tag{113}
\end{align*}
$$

Comparing eqns (113) and (101), we have

$$
\begin{equation*}
h\left(t_{1}, t_{2}, \cdots ; \lambda\right)=\exp \left(-\sum_{j=1}^{\infty} \lambda^{\prime} t_{j}\right) \tag{114}
\end{equation*}
$$

and the w_{j}^{*} s are given by

$$
\begin{align*}
& w_{1}^{*}=E v_{1} \\
& w_{2}^{*}=E \Delta v_{1}+E^{2} v_{2} \\
& w_{3}^{*}=E \Delta^{2} v_{1}+2 \Delta E^{2} v_{2}+E^{3} v_{3} \tag{115}\\
& w_{4}^{*}=E \Delta^{3} v_{1}+3 E^{2} \Delta^{2} v_{2}+3 E^{3} \Delta v_{3}+E^{4} v_{4}
\end{align*}
$$

On using (16) in (115), we get

$$
\begin{align*}
w_{1}^{*}= & -E w_{1} \\
w_{2}^{*}= & -E \Delta w_{1}+E w_{1} E^{2} w_{1}-E^{2} w_{2} \\
w_{3}^{*}= & -E \Delta^{2} w_{1}-2 E^{3} w_{2}+3 E^{2} w_{1} E^{3} w_{1}+2 E^{2} w_{2}-2 E^{2} w_{1} E w_{1}-E^{3} w_{1} E w_{1} \tag{116}\\
& +E^{3} w_{1} E^{2} w_{2}-E^{3} w_{1} E^{2} w_{1} E w_{1}+E^{3} w_{2} E w_{1}-E^{3} w_{3}
\end{align*}
$$

Now, we will show that the eigenfunction and its adjoint in terms of w and w^{*} can be used to generate generalized symmetries of the DAKP equation. For this purpose, we adopt the procedure developed in Matsuidara ${ }^{117}$ Using the eigenvalue problem (67)

$$
\begin{align*}
& \frac{\partial \psi}{\partial t_{1}}=B_{1} \psi \\
& \frac{\partial \psi}{\partial t_{2}}=B_{2} \psi \tag{117}
\end{align*}
$$

and ts adjoint ergenvalue problem

$$
\begin{align*}
& \frac{\partial \psi^{*}}{\partial t_{1}}=-B_{1}^{*} \psi^{*} \\
& \frac{\partial \psi^{*}}{\partial t_{2}}=-B_{2}^{*} \psi^{*} \tag{118}
\end{align*}
$$

we have

$$
\begin{align*}
\frac{\partial \psi}{\partial t_{1}}= & \Delta \psi+u_{0} \psi \\
\frac{\partial \psi}{\partial t_{2}}= & \Delta^{2} \psi+\left(2 u_{0}+\Delta u_{0}\right) \Delta \psi+\left(\Delta u_{0}+u_{0}^{2}+(2+\Delta) \Delta^{-1} \frac{\partial u_{0}}{\partial t_{1}}\right) \psi \\
\frac{\partial \psi^{*}}{\partial t_{1}}= & \Delta E^{-1} \psi^{*}-u_{0} \psi^{*} \tag{119}\\
\frac{\partial \psi^{*}}{\partial t_{2}}= & -\Delta^{2} E^{-2} \psi^{*}+\Delta E^{-1}\left(2 u_{0} \psi^{*}+\Delta u_{0} \psi^{*}\right) \\
& -\left(\Delta u_{0}+u_{0}^{2}+(2+\Delta) \Delta^{-1} \frac{\partial u_{0}}{\partial t_{1}}\right) \psi^{*}
\end{align*}
$$

Using (119), we can see that $s=\psi \psi \psi^{*}$ satisfies

$$
\begin{equation*}
\frac{\partial s}{\partial t_{2}}-2 u_{0} \frac{\partial s}{\partial t_{1}}+2 \frac{\partial s}{\partial t_{1}}-(2+\Delta) \Delta^{-1} \frac{\partial^{2} s}{\partial t_{1}^{2}}=0 \tag{120}
\end{equation*}
$$

Using the definition of Frechet derivative (83), the lineanzed D $\Delta \mathrm{KP}$ equation is given by

$$
\begin{equation*}
\frac{\partial S}{\partial t_{2}}-2 u_{0} \frac{\partial S}{\partial t_{1}}-2 S \frac{\partial u_{0}}{\partial t_{1}}+\frac{\partial S}{\partial t_{1}}-(2+\Delta) \Delta^{-1} \frac{\partial^{2} S}{\partial t_{1}^{2}}=0 \tag{121}
\end{equation*}
$$

From (120) and (121) it is obvious that if s satisfies (120), then $S=\frac{\partial}{\alpha_{1}}$ satisfies the linearized DAKP equation (121) Hence, it is immedtate that $\frac{\partial}{d_{t}}\left(\psi \psi \psi^{*}\right)$ satisfies the lineanzed D $\Delta K P$ equation (121). Using (101) and (102), we have

$$
\begin{equation*}
\psi \psi^{*}=\left(1+\frac{w_{1}}{\lambda}+\frac{w_{2}}{\lambda^{2}}+\cdot \cdot\left(1+\frac{w_{1}^{*}}{\lambda}+\frac{w_{2}^{*}}{\lambda^{2}}+\cdot\right)=\sum_{k=0}^{\infty} s_{k} \lambda^{-k}\right. \tag{122}
\end{equation*}
$$

where

$$
\begin{equation*}
s_{k}=\sum_{j=0}^{k} w_{j} w_{k-\jmath}^{*} \tag{123}
\end{equation*}
$$

with $w_{0}=1$ and $w_{0}^{*}=1$ Since $\psi \psi^{*}$ is a polynomal expression in $\hat{\lambda}$, and λ is mdependent of the tume variables, we have

$$
\begin{equation*}
S_{k}=\frac{\partial}{\partial t_{k}} s_{k}, \quad k=0,1,2, \cdots \tag{124}
\end{equation*}
$$

which are solutions of (121) and hence generalized symmetres for the DAKP equation (66) We present below the first few generalized symmetres.

$$
\begin{align*}
S_{0}= & \frac{\partial}{\partial t_{1}}(1)=0 \\
S_{0}= & \frac{\partial}{\partial t_{1}}\left(u_{0}\right)=\frac{\partial u_{0}}{\partial t_{1}} \\
S_{2}= & \frac{\partial}{\partial t_{1}}\left(-u_{0}+u_{0}^{2}+(2+\Delta) \Delta^{-1} \frac{\partial t_{0}}{\partial t_{1}}\right)=\frac{\partial u_{0}}{\partial t_{2}}+\frac{\partial u_{0}}{\partial t_{1}} \tag{125}\\
S_{3}= & \frac{\partial}{\partial t_{1}}\left(\frac{\partial u_{0}}{\partial t_{2}}+\Delta^{-1} \frac{\partial^{2} u_{0}}{\partial t_{1}^{2}}+3 \Delta^{-2} \frac{\partial^{2} u_{0}}{\partial t_{1}^{2}}-4 \Delta^{-1} \frac{\partial u_{0}}{\partial t_{1}}+3 u_{0} \Delta^{-1} \frac{\partial u_{0}}{\partial t_{1}}\right) \\
& +3 \Delta^{-1}\left(u_{0} \frac{\partial u_{0}}{\partial t_{1}}+u_{0} \frac{\partial u_{0}}{\partial t_{1}}+u_{0}-2 u_{0}^{2}+u_{0}^{2}\right)
\end{align*}
$$

3. Wronskian and rational solutions

3.1 Introduction

It is well known that many IST solvable nonlinear evoiution equations exhbit multisoliton solntions When we use Hirota's bilnear method ${ }^{10-14}$ these \mathbb{N}-soliton solutions can be expressed as an N th order polynomial in N exponentals Perhaps, a more conventent representation of such a solution, however, is in terms of the Wronskian of N exponential functions. The N-sobiton solution for soliton equations written in the Wronskian form was first introduced by Satsuma ${ }^{28}$ and further developed by Freeman and Nimmo ${ }^{29}$ and N1mmo and Freeman ${ }^{30}$ Thus procedure has been applied to the $\mathrm{KP},{ }^{29,31}$ the Boussinesq, ${ }^{30,32}$ and other solton systems ${ }^{33-36}$

It is also known that the N-soliton solution of KP hierarchy can be derived through Sato theory, ${ }^{113}$ which is expressed by an approprate τ-functon. This τ-function can be expressed in the form of generalized Wronskian determmant defined on the ufinite-dmensional Grassmann mannfold. In this framework, Hirota's bilmear forms anse naturally as Plücker relatıons. Using the Laplace expanston of the determinant, we can easily venfy that the r-function satusfies the gven Hrota's bilinear form.

It has been recognued that megrable systems, in the sense of IST, possess other class of solutions as well, called rational solutious ${ }^{3.83-96}$ The rational solutions of the soliton equations can be obtamed through vanous means On the other hand, Sato theory provides a systematic approach to find the rational solutions of KP herarchy ${ }^{91}$ The fundamental ones are represented in terms of Schur polynomials which sathsfy a certain set of lnear differential equations

3.2 N-Soliton solutton

Now, we consider the DAKP equation (66) in the form

$$
\begin{equation*}
\Delta\left(\frac{\partial u}{\partial t_{2}}+2 \frac{\partial u}{\partial t_{1}}-2 u \frac{\partial u}{\partial t_{1}}\right)=(2+\Delta) \frac{\partial^{2} u}{\partial t_{1}^{2}} \tag{126}
\end{equation*}
$$

where $u=u\left(t_{1}, t_{2}, n\right)$. Now, using the dependent varnable transformation

$$
\begin{equation*}
u\left(t_{1}, t_{2}, n\right)=\frac{\partial}{\partial t_{1}} \log \frac{\tau_{m+1}}{\tau_{n}} \tag{127}
\end{equation*}
$$

meqn (126), we arrive at

$$
\begin{equation*}
\tau_{n} \frac{\partial \tau_{n+1}}{\partial t_{2}} \tau_{n+1} \frac{\partial \tau_{n}}{\partial t_{2}}+2 \tau_{n} \frac{\partial \tau_{n+1}}{\partial t_{1}}-2 \tau_{n+1} \frac{\partial \tau_{n}}{\partial t_{1}}+2 \frac{\partial \tau_{n+1}}{\partial t_{1}} \frac{\partial \tau_{n}}{\partial t_{1}}-\tau_{n} \frac{\partial^{2} \tau_{n+1}}{\partial t_{1}^{2}}-\tau_{n+1} \frac{\partial^{2} \tau_{n}}{\partial t_{1}^{2}}=0 \tag{128}
\end{equation*}
$$

We represent this equation in the Hirota's bilinear form, which can be wntten in terms of H1rota's bilinear operators These operators are defined by the following nule. ${ }^{14}$

$$
\begin{equation*}
D_{t}^{n} D_{x}^{k} a \cdot b=\left.\left(\frac{\partial}{\partial t}-\frac{\partial}{\partial t^{\prime}}\right)^{m}\left(\frac{\partial}{\partial x}-\frac{\partial}{\partial x^{\prime}}\right)^{k} a(x, t) b\left(x^{\prime}, t^{\prime}\right)\right|_{\substack{x^{\prime}=x \\ t^{\prime}=t}} \tag{129}
\end{equation*}
$$

where m and k are arbitrary nomegative untegers. Using the above definition (129), we can find

$$
\begin{align*}
& D_{i_{1}} \tau_{n+1} \cdot \tau_{n}=\tau_{n} \frac{\partial \tau_{n+1}}{\partial t_{1}}-\tau_{n+1} \frac{\partial \tau_{n}}{\partial t_{1}} \\
& D_{t_{2}} \tau_{n+1} \tau_{n}=\tau_{n} \frac{\partial \tau_{n+1}}{\partial t_{2}}-\tau_{n+1} \frac{\partial \tau_{n}}{\partial t_{2}} \tag{130}
\end{align*}
$$

$$
D_{t_{1}}^{2} \tau_{n+1} \tau_{n}=\tau_{n} \frac{\partial^{2} \tau_{n+1}}{\partial t_{1}^{2}}-2 \frac{\partial \tau_{n+1}}{\partial t_{1}} \frac{\partial \tau_{n}}{\partial t_{1}}+\tau_{n+1} \frac{\partial^{2} \tau_{n}}{\partial t_{1}^{2}}
$$

Now, we can easily see that eqn (128) can be written in the bilinear form

$$
\begin{equation*}
\left(D_{i_{2}}+2 D_{t_{1}}-D_{t_{1}}^{2}\right) \tau_{n+1} \quad \tau_{n}=0 \tag{131}
\end{equation*}
$$

Next, we prove that the solutions of the DAKP equation can be represented in the form of Wronskann (Casorati) determinant

$$
\begin{align*}
\tau_{n} & =W\left(f_{n}^{(1)}, f_{n}^{(2)}, \cdots, f_{n}^{(N)}\right) \\
& =\left|\begin{array}{cccc}
f_{n}^{(1)} & \Delta f_{n}^{(1)} & \cdots & \Delta^{N-1} f_{n}^{(1)} \\
f_{n}^{(2)} & \Delta f_{n}^{(2)} & \cdots & \Delta^{N-1} f_{n}^{(2)} \\
\vdots & \vdots & \ddots & \vdots \\
f_{n}^{(N)} & \Delta f_{n}^{(N)} & \cdots & \Delta^{N-1} f_{n}^{(N)}
\end{array}\right|=\left|\begin{array}{cccc}
f_{n}^{(1)} & f_{n+1}^{(1)} & \cdot & f_{n+N-1}^{(1)} \\
f_{n}^{(2)} & f_{n+1}^{(2)} & \cdots & f_{n+N-1}^{(2)} \\
\vdots & \cdot & \ddots & \vdots \\
f_{n}^{(N)} & f_{n+1}^{(N)} & \cdots & f_{n+N-1}^{(N)}
\end{array}\right| \tag{132}
\end{align*}
$$

The determinant τ_{n} in (132) is nothing but the denomuator in the expression (38) given in Section 2. The entmes in the determinant (132), $f_{n}^{(j)}=f^{(j)}\left(t_{1}, t_{2}, n\right), j=1,2, \ldots, N$ are the solutions of a set of lunear partal defferential-dufference equations

$$
\begin{align*}
& \frac{\partial f_{n}^{(j)}}{\partial t_{1}}=\Delta f_{n}^{(f)}, \\
& \frac{\partial f_{n}^{(j)}}{\partial t_{2}}=\Delta^{2} f_{n}^{(j)}, \quad \jmath=1,2, \quad, N \tag{133}
\end{align*}
$$

One of the particular solutions of (133) is readtly given by

$$
\begin{equation*}
f_{n}^{(j)}=\left(1+p_{j}\right)^{n} \exp \left(p, t_{1}+p_{j}^{2} l_{2}\right), \quad J=1,2, \ldots, N \tag{134}
\end{equation*}
$$

To obtain N-soliton solution in the Wronskan form, it is well known that $f_{n}^{(f)}$ can be chosen in the form

$$
\begin{equation*}
f_{n}^{(!)}=\exp \eta_{f}+\exp \xi_{j} \tag{135}
\end{equation*}
$$

Wht 等 and 5 given by

$$
\begin{align*}
& \eta_{j}=p_{j} t_{1}+p_{j}^{2} t_{2}+n \log \left(1+p_{j}\right)+\gamma_{j} t \\
& \xi_{j}=q_{j} t_{1}+q_{j}^{2} t_{2}+n \log \left(1+q_{j}\right)+\xi_{j} \tag{136}
\end{align*}
$$

Following Frecman and Nimmo's notation, ${ }^{24} 30$ we denote τ_{n} in (132) as

$$
\tau_{n}=|0,1,2 \ldots, N-1|=\left|\begin{array}{cccc}
f_{n}^{(1)} & f_{n+1}^{(1)} & \cdots & f_{n+N-1}^{(1)} \tag{137}\\
f_{n}^{(2)} & f_{n+1}^{(2)} & \cdots & f_{n+N-1}^{(2)} \\
\vdots & \vdots & \ddots & \vdots \\
f_{n}^{(N)} & f_{n+1}^{(N)} & \cdots & f_{n+N-1}^{(N)}
\end{array}\right|
$$

The terus involved in (128) may then easily be computed as

$$
\begin{align*}
& \tau_{n+1}=|1,2, \ldots, N| \\
& \frac{\partial \tau_{n}}{\partial t_{1}}=|0,1,2, \ldots, N-2, N|-N|0,1,2, \ldots, N-1| \\
& \frac{\partial \tau_{n+1}}{\partial t_{1}}=|1,2,3, \ldots, N-1, N+1|-N|1,2, \quad, N| \\
& \frac{\partial \tau_{n}}{\partial t_{2}}= N|0,1,2, \ldots, N-1|-|0,1,2, \quad, N-3, N-1, N| \\
&+|0,1,2, \quad, N-2, N+1|-2|0,1,2, \quad, N-2, N| \\
& \frac{\partial \tau_{n+1}}{\partial t_{2}}= N|1,2, \ldots, N|-|1,2, \ldots, N-2, N, N+1| \tag{138}\\
&+|1,2, \ldots, N-1, N+2|-2|1,2, \quad, N-1, N+1| \\
& \frac{\partial^{2} \tau_{n}}{\partial t_{1}^{2}}= N^{2}|0,1,2, \ldots, N-1|-2 N|0,1,2, \ldots, N-2, N| \\
&+|0,1,2, \ldots, N-3, N-1, N|+|0,1,2, \ldots, N-2, N+1| \\
& \frac{\partial^{2} \tau_{n+1}}{\partial t_{1}^{3}}=N^{2}|1,2, N|-2 N|1,2, \ldots, N-1, N+1| \\
&+|1,2, \ldots, N-2, N, N+1|+|1,2, \quad, N-1, N+2|
\end{align*}
$$

which is the Laplace expansion of the $2 N \times 2 N$ determmant ${ }^{21}$

$$
\left|\begin{array}{cccccc}
& \hat{N}-2 & 0 & N-1 & N & N+1 \tag{140}\\
0 & N-1 \\
0 & 0 & \hat{N-2} & N-1 & N & N+1
\end{array}\right|
$$

where $N^{\wedge}-2=11,2$.,$N-2 \mid$ and O denotes the $(N-2) \times(N-2)$ zero matnx Since the above determmant (140) is zero it indeed verfies that τ_{2} satisfies the bilmear equation (128) identically Thus we have proved that the τ-function detined by (132) gives the N-soliton solution of the D $\Delta K P$ equation (126) ${ }^{152}$

33. Ratwonal solutions

In this section, our atm is to describe the method of finding a class of ratuonal solutions for the DAKP equation For this purpose, we constder the set of Luear partial differentral-difference equations (133) with (134) as particular solution Notnce that $f_{n}^{(f)}$ in (134) can be expressed as a formal power serres in p_{j} and hence we have

$$
\begin{align*}
\left(1+p_{j}\right)^{2} \exp \left(p_{j} t_{1}+p_{j}^{2} t_{2}\right)= & \left(1+n^{(1)} p_{j}+\frac{n^{(2)}}{2!} p_{j}^{2}+\cdot\right)\left(1+\left(p_{j} t_{1}+p_{j}^{2} t_{2}\right)\right. \\
& \left.+\frac{1}{2}\left(p_{j} t_{1}+p_{j}^{2} t_{2}\right)^{2}+\cdots\right)=\sum_{m=0}^{\infty} p_{n} p_{j}^{m} \tag{141}
\end{align*}
$$

From (141), we have a set of polynomals in the variables n, t_{1} and t_{2}. They can be expressed in a compact way as

$$
\begin{equation*}
P_{m}=\sum_{\substack{\alpha_{n}, \alpha_{1}, \alpha_{2} \geq 0 \\ \alpha_{0}+\alpha_{1}+2 \alpha_{2}=m}} \frac{n(n-1)(n-2) \cdot\left(n-\alpha_{0}+1\right) t_{1}^{\alpha_{1} t_{2} \alpha_{2}}}{\alpha_{0}^{\prime} \alpha_{1}!\alpha_{2}!} \tag{142}
\end{equation*}
$$

where $P_{m}=0, \forall m \leq 0$ These $P_{m} s$ are called the differential-difference analogues of Schur polynomals Also, one can see that they satusfy the following equatuons.

$$
\begin{align*}
& \Delta P_{m}=P_{m-1} \\
& \frac{\partial P_{m}}{\partial t_{1}}=\Delta P_{m} \tag{143}\\
& \frac{\partial P_{m}}{\partial t_{2}}=\Delta^{2} P_{m}
\end{align*}
$$

From the above equations (143), we see that the $P_{m} s$ are solutions of the equatoons in (133). But we have already shown that the Wronskian formed by any solution of (133), satssfies the bilinear form of $\mathrm{D} \Delta \mathrm{KP}$ equation (128) Thus $P_{m} \mathrm{~s}$ are also solutions of blinear $\mathrm{D} \Delta \mathrm{KP}$ equation
(128) Therefore, the polynomials P_{n} can be used to generate a class of rational solutions for (126). Constder the Wronskian formed by the $P_{m} \mathrm{~s}$

$$
P_{l_{1} l_{2}} I_{N}=\left|\begin{array}{cccc}
P_{l_{1}} & P_{l_{2}} & & P_{l_{N}} \tag{144}\\
P_{l_{l^{2}}-1} & P_{l_{2}-1} & \cdots & P_{l_{\mathrm{V}}-1} \\
& \vdots & \ddots & \vdots \\
P_{l_{1}-N+1} & P_{l_{2}-N+1} & & P_{l_{N}-N+1}
\end{array}\right|
$$

where $l_{1}, l_{2}, \cdot, l_{N}$ are distuct integers We list below first few rational solutions generated usugg (144):

$$
\begin{aligned}
& P_{0}=1 \\
& P_{1}=n+t_{1} \\
& P_{2}=\frac{n(n-1)}{2!}+\frac{t_{1}^{2}}{2!}+n t_{1}+t_{2} \\
& P_{3}=\frac{n(n-1)(n-2)}{3!}+\frac{t_{1}^{3}}{3!}+\frac{n(n-1)}{2!} t_{1}+\frac{n t_{1}^{2}}{2!}+n t_{2}+t_{1} t_{2} \\
& P_{12}=\frac{n}{2}+\frac{n^{2}}{2}-t_{2}+n t_{1}+\frac{t_{1}^{3}}{2} \\
& P_{13}=\frac{-n}{3}+\frac{n^{3}}{3}+n^{2} t_{1}+n t_{1}^{2}+\frac{t_{1}^{3}}{3} \\
& P_{23}=\frac{-n^{2}}{12}+\frac{n^{4}}{12}-n t_{2}+t_{2}^{2}-\frac{n t_{1}}{3}+\frac{n^{3} t_{1}}{3}+\frac{n^{2} t_{1}^{2}}{2}+\frac{n t_{1}^{3}}{3}+\frac{t_{1}^{4}}{12} \\
& P_{123}=\frac{n}{3}+\frac{n^{2}}{2}+\frac{n^{3}}{6}-n t_{2}+\frac{n t_{1}}{2}+\frac{n^{2} t_{1}}{2}-t_{2} t_{1}+\frac{n t_{1}^{2}}{2}+\frac{t_{1}^{3}}{6}
\end{aligned}
$$

Next, we construct a more general form of rational solutions For this purpose, we consider the τ-function given by

$$
\begin{equation*}
\tau_{n}=W\left(f_{n}^{(1)}, f_{n}^{(2)}, \cdot, f_{n}^{(N)}\right) \tag{145}
\end{equation*}
$$

where the $f_{n}^{(0)} \mathrm{s}$ are given by

$$
\begin{equation*}
f_{n}^{(b)}=\left(\frac{\partial}{\partial p_{j}}\right)^{m_{j}} \exp \left[\eta\left(p_{j}\right)\right]=P_{m_{j}}\left(p_{l}\right) \exp \left[\eta\left(p_{j}\right)\right], j=1,2, \quad, N, m_{j} \geq 0 \tag{146}
\end{equation*}
$$

and they satusfy eqns (133) with

$$
\begin{equation*}
\eta\left(p_{j}\right)=\left(n+n_{j}\right) \log \left(1+p_{j}\right)+p_{J}\left(t_{1}+{\tilde{t_{j}}}_{J}\right)+p_{j}^{2}\left(t_{2}+\tilde{t}_{2 J}\right) \tag{147}
\end{equation*}
$$

where $n, \tilde{t_{1}}$ and $\tilde{t_{2}}$, are arbitrary phase constants From (146), we have

$$
\begin{equation*}
p_{m_{3}}\left(p_{J}\right)=m_{j}, \sum_{\substack{\alpha_{0}, \alpha_{1}, \alpha_{i}, \geq 0 \\ \alpha_{0}+\alpha_{1}+2 \alpha_{2}=m_{j}}} \prod_{k=0}^{m_{j}} \frac{\left(\theta_{k}\left(p_{j}\right)\right)^{\alpha_{k}}}{\alpha_{k}!} \tag{148}
\end{equation*}
$$

where

$$
\begin{equation*}
\theta_{k}\left(p_{J}\right)=\frac{1}{k^{\dagger}} \frac{\partial^{k}}{\partial p_{j}{ }^{k}} \eta\left(p_{j}\right) . \tag{149}
\end{equation*}
$$

These polynomials $P_{m},\left(p_{j}\right)$ are the differentual-difference analogues of the generalized Schur polynomıals Again, it should be noted that the Wronskian formed by these generalized Schur polynomials are also rational solutions for the D $\Delta \mathrm{KP}$ equarion (1.26). But this tume the entries in the determinant are arbitrary linear combinations of the generalized Schur polynomials (148) It is easy to denve the N-soliton solutions and the tational solutions of DAKP herarchy. If we introduce the infinte number of time vanables in the functions $f_{n}^{(j)}$ in such a way that they satisfy the linear equations

$$
\begin{equation*}
\frac{\partial}{\partial t_{m}} f_{n}^{(J)}=\Delta^{m} f_{n}^{(J)}, \quad j=1,2, \quad, N, \quad m=1,2 \tag{150}
\end{equation*}
$$

then the Wronskaan formed by these functions is the N-soliton solution of the DAKP huerarchy. The rational solutions of the DAKP hierarchy can be obtaned as before.

4. Lie point symmetries and Painlevé-singularity confinement analysis

41 Introduction

In this section, we discuss the underlyng Lie point symmernes of the DAKP and also study the sungularity structures of the solutions of this equation. These two aspects played important role in mtegrable systems for many years. The first one helps us to find special class of solutions in terms of new vanables called simplarity variables Using these varables we can also reduce the equation to a lower dimensional system. Furthermore, the structure of the symmetres reveals the nature of the associated Lae algebra of symmetry vector fields. The classification of Lie algebras of symmetry vector fields in tum brings out the associated solutions As far as the second part, it is well recognsed that the Pamlevé-singulanty analysis played a vital role for several years in idenufying possible integrable systems both in ODEs and PDEs. This is more drrect and simple and yet a powerful approach to identify integrable systems though the nature of the singularites appears in the solutions. In the following discussion we give brief introduction to both these methods and apply the techniques to DAKP. Detaled analysis will be published elsewhere. ${ }^{154}$

A Lie point symmetries

The concept of symmetry is extremely general, and the prectse meaning of the term depends to a larger extent on the context we deal with When we use this concepr in connection with dif-
ferenual equations, we reserve the word symmetry for group of transformations which leave the given system of differential equarions mvariant For computing the symmetries we adopt ufinitesmal analogues of the transformanon However, there are methods to recover the full group from infintesumal symmetries In partucular, the mportance of Lee's mvariance analysis Les in the fact that it is a systematic approach to discover a class of solutions, reductons to simpler equations through a new set of varables called similanity variables and simalarity functoons ${ }^{54},{ }^{12}$ Numerous equations were analysed using this powerful tool Over the years, the method of Lie has been generaized in many directions Though there was intense activity on the symmerry analysis for conumuous systems, it is surpnsmg that unnil recently this theory had no mpact on differential-difference systems and discrete equations as well However, it is worth mentionng that Maeda was the first one to apply the theory of symmetrics to discrete systems in the varrational formalism ${ }^{140-1{ }^{12}}$ Due to resurgence of interest in the integrability of discrete and differential-difference systems, the symmetry approach again becomes vital to look for symmetries, special solutions and reductions in this back ground, Levi aud Winternita, and later Quspel, Capel and Sahadevan developed the Lie symmetry method for differentaldifference equations ${ }^{143-150}$ The Lie point symmetries for the fuily discrete equations were also mitrated ${ }^{146}$ Symmetry analyss for fully descrete systems is yet to be developed as an efficient tool as in the contunuous case In view of the importance of Lie theory nthelt and the nontruval apphcability, we denve the Lie poin symmetres of the DAKP equatuon in this section, and use them for reductoon process

42 Lie's methold

Let us consider a function $u(\mathbf{x}, n), u \in R, \mathbf{x} \in R^{p}, n \in Z$ We consider the differentul-difference equation of the form

$$
\begin{equation*}
F\left(\mathbf{x}, n, u_{n}, u_{n, x, 1} u_{n+1}, u_{n+3, k \times 1}\right)=0 \tag{151}
\end{equation*}
$$

where $l \in Z$ We say that the Lie point symmetry group of transformation ${ }^{145}$

$$
\begin{equation*}
\tilde{n}=n, \tilde{\mathbf{x}}=\Lambda_{g}(\mathbf{x}), \tilde{u}_{n}=\omega_{g}\left(\mathbf{x}, n, u_{n}\right) \tag{152}
\end{equation*}
$$

where g denotes the group parameters, λ_{g} and ω_{g} are mvertible smooth functions, is admitted by the system (151) if $u_{n}(\mathbf{x})$ is a solution of (151), then $\tilde{u}_{n}(\tilde{\mathbf{x}})$ is also a solution of (151) The power behnd the Lee group of transformatoon technique hes in the mfinitesimal formulation of the group Lee's first fundarnental theorem exphactly gives the connection between the infinttesimal iransformation and the Lee group of transformation. ${ }^{54}$ The infintesimal one-parameter Lee pont transformation corresponding to (152) is given by

$$
\begin{align*}
& \tilde{n}=n \\
& \tilde{\mathbf{x}}=x+\in \xi\left(\mathrm{x}, n, u_{n}\right) \tag{153}\\
& \tilde{u}_{n}=u_{n}+\epsilon \phi_{n}\left(\mathrm{x}, n, u_{n}\right)
\end{align*}
$$

and the vector field corresponding to the nfintesimal transformation (153) sg given by

$$
\begin{equation*}
\hat{X}=\sum_{i=1}^{p} \xi_{i}(\mathbf{x}) \partial_{x_{i}}+\varphi_{n}\left(x, n, u_{n}\right) \partial_{u_{n}} . \tag{154}
\end{equation*}
$$

The vector field (154) should be expanded to a larger space based on the order of the given equation (151) For example, if (151) is of order k then (154) should be extended (or prolonged) to $\mathrm{P}_{\mathrm{t}}{ }^{(k)} \tilde{X}$ defined by

$$
\begin{align*}
\operatorname{Pr}^{(k)} \hat{X}= & \sum_{l=1}^{p} \xi_{i}(\mathbf{x}) \partial_{x_{1}}+\sum_{l} \phi_{n+1}\left(\mathrm{x}, n, u_{n+l}\right) \partial_{u_{2+1}} \\
& +\sum_{i=1}^{p} \sum_{l} \phi_{n+1}^{\mathrm{\xi}}\left(\mathrm{x}, n+l, u_{n+l} \cdot \cdots\right) \partial_{n+l, x_{s}}+ \tag{155}
\end{align*}
$$

with

$$
\begin{align*}
& \phi_{n+l}^{x_{1}}=D_{x_{2}} \phi_{n+l}-\sum_{j=1}^{p}\left(D_{x_{1}} \xi_{j}\right) u_{n+1, x_{j}} \\
& \phi_{n+l}^{\mathrm{c}_{\mathrm{i}} x_{k}}=D_{\lambda_{s}} \phi_{n+l}^{x_{i}}-\sum_{\mathrm{j}=1}^{p}\left(D_{x_{h}} \xi_{3}\right) \mu_{n+l, x_{,} x_{j}} \tag{156}
\end{align*}
$$

where

$$
\begin{equation*}
D_{\mathrm{r}_{\mathrm{i}}} \psi=\frac{\partial \psi}{\partial x_{2}}+\sum_{i} \frac{\partial \psi}{\partial u_{n}} \frac{\partial u_{n}}{\partial x_{t}}+ \tag{157}
\end{equation*}
$$

denotes the total derivative operator as in the contunuous case. ${ }^{54}$ Now, the invarnance condtion is given by

$$
\begin{equation*}
\left.\operatorname{Pr}{ }^{(k)} \hat{X} \cdot F\right|_{F=0}=0 . \tag{158}
\end{equation*}
$$

The mann difference between the contonuous and duferentual-difference case is the summation over $/$ in (155) The number of terms we have to keep depends on the discrete order of the equation. As in the continuous case, eqn (151) is invariant under the action of (152) if the condition (158) holds good. Equation (158) gives the invariant condtion from which we have to find the mfinitesimal generators of the symmetry group (153) To do this, we expand eqn (158), use eqn (151) and equate the coefficients of the various dervatives of u_{n+i} to zero. This results in an over-determined system of linear equatoons for the infintesimal generators of the group. We can solve these determining equatrons in a closed form and obtain symmetres. These symmetries are then used to find similanty solutions and reductions, etc In order to denive the sumilarity solutions of the sysicm (151) we use the symmetries $\xi_{x} s$ and ϕ int the characteristre equation

$$
\begin{equation*}
\frac{d x_{1}}{\xi_{1}}=\frac{d x_{2}}{\xi_{2}}=\cdot \cdot=\frac{d x_{p}}{\xi_{p}}=\frac{d x_{n+1}}{\oint_{n+l}} \tag{159}
\end{equation*}
$$

After solving the above equatoo we arrve at $p-1$ new nidependent variables called simularity vartables. The new dependent varable ts the function of similarty varables, called the simi-
larty function Substutung the value of u_{n} in terms of similanty function in the system (151), and simplifyng we arnve at a new system which has the number of independent varables reduced by one compared to the given system. Obtaining lower dimensional equations using this procedure is called sumulanty reduction. We can also use infinitesmal generators to classify the solutions It can be shown that vector fields associated with infintesimal generators form Lie algebras

4.3 Symmetries and smulanty reduction of the DAKP equation

In this section, we present the classical Lie point symmetnes for the $\mathrm{D} A \mathrm{KP}$ equation. Using these symmetries we find smmanty solution and stmilarity reduction of the $D \Delta K P$ equation. As a simularity reduction we obtain Veselov-Shabat equation, ${ }^{173}$

For thes purpose, we start with DAKP equation in the form

$$
\begin{equation*}
\bar{u}_{x x}+u_{x x}-2(1-\bar{u}) \bar{u}_{x}+2(1-u) u_{x}-\bar{u}_{t}+u_{t}=0 \tag{160}
\end{equation*}
$$

where we have used $u_{n}=u$ and $\bar{u}_{n+1}=\bar{u}$ Let us assume that the infinitesumal Lie group of transtormation as

$$
\begin{align*}
& \tilde{n}=n \\
& \tilde{x}=x+\epsilon \xi(n, x, t, u) \\
& \tilde{t}=t+\in \tau(n, x, t, u) \tag{161}\\
& \tilde{u}=u+\in \phi(n, x, t, u) .
\end{align*}
$$

The vector field corresponding to (161) is given by

$$
\begin{equation*}
\hat{X}=\xi(n, x, t, u) \partial_{x}+\tau(n, x, t, u) \partial_{r}+\phi(n, x, t, u) \partial_{u} \tag{162}
\end{equation*}
$$

Since the order of DAKP equation is two we consider the second prolongation of the vecto: field (162), which is given by

$$
\begin{gather*}
\operatorname{Pr}^{(2)} \hat{X}=\xi \partial_{x}+\tau \partial_{t}+\phi \partial u+\bar{\phi} \partial_{\bar{u}}+\phi^{x} \partial_{u_{x}}+\bar{\phi}^{x} \partial_{\bar{u}_{x}}+\phi^{t} \partial_{\bar{u}_{t}}+\bar{\phi}^{t} \partial_{\bar{u}_{t}}+\phi^{x x} \partial_{u_{u r}} \\
+\bar{\phi}^{x x} \partial_{\bar{u}_{x x}}+\phi^{x t} \partial_{u_{x u}}+\bar{\phi}^{x x} \partial_{\bar{u}_{x t}}+\phi^{t} \partial_{u_{\pi}}+\bar{\phi}^{n t} \partial_{\bar{u}_{\pi}} \tag{163}
\end{gather*}
$$

We get the mvanant

$$
\begin{equation*}
\bar{\phi}^{t}-\phi^{t}+2 \bar{\phi}^{x}-2 \phi^{x}-2 \bar{u} \bar{\phi}^{x}-2 \bar{\phi} \bar{u}_{x}+2 u \phi^{x}+2 \phi u_{x}-\bar{\phi}^{x x}-\phi^{x x}=0 \tag{164}
\end{equation*}
$$

on using the invariant conditon (158) and applying (163) on eqू (160) To evaluate this expression we need $\phi^{x}, \bar{\phi}^{x}, \phi^{\prime}, \bar{\phi}^{t}, \phi^{x x}, \bar{\phi}^{x x}$ and we can explicity find them using (156). They are listed as below.

$$
\begin{aligned}
& \phi^{x}=\phi_{x}+\left(\phi_{u}-\xi_{x}\right) u_{x}-\tau_{x} u_{t}-\xi_{x} u_{x}^{2}-\tau_{u} u_{x} u_{t} \\
& \bar{\phi}^{x}=\bar{\phi}_{x}+\left(\bar{\phi}_{\bar{u}}-\bar{\xi}_{x}\right) \bar{u}_{x}-\bar{\tau}_{x} \bar{u}_{t}-\bar{\xi}_{\bar{u}} \bar{u}_{x}^{2}-\bar{\tau}_{\bar{u}} \bar{u}_{x} \bar{u}_{t}
\end{aligned}
$$

$$
\begin{align*}
\phi^{t}= & \phi_{t}-\xi_{t} u_{x}+\left(\phi_{u}-\tau_{t}\right) u_{t}-\xi_{x} u_{x} u_{t}-\tau_{u} u_{t}^{2} \\
\bar{\phi}^{t}= & \bar{\phi}_{t}-\bar{\xi}_{t} \bar{u}_{x}+\left(\bar{\phi}_{u u p}-\bar{\tau}_{t}\right) \bar{u}_{i}-\bar{\xi}_{\bar{u}} \bar{u}_{x} \bar{u}_{t}-\bar{\tau}_{\bar{u}} \bar{u}_{t}^{2} \\
\phi^{x x}= & \phi_{x x}+\left(2 \phi_{x u}-\xi_{x x}\right) u_{x}-\tau_{x x} u_{t}+\left(\phi_{u t}-2 \xi_{x u}\right) u_{x}^{2} \\
& -2 \tau_{x u} u_{x} u_{t}-\xi_{u x} u_{x}^{3}-\tau_{x u} u_{x}^{2} u_{t}+\left(\phi_{u}-2 \xi_{x}\right) u_{x x} \tag{165}\\
& -2 \tau_{x} u_{x t}-3 \xi_{x} u_{x} u_{x x}-\tau_{x} u_{x x} u_{t}-2 \tau_{u} u_{x} u_{x t} \\
\bar{\phi}^{x x}= & \bar{\phi}_{x x}+\left(2 \bar{\phi}_{x \bar{u}}-\bar{\xi}_{x x}\right)_{\bar{u}_{x}}-\bar{\tau}_{x: x} \bar{u}_{t}+\left(\bar{\phi}_{\bar{u} \bar{u}}-2 \bar{\xi}_{x \bar{u}}\right) \bar{u}_{x}^{2} \\
& -2 \bar{\tau}_{x \bar{u}} \bar{u}_{x} \bar{u}_{t}-\bar{\xi}_{\bar{u} \bar{u}} \bar{u}_{x}^{3}-\bar{\tau}_{\bar{u} \bar{u}} \bar{u}_{x}^{2} \bar{u}_{t}+\left(\bar{\phi}_{\bar{u}}-2 \bar{\xi}_{x}\right) \bar{u}_{x x} \\
& -2 \bar{\tau}_{x} \bar{u}_{x t}-3 \bar{\xi}_{\bar{u}} \bar{u}_{x} \bar{u}_{x x}-\bar{\tau}_{\tilde{u}} \bar{u}_{x x} \bar{u}_{t}-2 \bar{\tau}_{\bar{u}} \bar{u}_{x} \bar{u}_{x t}
\end{align*}
$$

Now solve eqn (160) for $\bar{u}_{x x}$ and bence we have

$$
\begin{equation*}
\bar{u}_{x x}=\bar{u}_{t}-u_{t}-2 u_{x}+2 u u_{2}+2 u_{x}-2 \bar{u} \bar{u}_{x}-u_{x x} \tag{166}
\end{equation*}
$$

In order to get the determinng equations for the infintesumal generators we substrute the values of (165) in (164) and using (166), replacing $\vec{u}_{x r}$ in the resulting expression, we have an expression in $u_{x}, u_{t}, \bar{u}_{x}, \bar{u}_{2}, u_{x x}, u_{x t}, \bar{u}_{x t}$. Equatung the coefficient of vanous powers of the deavatives of u and \bar{u} in the resulting expression to zero we amnve at a lunear homogeneous system of partual differential-difference equations. Solving this overdetermined system we obtain the symmetries

$$
\begin{align*}
& \xi=\frac{1}{2} x f(t)+g(t) \\
& \tau=f(t) \tag{167}\\
& \phi=-\frac{1}{2} f(t) u-\frac{1}{4} f(t) x+\frac{1}{2} f(t)-\frac{1}{2} g(t) .
\end{align*}
$$

In order to perform simnlarity reduction first we have to solve the characternstic equation

$$
\begin{equation*}
\frac{d \tau}{\xi}=\frac{d t}{\tau}=\frac{d u}{\phi} \tag{168}
\end{equation*}
$$

and derive the sumalanty varable and simulanty function. On mitegrating (168), we relate z to the simulanty function $F(\zeta, n)$ through

$$
\begin{equation*}
u=-\frac{f(t)}{4 f(t)^{\frac{1}{2}}} \int \frac{g(t)}{f(t)^{\frac{3}{2}}} d t-\frac{\zeta f(t)}{4 f(t)^{\frac{1}{2}}}+1-\frac{g(t)}{2 f(t)}+\frac{F(\zeta, n)}{f(t)^{\frac{1}{2}}} \tag{169}
\end{equation*}
$$

where the simularity variable ζ is given by

$$
\begin{equation*}
\zeta=\frac{x}{f(t)^{\frac{1}{2}}}-\int \frac{g(t)}{f(t)^{\frac{3}{2}}} d t \tag{170}
\end{equation*}
$$

Substutuing the value of u in DAKP equation we get the reduced equation

$$
\begin{equation*}
\bar{F}_{\zeta}+F_{\zeta}+\bar{F}^{2}-F^{2}=\alpha(n) \tag{171}
\end{equation*}
$$

whach is the Veselov-Shabat equatorn ${ }^{173}$ The above system can be denved usugg l-reduction technque in Sato theory, and moreover this equation can be adentified with delay Panleve equations ${ }^{133,172}$

B Painlevé-singulanty confinement toralyss

Even before the discovery of sohtons, we had a remarkable theory to test the maegrability of ODEs called singulanty-anatysus first proposed by Kowalevski ${ }^{i 74}$. ${ }^{775}$ The motivation for her discovery emerged from the fact that the critical singulanties of a ltnear ODE are fixed. ${ }^{15,45,52}$ This means that the location of smgulantues of the solutions of a luear ODE is determuned entirely by the coefficents of the ODE Thus us certandy not the case monnear systems. The structure of the sugulanty in nonlinear equations is more compheated. While the sugulanties are fixed for linear ODEs, in the case of nonlmear differential equatons, their location (in the complex plane) depends on the mital conditions These sugulanties are called movable. Panleve started asking for nonhmear ODEs with fixed cnucal smgulartues and atcempted to classify ail the second-order equatons that belong to thas class In particular, he exammed equations of the fom

$$
\begin{equation*}
w^{\prime \prime}=f\left(w^{\prime}, w, z\right) \tag{172}
\end{equation*}
$$

with f polynomal in w^{f}, rational in w and analytic in z. Thas classitication was completed by Gamber ${ }^{52,176}$ Thus came the discovery of the famous six Painlevé equatoons. ${ }^{52}$

The Panleve equations are integrable in pinciple, however, ther integration could not be performed with the methods available at that tume. This situation has changed after the discov. ery of IST Ablowitz and Segwr? showed that the IST technique could be used to lnearnze the Padnlevé equations Soon after, Ablowit, Ramani and Segur (ARS) proposed the followtrg conjecture "Every ODE whach anses as a redaction of a completely integrable PDE is of Panlevé type (perhaps after a transformaton of variables)" The mategrable systems also possess what is called the Panleve property. If all movable singulantes of all solutions of an ODE are poles then we say that the system possesses Panleve property ARS also provided an algonthm to test the property for ODEs. The ARS approach urned out to be the most powerful ool to isolate good candidates of integrable systems ${ }^{3}$ Improvements made to it by Weiss et z^{47} and Grbbon and Tabor ${ }^{173}$ to treat PDEs drectly without the constraint of considering reluctions have resulted in several new equations The Parnlevé test is undoubtedly powerful but t does not have the rigour of a theorem.

In recent years there has been a growing interest in the study of discrete equations fo modIn science discrete equations play an important role ${ }^{133}, 134$ With the advancement of highpeed computng, discretisation becomes unavordable Qute often, discrete models are more salistic than contunous ones to understand the physics of the problem better Howeyer, we an clearly see a close parallel behaviour between the properties of the contumous systems and
their discrete analogues ${ }^{162}$ At the same time, it is not obvious to find the discrete analogues of all integrable equations In the past the focus was not much in this doman, but, has changed very recently due to the appearance of discrete Paunleve equations ${ }^{156,157}$

Although there was some progress in discrete systems, no singulanty-structure analysis (Pauleve method) exusted for such systems untul the discovery of singularity confinement the equivalent of Pannlevé analysis for discrete systems) by Grammaticos et al ${ }^{156}$ As in the Paunlevé method for contmuous systems, sungularity confinement method becomes a powerful tool to detect possible discrete integrable systems The singulanty confinement was complemented by pre-image nonproliferation condiluons which means that at each point the mapping will have a single pre-mage In the case of mapping, if no unque pre-mage exists then there is no need to use singulanty confinements ${ }^{170}$ The most striking use of suggularity confinement is the discovery of discrete Panievé equations ${ }^{159}$ It also plays a vilal role in getheng other integrability properties of discrete systems ${ }^{158-169}$

44 Algorthm

The pinciple of singulanty confinement can be stated as follows In a rational mapping, sungularty may appear spontaneously due to a particular choice of mitual condituon In analogy with the continuous case we call thus singularity 'movable' The conjecture states ${ }^{156}$ that in mutegrable systems thes singularity must disappear after a few recrations. This is what is meant by 'confinement' Also, memory of mital conditions must be recovered beyond singularity We can present the method of mplementing singularity confinement in the following way as Pamleve analysis un the ARS method ${ }^{44}$ (details in Appendix Y).

1) Find all possible sugularities and check that they are movable.

ARS • Fund all possible leading behaviours
2 Determine when, at the earliest, the smgulantues can disappear.
ARS Find the resonances
3 Check that fine cancellations ensure that they actually disappear (gives constramts on the parameters)
ARS Check compatibility conditions at resonances
For the purpose of dealing with differential-drfference equations, nether Painleve method nor singularty confinement is enough to capture singulanties. But Ramant et al ${ }^{137,138}$ have shown how a nuce combination of these two methods will allow tus to treat differentialdifference equations In fact, it goes beyond in treating integro-differential equations as well. The basic idea is to consider the effect of a singulanty in the contunuous vanable on the discrete evolution For Painlevé property the singularity must be a pole, as well as the subsequent ones and in addition, this must disappear after a few iterations (in the discrete variable). This idea is very fruifful in dealing delay-differential equations As an application of this method a few delay-Pamlevé equations have also been obtamed ${ }^{172}$

45 Painlevé-songulanty confinement analysss for $D \triangle A P$

We illustrate the Panlevé singulanty confinement technque on DAKP and study the simgularaty structure of the solutions We introduce the following notations in our discussion $t_{1}=x$.
$t_{2}=t, E^{-1} u_{0}=\underline{u}, u_{0}=u, E u_{0}=\bar{u}, E^{2} u_{0}=\overline{\bar{u}}, \frac{\partial u}{\partial t}=u_{t}, \frac{\partial_{x}}{\partial x}=u_{x}, \frac{\partial^{2} \mu}{\partial x^{2}}=u_{x x} . \cdot$ Let us wate the DAKP equation as

$$
\begin{equation*}
u_{t}+2(1-u) u_{x}-u_{x x}=\underline{u}_{t}+2\left(1-\underline{u}^{u}\right) \underline{u}_{x}+\underline{u}_{x x} \tag{173}
\end{equation*}
$$

According to singulanty-confinement analysis, we assume that a given \underline{u} is regular and ustng the above equation, we should study the propagation of sangulanties that appear for u The leading behaviour around the free smgulanty manifold $\phi(x, t)=0$ is

$$
\begin{equation*}
u=\frac{\phi_{x}}{\phi} \tag{174}
\end{equation*}
$$

To simplify the calculations, we apply Kruskal's ansatz, ie we put $\phi(x, t)=x+\psi(t)$ without loss of generality In this situation, \underline{u} has a Taylor expansion and thus u be expressed in the Laurent seres

$$
\begin{equation*}
u=\sum_{j=0}^{\infty} a_{j}(t) \phi^{-1} \tag{175}
\end{equation*}
$$

where $a_{0}=1$. Using the expansions (174) and (175) an (173) and performing the usual Painleve analysis we find that ARS-resonances are $j=-1,2$ and the compatibility condition for $j=2$ is automatically sausfied

This is not enough to test integrability through singulanty continement. For thas purpose we have to consuder the first and second iterations of the recursion (173) and perform the usual Painieve analysis and check the passing of the test The iterations of eqn (173) are

$$
\begin{equation*}
\bar{u}_{i}+2(1-\bar{u}) \bar{u}_{x}-\bar{u}_{x x}=u_{t}+2(1-u) u_{x}+u_{x x} \tag{176}
\end{equation*}
$$

and

$$
\begin{equation*}
\overline{\bar{u}}_{1}+2(1-\overline{\bar{u}}) \overline{\bar{u}}_{x}-\overline{\bar{u}}_{x x}=\bar{u}_{t}+2(1-\bar{u}) \bar{u}_{x}+\bar{u}_{x x} \tag{177}
\end{equation*}
$$

We apply the nature of the singularity of the solution from the previous analysis to these above upshifted equations while dong Pamlevé analysis and notice that DAKP equation satisfies the singularity confinement chtenon and Painleve property, thus confirming the integrability of this equation from singulanty analysis point of view Details will be published elsewhere ${ }^{\text {j54 }}$

5. A gauge equivalence of differential-difference Kadomtser-Petviashvili equation

5.1 Introduction

In the previous sections we have studed the DAKP equation in view of Sato theory We denived Lax pair, conserved quantuties, generalized symmetnes, Wronskian solutions, rational solutions and Lie point symmetnes and tested the Paulevé-singulanty confinement property. ${ }^{151 . ~} 152,154,155$ In this section, we discuss a gauge equivalence of the D $\Delta K P$ equation. ${ }^{153 .}$. 55

One of the frequent questions asked in the theory of integrable systems is that of the relanonshup among various eigenvalue problems and of the associated systems. This question has
siguficant mplications, and to mvestigate $1 t$, gauge transformation has been introduced which connects one eigenvalue problem to the other and subsequently one integrable equation to the other Such equivalence of integrable equatrons has been a subject of intensive research ${ }^{\text {179-192 }}$ For example, a gauge equivalence of the noninear Schrodinger equation and Hessenberg ferromagnet equation was estabhshed by Lakshmanan, ${ }^{179}$ and later Zakharov and Takhtajan ${ }^{180}$ showed a gauge equivalence between the ergenvalue problems. It has been appled by Kundu ${ }^{181,182}$ to many systems in both $1+1$ and $2+1$ dimensions. It is well known that three different eigenvalue problems, that is, Ablowitz-Kaup-Newell-Segur (AKNS), Kaup-Newell (KN) and Wadatl-Konno-Tchikawa (WKI) are connected through gauge transformation ${ }^{80,81} \mathrm{In}$ view of Sato theory, Kiso denved the modified herarchies using gauge transfomation. ${ }^{183}$ There is a close comection among KP, modufied KP and Harry-Dym hierarches which has been established through gauge transformation An unfied approach to gauge transfornation and recprocai lonks for a broad class of nonluear evolution equations has also been mvestigated. ${ }^{134,185}$

Motrvated by these works we discuss a gauge equivalence of the Jnear engenvalue problem of DAKSP and derive a differentual-difference equation related to DAKP ihrough a gauge transformation. ${ }^{153}$ We find the conserved quantitues and generalized symmetries for thas system.

52 A gauge equivalence of D $\triangle K P$ equation

We start with the pseudo-difference operator

$$
\begin{equation*}
\tilde{W}=w_{0}^{\prime}+w_{0}^{\prime} \Delta^{-1}+w_{2}^{\prime} \Delta^{-2}+ \tag{178}
\end{equation*}
$$

where the w, s are functions of n, t_{1}, t_{2}, The formal inverse of \vec{w} is given by

$$
\begin{equation*}
\tilde{W}^{-1}=v_{0}^{\prime}+v_{1}^{\prime} \Delta^{-1}+v_{2}^{\prime} \Delta^{-2}+ \tag{179}
\end{equation*}
$$

Using $\tilde{W} \tilde{W}^{-1}=\tilde{W}^{-1} \tilde{W}=1$, we get

$$
\begin{align*}
1= & \left(w_{0}^{\prime}+w_{1}^{\prime} \Delta^{-1}+w_{2}^{\prime} \Delta^{-2}+\cdots\right)\left(v_{0}^{\prime}+v_{1}^{\prime} \Delta^{-1}+v_{2}^{\prime} \Delta^{-2}+\right) \\
= & w_{0}^{\prime}\left(v_{0}^{\prime}+v_{1}^{\prime} \Delta^{-1}+v_{2}^{\prime} \Delta^{-2}+\cdot\right)+w_{1}^{\prime}\left(E^{-1} v_{0}^{\prime} \Delta^{-1}-E^{-2} \Delta v_{0}^{\prime} \Delta^{-2}+\right. \tag{180}\\
& \left.+E^{-1} v_{1}^{\prime} \Delta^{-2}+\cdots\right)+w_{2}^{\prime}\left(E^{-2} v_{0} \Delta^{-2}+\right)+
\end{align*}
$$

Rearrange the terms on the nght-hand side of the above expression (180) and compare the like powers of Δ on both sides of (180) This results in an infinte number of equations for $v_{i} s$ in terms of $w_{j}^{\prime} \mathrm{S}, i, j=1,2$,

$$
\begin{align*}
& v_{0}^{\prime}=\frac{1}{w_{0}^{\prime}} \\
& v_{1}^{\prime}=\frac{-w_{1}^{\prime}}{\boldsymbol{w}_{0}^{\prime} E^{-1} \boldsymbol{w}_{0}^{\prime}} \tag{181}
\end{align*}
$$

$$
v_{2}^{\prime}=-\frac{w_{2}^{\prime}}{w_{0}^{\prime} E^{-2} w_{0}^{\prime}} \frac{w_{1}^{\prime}}{w_{0}^{\prime} E^{-2} w_{0}^{\prime}}+\frac{w_{1}^{\prime}}{w_{0}^{\prime} E^{-1} w_{0}^{\prime}}+\frac{w_{1}^{\prime} E^{-1} w_{1}^{\prime}}{w_{0}^{\prime} E^{-1} w_{0}^{\prime} E^{-2} w_{0}^{\prime}}
$$

Now we introduce a gauge iransformation for the L operator (48) defined in Section 2 by

$$
\begin{equation*}
\tilde{L}=\phi^{-t} L \phi \tag{182}
\end{equation*}
$$

where ϕ^{-1} means $\frac{1}{\phi}$ and the resultung expression for \tilde{L} us given by

$$
\begin{equation*}
\tilde{L}=u^{\prime} \Delta+u_{0}^{\prime}+u_{1}^{\prime} \Delta^{-1}+u_{2}^{\prime} \Delta^{-2}+\cdot \tag{183}
\end{equation*}
$$

with

$$
\begin{align*}
& u^{\prime}=\frac{E \phi}{\phi} \\
& u_{0}^{\prime}=\frac{E \phi-\phi+u_{0} \phi}{\phi} \\
& u_{1}^{\prime}=\frac{u_{1} E^{-1} \phi}{\phi} \tag{184}\\
& u_{2}^{\prime}=\frac{u_{1} E^{-2} \phi-u_{1} E^{-1} \phi+u_{2} E^{-2} \phi}{\phi}
\end{align*}
$$

It is possible to decompose \tilde{L} in (183) as

$$
\begin{equation*}
\tilde{L}=\tilde{W} \Delta \tilde{W}^{-1} \tag{185}
\end{equation*}
$$

Expanding the nght-hand side of equation (185), and comparing it with eqn (183), we armve bat the $u_{t}^{\prime} s$ can be expressed in terms of $w_{f}^{\prime} s$ for all $i, j=0,1,2$, We list the first few of hem.

$$
\begin{align*}
& u^{\prime}=\frac{w_{0}^{\prime}}{E w_{0}^{\prime}} \\
& u_{0}^{\prime}=\frac{1}{w_{0}^{\prime} E w_{0}^{\prime}}\left(w_{0}^{\prime 2}-w_{0}^{\prime} E w_{0}^{\prime}-w_{0}^{\prime} E w_{1}^{\prime}+w_{1}^{\prime} E w_{0}^{\prime}\right) \\
& u_{0}^{\prime}=\frac{1}{w_{0}^{\prime} E w_{0}^{\prime} E^{-1} w_{0}^{\prime}}\left(w_{1}^{\prime} w_{0}^{\prime} E w_{0}^{\prime}-w_{0}^{\prime 2} E w_{2}^{\prime}-w_{0}^{\prime 2} E w_{1}^{\prime}+w_{0}^{\prime} w_{1}^{\prime} E w_{1}^{\prime}-w_{1}^{\prime 2} E w_{0}^{\prime}+w_{2}^{\prime} w_{0}^{\prime} E w_{0}^{\prime}\right) \\
& \text { t the continuous case, }{ }^{184} \text { the } B_{i} s \text { are defined by } \tag{186}\\
& B_{k}=\left(L^{k}\right)^{+} \tag{187}
\end{align*}
$$

here 0^{+}denotes the stnctly positive powers of ∂ for the moditied KP herarchy. Here also we pect the same and therefore define

$$
\begin{equation*}
\widetilde{B}_{k}=\left(\tilde{L}^{k}\right)^{+} \tag{188}
\end{equation*}
$$

where 0^{+}involves stnctly postuve powers of Δ and the generalized Lax equation is given by

$$
\begin{equation*}
\frac{\partial \tilde{L}}{\partial t_{k}}=\left[\tilde{B}_{k}, \tilde{L}\right], k=1,2, \cdots \tag{189}
\end{equation*}
$$

From (188) and (183), we get

$$
\begin{align*}
& \tilde{B}_{1}=u^{\prime} \Delta \\
& \tilde{B}_{2}=u^{\prime} E u^{\prime} \Delta^{-2}+\left(u^{\prime} E u^{\prime}-u^{\prime 2}+u^{\prime} E u_{0}^{\prime}+u^{\prime} u_{0}^{\prime}\right) \Delta \tag{190}
\end{align*}
$$

Using the Lax equation (189) for $k=1$ we have the following set of equations

$$
\begin{align*}
& \frac{\partial u^{\prime}}{\partial u_{1}}=u^{\prime} E u_{0}^{\prime}-u^{\prime} u_{0}^{\prime} \\
& \frac{\partial u_{0}^{\prime}}{\partial t_{1}}=u^{\prime} E u_{0}^{\prime}-u^{\prime} u_{0}^{\prime}+u^{\prime} E u_{1}^{\prime}-u_{1}^{\prime} E^{-1} u^{\prime} \tag{191}
\end{align*}
$$

and for $k=2$ we have,

$$
\begin{align*}
\frac{\partial u^{\prime}}{\partial t_{2}}= & u^{\prime} E u^{\prime} E^{2} u_{0}^{\prime}-u^{\prime} E u^{\prime} E u_{0}^{\prime}+u^{\prime} E u^{\prime} E^{2} u_{1}^{\prime}-u^{\prime 2} E u_{0}^{\prime}+u^{\prime}\left(E u_{0}^{\prime}\right)^{2}+u^{\prime 2} u_{0}^{\prime} \\
& -u^{\prime} u_{0}^{\prime 2}-u^{\prime} u_{1}^{\prime} E^{-1} u^{\prime} \tag{192}
\end{align*}
$$

Solving the above set of equations, we arrive at

$$
\begin{equation*}
\frac{\partial u^{\prime}}{\partial t_{2}}=\frac{\partial^{2} u^{\prime}}{\partial t_{1}^{2}}-2 u^{\prime} \frac{\partial u^{\prime}}{\partial t_{1}}+2 u^{\prime} \Delta^{-1} \frac{\partial}{\partial t_{1}}\left(\frac{1}{u^{\prime}} \frac{\partial u^{\prime}}{\partial t_{1}}\right)+2 \frac{\partial u^{\prime}}{\partial t_{1}} \Delta^{-1}\left(\frac{1}{u^{\prime}} \frac{\partial u^{\prime}}{\partial t_{1}}\right) \tag{193}
\end{equation*}
$$

Next we derive the conserved quantuties and generalized symmetries for this system

5.3. Conserved quanties

In Section 2, we have derived the conserved quantuties and generalized symmetries for $\mathrm{D} \Delta \mathrm{KP}$ equation (66) For this purpose we follow the procedure described in Matsukidiara et al ${ }^{117}$ Here, we adopt the same technque and present the conserved quantities and generalized symmetries of the equation (193) For the purpose, we first consider the lenear eigenvalue problem associated with the generalized Lax equation (189)

$$
\begin{align*}
& \tilde{L} \psi=\lambda \psi \\
& \frac{\partial \psi}{\partial t_{k}}=\widetilde{B}_{k} \psi \tag{194}
\end{align*}
$$

where $\lambda_{t_{k}}=0$ We assume that $\widetilde{B}_{k}^{c}=\widetilde{B}_{k}-\widetilde{L}_{k}$, and hence rewrote eqn (194) as

$$
\begin{equation*}
\frac{\partial \psi}{\partial t_{k}}=\left(\tilde{L}^{k}+\tilde{B}_{k}^{c}\right) \psi \tag{195}
\end{equation*}
$$

It is noticed that \widetilde{B}_{k}^{c} conssists of terms involving $\Delta^{-2}, J=0,1,2$, Now we will express Δ^{-7}, $j=1,2$, m terms of \tilde{L}^{-3} For this purpose, first we find \tilde{L}^{-1} We assume that \tilde{L}^{-1} is of the form

$$
\begin{equation*}
\tilde{L}^{-1}=q_{1}^{\prime} \Delta^{-1}+q_{2}^{\prime} \Delta^{-2}+q_{3}^{\prime} A^{-1}+ \tag{196}
\end{equation*}
$$

Using $\tilde{L}^{-1} \widetilde{L}=1$ we have

$$
\begin{align*}
I= & \left(q_{1}^{\prime} \Delta^{-1}+q_{2}^{\prime} \Delta^{-2}+\right)\left(u^{\prime} \Delta+u_{0}^{\prime}+u_{1}^{\prime} \Delta^{-1}+u_{2}^{\prime} \Delta^{-2}+\right) \\
= & q_{1}^{\prime}\left(E^{-1} u^{\prime}-E^{-2} \Delta u^{\prime} \Delta^{-1}+E^{-3} \Delta^{2} u^{\prime} \Delta^{-2}++E^{-1} u_{0}^{\prime} \Delta^{-1}-E^{-2} \Delta u_{0}^{\prime} \Delta^{-2}+\right. \tag{197}\\
& \left.+E^{-1} u_{1}^{\prime} \Delta^{-2}+\cdot\right)+q_{2}^{\prime}\left(E^{-2} u^{\prime} \Delta^{-1}-2 E^{-3} \Delta^{2} u^{\prime} \Delta^{-2}++E^{-2} u_{0}^{\prime} \Delta^{-2}+\cdot\right)+q_{3}^{\prime}\left(E^{-3} u^{\prime} \Delta^{-2}++\right)
\end{align*}
$$

Comparing the like powers of Δ on both sides of (197) we get

$$
\begin{align*}
q_{1}^{\prime}= & \frac{1}{E^{-1} u^{\prime}} \\
q_{2}^{\prime}= & \frac{1}{E^{-1} u^{\prime} E^{-2} u^{\prime}}\left(E^{-1} u^{\prime}-E^{-2} u^{\prime}-E^{-1} u_{0}^{\prime}\right) \\
q_{3}^{\prime}= & \frac{1}{E^{-1} u^{\prime} E^{-2} u^{\prime} E^{-3} u^{\prime}}\left(-E^{-1} u_{1}^{\prime} E^{-2} u^{\prime}+E^{-1} u^{\prime} E^{-2} u^{\prime}-E^{-1} u_{0}^{\prime} E^{-2} u^{\prime}\right. \tag{198}\\
& \left.-2 E^{-3} u^{\prime} E^{-1} u^{\prime}+E^{-3} u^{\prime} E^{-2} u^{\prime}+2 E^{-3} u^{\prime} E^{-1} u_{0}^{\prime}-E^{-2} u_{0}^{\prime} E^{-1} u^{\prime}+E^{-1} u_{0}^{\prime} E^{-2} u_{0}^{\prime}\right)
\end{align*}
$$

Using Leibnz rule (9) and (196), we can denve the higher powers of $\tilde{L}^{J}, J=1,2$, We List some of them.

$$
\begin{align*}
& \tilde{L}^{-2}=q_{1}^{\prime} E^{-1} q_{1}^{\prime} \Lambda^{-2}+\left(-q_{1}^{\prime} E^{-1} q_{1}^{\prime}+q_{1}^{\prime} E^{-2} q_{1}^{\prime}+q_{1}^{\prime} E^{-1} q_{2}^{\prime}+q_{2}^{\prime} E^{-2} q_{1}^{\prime}\right) \Delta^{-3}+. \\
& \tilde{L}^{-3}=q_{1}^{\prime} E^{-1} q_{1}^{\prime} E^{-1} q_{2}^{\prime} \Delta^{-3}+\cdots \tag{199}
\end{align*}
$$

Using (198) and (199), we can present the values for $\Delta^{-3}, j=1,2, \cdot$ in terms of negative powers of L as

$$
\begin{align*}
\Delta^{-1}= & E^{-1} u^{\prime} \tilde{L}^{-1}+\left(-E^{-1} u^{\prime 2}+E^{-2} u^{\prime} E^{-1} u^{\prime}+E^{-1} u^{\prime} E^{-1} u_{0}^{\prime}\right) \Sigma^{-2}+\left(-E^{-1} u^{\prime} 3\right. \\
& +2 E^{-1} u^{\prime 2} E^{-3} u^{\prime}+E^{-1} u^{\prime 2} E^{-2} u_{0}^{\prime}+2 E^{-1} u^{\prime 2} E^{-1} u_{0}^{\prime}+E^{-1} u^{\prime} E^{-2} u^{\prime 2} \\
& -2 E^{-1} u^{\prime} E^{-2} u^{\prime} E^{-3} u^{\prime}-E^{-1} u^{\prime} E^{-2} u^{\prime} E^{-2} u_{0}^{\prime}-2 E^{-1} u^{\prime} E^{-1} u_{0}^{\prime} E^{-3} u^{\prime} \\
& -E^{-1} u^{\prime} E^{-1} u_{0}^{\prime} E^{-2} u_{0}^{\prime}-E^{-1} u^{\prime} E^{-1} u_{0}^{\prime 2}-E^{-1} u_{1}^{\prime} E^{-2} u^{\prime}+E^{-1} u^{\prime} E^{-2} u^{\prime} \\
& -E^{-1} u_{0}^{\prime} E^{-2} u^{\prime}-2 E^{-3} u^{\prime} E^{-1} u^{\prime}+E^{-3} u^{\prime} E^{-2} u^{\prime}+2 E^{-3} u^{\prime} E^{-1} u_{0}^{\prime} \tag{200}\\
& \left.-E^{-2} u_{0}^{\prime} E^{-1} u^{\prime}+E^{-1} u_{0}^{\prime} E^{-2} u_{0}^{\prime}\right) \tilde{E}^{-3}+ \\
\Delta^{-2}= & E^{-1} u^{\prime} E^{-2} u^{\prime} \tilde{L}^{-2}-\left(E^{-1} u^{\prime 2} E^{-2} u^{\prime}+E^{-1} u^{\prime} E^{-2} u^{\prime 2}-2 E^{-1} u^{\prime} E^{-2} u^{\prime} E^{-3} u^{\prime}\right. \\
& \left.-E^{-1} u^{\prime} E^{-2} u^{\prime} E^{-2} u_{0}^{\prime}-E^{-1} u^{\prime} E^{-2} u^{\prime} E^{-1} u_{0}^{\prime}\right) \tilde{L}^{-3}+\cdot \\
\Delta^{-3}= & E^{-1} u^{\prime} E^{-2} u^{\prime} E^{-3} u^{\prime} \tilde{L}^{-3}+\cdots
\end{align*}
$$

Now, using these results, we can write down eqna (195) in the form

$$
\begin{equation*}
\frac{\partial \psi}{\partial t_{k}}=\left(\tilde{L}^{k}+\sigma_{0}^{(k)}+\sigma_{1}^{(k)} L^{-1}+\sigma_{2}^{(k)} L^{-2}+\cdot\right) \nmid \psi \tag{201}
\end{equation*}
$$

where $\sigma_{j}^{(k)}$ s are functions of $u^{\prime}, u_{t}^{\prime}$ s for all $i, j=0,1,2$, and $k=1,2$, On usung $L^{\prime} \psi=\lambda^{\prime} \psi$ in (201), we obtain

$$
\begin{gather*}
\frac{\partial \psi}{\partial t_{k}}=\left(\lambda^{m}+\sigma_{0}^{(k)}+\frac{\sigma_{1}^{(k)}}{\lambda}+\frac{\sigma_{\lambda}^{(k)}}{\lambda^{2}}+\right) \psi \\
\frac{1}{\psi} \frac{\partial \psi}{\partial t_{k}}=\left(\lambda^{k}+\sigma_{0}^{(k)}+\frac{\sigma_{1}^{(k)}}{\lambda}+\frac{\sigma_{2}^{(k)}}{\lambda^{2}}+\cdots\right) \tag{202}\\
\frac{\partial}{\partial t_{k}} \log \psi=\lambda^{k}+\sum_{j=0}^{\infty} \frac{\sigma_{j}^{(k)}}{\lambda^{j}}
\end{gather*}
$$

We denote $\sigma^{(k)}=\sum_{j=0}^{\infty} \sigma_{j}^{(k)} \lambda^{-j}$ and hence eqn (202) becomes

$$
\begin{equation*}
\sigma^{(k)}=\frac{\partial(\log \psi)}{\partial t_{k}}-\lambda^{k} \tag{203}
\end{equation*}
$$

Differentuating eqn (203) with respect to the varable t_{m}, we will arrive at the conservation laws

$$
\begin{equation*}
\frac{\partial \sigma^{(k)}}{\partial t_{m}}=\frac{\partial}{\partial t_{k}}\left(\frac{\partial \log \psi}{\partial t_{m}}\right), m, k=1,2, \cdots m \neq k . \tag{204}
\end{equation*}
$$

We the list first few of the $\sigma_{l}^{(k)}$,
$\sigma_{0}^{(1)}=-\mu_{0}^{\prime}$
$\sigma_{1}^{(1)}=-u_{\mathrm{e}}^{\prime} E^{-1} u^{\prime}$
$\sigma_{2}^{(1)}=u_{1}^{\prime} E^{-1} u^{\prime 2}-u_{1}^{\prime} E^{-2} u^{\prime} E^{-1} u^{\prime}-u_{1}^{\prime} E^{-1} u^{\prime} E^{-1} u_{0}^{\prime}-u_{2} E^{-1} u^{\prime} E^{-2} u^{\prime}$
$\sigma_{0}^{(2)}=-u^{\prime} E u_{0}^{\prime}+u^{\prime} u_{0}^{\prime}-u^{\prime} E u_{1}^{\prime}-u_{0}^{\prime 2}-u_{1}^{\prime} E^{-1} u^{\prime}$
$\sigma_{x}^{(2)}=-u^{\prime} E u^{\prime} E^{-1} u^{\prime}+u^{\prime} u_{1}^{\prime} E^{-1} u^{\prime}-u^{\prime} E u_{2}^{\prime} E^{-1} u^{\prime}-u_{0}^{\prime} u_{1}^{\prime} E^{-1} u^{\prime}+u_{1}^{\prime} E^{-1} u^{2}$
$-u_{1}^{\prime} E^{-1} u^{\prime} E^{-2} u^{\prime}$

It is known that the Lax equation with $k=1$ gives

$$
\begin{align*}
& \frac{\partial u^{\prime}}{\partial \partial_{1}}=u^{\prime} E u_{0}^{\prime}-u^{\prime} u_{0}^{\prime} \\
& \frac{\partial u_{0}^{\prime}}{\partial t_{1}}=u^{\prime} E u_{0}^{\prime}-u^{\prime} u_{0}^{\prime}+u^{\prime} E u_{1}^{\prime}-u_{1}^{\prime} E^{-1} u^{\prime} \tag{207}
\end{align*}
$$

From the above equations (207), we can express $u_{0}^{\prime}, u_{1}^{\prime}, \cdots$, in term of u^{\prime} and we list the first few of u_{j}^{\prime} s for $\jmath=0,1,2$,

$$
\begin{align*}
& u_{0}^{\prime}=\Delta^{-1}\left(\frac{1}{u^{\prime}} \frac{\partial u^{\prime}}{\partial t_{1}}\right) \\
& u_{1}^{\prime}=\frac{1}{E^{-1} u^{\prime}}\left(\Delta^{-2} \frac{\partial}{\partial t_{1}}\left(\frac{1}{u^{\prime}} \frac{\partial u^{\prime}}{\partial t_{1}}\right)-\Delta^{-1}\left(\frac{\partial u^{\prime}}{\partial t_{1}}\right)\right) \tag{208}
\end{align*}
$$

Now substituting the values of $u_{0}^{\prime}, u_{1}^{\prime}, \cdots$ in $\sigma_{\}}^{(1)}\{205\}$, we obtath the conserved densties of the differental-dufference equation (193) We hist below some of them-

$$
\begin{aligned}
& \sigma_{0}^{(0)}=-\Delta^{-1}\left(\frac{1}{u^{\prime}} \frac{\partial u^{\prime}}{t_{1}}\right) \\
& \sigma_{1}^{(1)}=-\Delta^{-2}\left(-\frac{1}{u^{\prime 2}} \frac{\partial u^{\prime 2}}{\partial t_{1}}+\frac{1}{u^{\prime}} \frac{\partial^{2} u^{\prime}}{\partial t_{1}^{2}}\right)+\Delta^{-1} \frac{\partial u^{\prime}}{\partial t_{1}} \\
& \sigma_{2}^{(I)}=E^{-1} u^{\prime} \Delta^{-2} \frac{\partial}{\partial t_{1}}\left(\frac{1}{u} \frac{\partial u^{\prime}}{\partial t_{1}}\right)-E^{-1} u^{\prime} \Delta^{-1} \frac{\partial u^{\prime}}{\partial t_{1}}-E^{-2} u^{\prime} \Delta^{-2} \frac{\partial}{\partial t_{1}}\left(\frac{1}{u^{\prime}} \frac{\partial u^{\prime}}{\partial t_{1}}\right)
\end{aligned}
$$

$$
\begin{align*}
& +E^{-2} u^{\prime} \Delta^{-1} \frac{\partial u^{\prime}}{\partial t_{1}}-\Delta^{-2} \frac{\partial}{\partial t_{1}}\left(\frac{1}{u^{\prime}} \frac{\partial u^{\prime}}{\partial t_{1}}\right) E^{-1}\left(\frac{1}{u^{\prime}} \frac{\partial u^{\prime}}{\partial t_{1}}\right) \\
& +\Delta^{-2} \frac{\partial}{\partial t_{1}}\left(\frac{1}{u^{\prime}} \frac{\partial u^{\prime}}{\partial t_{1}}\right) \Delta^{-1}\left(\frac{1}{u^{\prime}} \frac{\partial u^{\prime}}{\partial t_{1}}\right)+\Delta^{-1} \frac{\partial u^{\prime}}{\partial t_{1}} E^{-1}\left(\frac{1}{u^{\prime}} \frac{\partial u^{\prime}}{\partial t_{1}}\right) \\
& -\Delta^{-1} \frac{\partial u^{\prime}}{\partial t_{1}} \Delta^{-1}\left(\frac{1}{u^{\prime}} \frac{\partial u^{\prime}}{\partial t_{1}}\right)+\Delta^{-1}\left[E^{-1} u^{\prime} \Delta^{-1} \frac{\partial}{\partial t_{1}}\left(\frac{1}{u^{\prime}} \frac{\partial u^{\prime}}{\partial t_{1}}\right)-E^{-1} u^{\prime} \frac{\partial u^{\prime}}{\partial t_{1}}\right] \\
& -\Delta^{-1}\left[u^{\prime} \Delta^{-2} \frac{\partial}{\partial t_{1}}\left(\frac{1}{u^{\prime}} \frac{\partial u^{\prime}}{\partial t_{1}}\right)-u^{\prime} \Delta^{-1} \frac{\partial u^{\prime}}{\partial t_{1}}\right] \tag{209}\\
& -\Delta^{-1}\left[E^{-2} u^{\prime} \Delta^{-2} \frac{\partial}{\partial t_{1}}\left(\frac{1}{u^{\prime}} \frac{\partial u^{\prime}}{\partial t_{1}}\right)-E^{-2} u^{\prime} \Delta^{-1} \frac{\partial u^{\prime}}{\partial t_{1}}\right] \\
& -\Delta^{-1}\left[E^{-1} u^{\prime} \frac{\partial}{\partial t_{1}}\left(\frac{1}{E^{-1} u^{\prime}}\left(\Delta^{-2} \frac{\partial}{\partial t_{1}}\left(\frac{1}{u^{\prime}} \frac{\partial u^{\prime}}{\partial t_{1}}\right)-\Delta^{-1} \frac{\partial u^{\prime}}{\partial t_{1}}\right)\right)\right]
\end{align*}
$$

5.4. Generalized symmetnes

In this section, we derive the generalized symumetries of the differential-difference equation (193). ${ }^{153,155}$ For this purpose, we consider the linear eigenvalue problem

$$
\begin{align*}
& \tilde{L} \psi_{n}=\lambda \psi_{n} \\
& \frac{\partial \psi_{n}}{\partial t_{m}}=\widetilde{B}_{m} \psi_{n} \tag{210}
\end{align*}
$$

and the adjoint eigenvalue problem

$$
\begin{gather*}
\tilde{L}^{*} \psi_{n}^{*}=\lambda \psi_{n}^{*} \\
\frac{\partial \psi_{n}^{*}}{\partial t_{m}}=-B_{m}^{*} \psi_{n}^{*} \tag{211}
\end{gather*}
$$

where $\lambda 1 s$ the spectral parameter and is independent of n and t_{m}. We follow the same procedure as in Section 2 to compute the eigenfunctions ψ_{n} and ψ_{n}^{*} They are given by

$$
\begin{gather*}
\psi_{n}=\left(w_{0}^{\prime}+\frac{w_{1}^{\prime}}{\lambda}+\frac{w_{2}^{\prime}}{\lambda^{2}}+\cdot\right)(1+\lambda)^{n} \exp \left(\sum_{i=1}^{\infty} t_{t} \lambda^{t}\right) \\
\psi_{n}^{*}=\left(w_{0}^{\prime *}+\frac{w_{1}^{\prime *}}{\lambda}+\frac{w_{2}^{\prime *}}{\lambda^{2}}+\cdot\right)(1+\lambda)^{-n} \exp \left(-\sum_{i=1}^{\infty} t_{t} \lambda^{s}\right) \tag{212}
\end{gather*}
$$

with

$$
\begin{align*}
& w_{0}^{\prime *}=v_{0}^{\prime} \\
& w_{1}^{\prime *}=-E v_{1}^{\prime} \tag{213}\\
& w_{2}^{\prime *}=-\left(E \Lambda^{2} v_{1}^{\prime}+2 E^{2} \Delta v_{2}^{\prime}+E^{3} v_{3}^{\prime}\right)
\end{align*}
$$

For convenience, we denote u^{\prime} as u_{n} The equations representug the Lnear eigenvalue problem and its adjount ate given by

$$
\begin{align*}
\frac{\partial \psi_{n}}{\partial t_{1}}= & u_{n} \psi_{n+1}-u_{n} \psi_{n} \\
\frac{\partial \psi_{n}}{\partial t_{2}}= & u_{n} u_{n+1} \psi_{n+2}-u_{n} u_{n+1} \psi_{n+1}-u_{n}^{2} \psi_{n+1}+\frac{\partial u_{n}}{\partial t_{1}} \psi_{n+1}+u_{n}^{2} \psi_{n} \\
& +2 u_{n} \Delta^{-1}\left(\frac{1}{u_{n}} \frac{\partial u_{n}}{\partial t_{1}}\right) \psi_{n+1}-\frac{\partial u_{n}}{\partial t_{j}} \psi_{n}-2 u_{n} \Delta^{-1}\left(\frac{1}{u_{n}} \frac{\partial u_{n}}{\partial t_{1}}\right) \psi_{n} \tag{214}\\
\frac{\partial \psi_{n}^{*}}{\partial t_{1}}= & u_{n} \psi_{n}^{*}-u_{n-1} \psi_{n-1}^{*} \\
\frac{\partial \psi_{n}^{*}}{\partial t_{1}}= & u_{n} u_{n-1} \psi_{n}^{*}-u_{n-1} u_{n-2} \psi_{n-1}^{*}-u_{n}^{2} \psi_{n}^{*}+\frac{\partial u_{n}}{\partial t_{1}} \psi_{n}^{*}+u_{n-1}^{2} \psi_{n-1}^{*} \\
& +2 u_{n} \Delta^{-1}\left(\frac{1}{u_{n}} \frac{\partial u_{n}}{\partial t_{1}}\right) \psi_{n}^{*}-2 u_{n-1} \Delta^{-1}\left(\frac{1}{u_{n-1}} \frac{\partial u_{n-1}}{\partial t_{1}}\right) \psi_{n-1}^{*}-\frac{\partial u_{n-1}}{\partial t_{1}} \psi_{n-1}^{*}
\end{align*}
$$

By taking

$$
\begin{equation*}
\psi_{n}^{*}=\Delta E^{-1} \phi_{n} \tag{215}
\end{equation*}
$$

and

$$
\begin{equation*}
s=\psi_{n} \dot{\phi}_{n} \tag{216}
\end{equation*}
$$

one can check that

$$
\begin{equation*}
\frac{\partial s}{\partial t_{2}}=\frac{\partial^{2} s}{\partial t_{1}^{2}}-2 u_{n} \frac{\partial s}{\partial t_{1}}+2 u_{n} \hbar^{-1} \frac{\partial}{\partial t_{1}}\left(\frac{1}{u_{n}} \frac{\partial s}{\partial t_{1}}\right)+2 \frac{\partial s}{\partial t_{1}} \Delta^{-1}\left(\frac{1}{u_{n}} \frac{\partial u_{n}}{\partial t_{1}}\right) \tag{217}
\end{equation*}
$$

is consistent with (214). The solution of eqn (217) is derved from

$$
\begin{equation*}
\psi \Delta^{-1} E \psi^{*}=\sum_{m=0}^{\infty} s_{m} \lambda^{-(n+1)}, \tag{218}
\end{equation*}
$$

where

$$
\begin{equation*}
s_{m}=\sum_{j=0}^{m} w_{j} w_{m-J}^{*} \tag{21.9}
\end{equation*}
$$

We denote $S=\frac{\lambda s}{d_{1}}$ and $u_{n}=\boldsymbol{u}$ Then, equ (217) becomes

$$
\begin{align*}
& \frac{\partial S}{\partial t_{2}}=\frac{\partial^{2} S}{\partial t_{1}^{2}}-2 u \frac{\partial s}{\partial t_{1}}-2 S \frac{\partial u}{\partial t_{1}}+2 u \Delta^{-1}\left(-\frac{2}{u^{2}} \frac{\partial u}{\partial t_{1}} \frac{\partial s}{\partial t_{1}}+\frac{2 S}{u^{3}} \frac{\partial u^{2}}{\partial t_{1}}+\frac{1}{u} \frac{\partial^{2} S}{\partial t_{1}^{2}}-\frac{S}{u^{2}} \frac{\partial^{2} u}{\partial t_{1}^{2}}\right) \\
& +2 S \Delta^{-1}\left(-\frac{1}{u^{2}} \frac{\partial u^{2}}{\partial t_{1}}+\frac{1}{u} \frac{\partial^{2} u}{\partial t_{1}^{2}}\right)+2 \frac{\partial u}{\partial t_{1}} \Delta^{-1}\left(\frac{1}{u} \frac{\partial S}{\partial t_{1}}-\frac{S}{u^{2}} \frac{\partial u}{\partial t_{1}}\right)+2 \frac{\partial S}{\partial t_{1}} \Delta^{-1}\left(\frac{1}{u} \frac{\partial u}{\partial t_{1}}\right) \tag{220}
\end{align*}
$$

which is nothug but the symmetry invariant equation of (193). The solutions of eqn (220) are the generalzed symmerries of eqn (1.93). We first hist a few generalized symmetries of (193):

$$
\begin{align*}
S_{0}= & \frac{\partial u}{\partial t_{1}} \\
S_{1} & =\frac{\partial u}{\partial t_{2}}+\frac{\partial u}{\partial t_{1}} \\
S_{2} & =\frac{\partial}{\partial t_{1}}\left(\frac{\partial u}{\partial t_{1}}+2 u \Delta^{-1}\left(\frac{1}{u} \frac{\partial u}{\partial t_{1}}\right)-u^{2}+u^{3}-3 u^{2} \Delta^{-1}\left(\frac{1}{u} \frac{\partial u}{\partial t_{1}}\right)+3 u\left(\Delta^{-1}\left(\frac{1}{u} \frac{\partial u}{\partial t_{1}}\right)\right)^{2}\right. \tag{221}\\
& +3 u \Delta^{-2}\left(-\frac{1}{u^{2}} \frac{\partial u^{2}}{\partial t_{1}}+\frac{1}{u} \frac{\partial^{2} u}{\partial t_{1}^{2}}\right)-3 u \Delta^{-1} \frac{\partial u}{\partial t_{1}}+\frac{\partial^{2} u}{\partial t_{1}^{2}}+3 \frac{\partial u}{\partial t_{1}} \Delta^{-1}\left(\frac{1}{u} \frac{\partial u}{\partial t_{1}}\right)-3 u \frac{\partial u}{\partial t_{1}} \\
& \left.+3 u \Delta^{-1}\left(-\frac{1}{u^{2}} \frac{\partial u^{2}}{\partial t_{1}}+\frac{1}{u} \frac{\partial^{2} u}{\partial t_{1}^{2}}\right)\right)
\end{align*}
$$

5.5. 2-Reduction

In this section, we derive the 2 -reduced gauge equivalent $\mathrm{D} \Delta K P$ equation. For this, we consider

$$
\begin{equation*}
\tilde{L}^{2}=\tilde{B}_{2} \tag{222}
\end{equation*}
$$

which will give the constraints

$$
\begin{align*}
& u^{\prime} E u_{0}^{\prime}-u^{\prime} u_{0}^{\prime}+u^{\prime} E u_{1}^{\prime}+u_{0}^{\prime 2}+u_{1}^{\prime} E^{-1} u^{\prime}=0 \\
& u^{\prime} E u_{1}^{\prime}-u^{\prime} u_{1}^{\prime}+u^{\prime} E u_{2}^{\prime}+u_{0}^{\prime} u_{1}^{\prime}-u_{1}^{\prime} E^{-1} u^{\prime}+u_{1}^{\prime} E^{-2} u^{\prime}+u_{1}^{\prime} E^{-1} u_{0}^{\prime}+u_{2}^{\prime} E^{-2} u^{\prime}=0 \tag{223}
\end{align*}
$$

Imposing these on the constraints in eqns (191) and (192) we finally arrive at the reduced system

$$
\begin{equation*}
\frac{1}{u_{\pi+1}^{\prime}} \frac{\partial u_{n+1}^{\prime}}{\partial t_{1}}+\frac{1}{u_{n}^{\prime}} \frac{\partial t_{n}^{\prime}}{\partial t_{1}}=u_{n}^{\prime}-u_{n+1}^{\prime} \tag{224}
\end{equation*}
$$

Here $u_{n}^{\prime}=u^{\prime}$ and eqn (224) is related to the Kac-van Moerbeke system ${ }^{47}$ by the transformatuon $u_{*}^{\prime}=\log \left(\frac{v_{m+1}^{\prime}}{v_{n}^{\prime}}\right)$. The Panleve-singularity confinment analysis and Le symmetry analysis of (193) will be publushed elsewhere. ${ }^{155}$

Acknowledgements

In this paper we review some of the results obtaned recently with our collaborators Grammat1cos, Ramani and Thamızharasi Tamizhmani.

We express our sncere tharks to B. Grammaticos, A Raman, Thamizharasi Tamuzhmann, Y. Ohta, J. Satsuma, J. Fietannta, I I C Ninmo and W. Oevel for frutful discussions and encouragenent at vanous stages KMT is supported by the Indo-French Project 1201-1 SK Likes to thank the Coumcil for Scientufic and Industrial Research (CSIR), India, for financral support

References

1	Arnicle, V I	Mashematical methode of classical mechancs, Sponger, 1978.
2	LAKSHMENAN, M	Noninear physics Integrabrity, chaos and heyond, I Froakkn Inst $B, 1997,334,909-969$.
3	Ablowiz, M J and Clarkson, P A	Solums, nonthear avolution equations and mverse scatiering, Cambndge University Press, 1991
4	Fadeev, L D and Tarhtajan, L A	Hamilonian methods m the theory of soinons. Spanger-Vedag, 1987
5	Zabjusky, N I and Kruskal, M D	Interactuons of 'soltons' wa collistoniess plasma and the recirrence of the mual statas, Phys. Rev Lett, 1965, 15, 240-243
6	Gardnez, C S, Greene, J M, Kruskal, M D and Mura, R M	Method for solving the Korteweg-de Ynes equation, Phys Rev Lett , 1967, 19, 1095-1097
τ	Zakharicy, v E and Seabat. A. B	Exact theory of wo-dmensionel self-focusing and one-dursersional selfmodulation of waves in nonluear media, Sov Phys JETP r $_{\text {r }}$ 1972, 34, 62-69
8	ABLOWTIZ, M J, KAUP, D J, NeqEul, A C and Segur, H	Method for solving the Sme-Gordon equation, Phys Rev Ler, 1973, 30, 1262-1264
9	IAX, P D	Integral of nonhnear equations of evolution and soltary waves, Commun Pure Appl Math, 1968, 21, 467-490
10	Hirota, R	Direct method in soliton theory, Iwanami, Tokyo, 1992 (in Japanesc)
11	Matsuno. J	Britwear tranoformethon method, Acaderac Press, 1984
12.	Hreote, R	Exact N-soliton solutiona of a nonlinear lumped-network equation, J Phys Soc Jap, 1973, 35, 286-288

3.	Hirota, R	Exact N -soliton solutions of a nonlinear luruped seli-dual network equation, J. Phys. Soc Jap, 1973, 35, 289-294
4	Hirota, R	Drect methods in soltton theory In Sohtoas (R. K Bullough and P J Caudrey (eds)), Springer-Verlag. 1980, pp 157-176
5	Hirota, R	Nonlinear partial difference equations I A difference analogue of the Korteweg-de Vries equation, J Phys Soc lap, 1977, 43, 1424-1433
6	Hirota R	Nonlnear parual defference equations II. Discrete-trme Toda equaton, J Phys Soc Jap, 1977, 43, 2074-2078
7	Higota, R	Nonlinear partual difference equations ill Discrete Sme-Gordon equation, J Phys Soc Jap, 1977, 43, 2079-2086
8	Hirota, \mathbf{R}	Nonlmear parthal difference equations IV Backlund transformation for the discrete-tume Toda equation, J Phys Soc Jap, 1977, 45, 321-332
9	Hinota, R	Nonimear partal difference equations. V Nonlinear equations teducible to linear equabons, I Phys Soc Jap, 1979, 46, 312-319
0	Hirota, R, Onta, Y had Satsuma, J	Solutuons of the K.P equation and the rwo dmensional Toda equations, J Phys soc Jap, 1988, 57, 1901-1904
1	Hirota, R, Ohta, Y and Satsuma, J	Wronskan structures of sobion equations, Prog Thaor Phys Suppl, 1988, 94, 59-72
2	Firota, R	Solton soluans to the BKP equations I The Pfaffian technoque, J Phys Soc Jap, 1989, 58, 2285-2296
3	Hirota, R	Soluon solutuons to the BKP equation II The integral equatom, J Phys. Soc Jap, 1989, 58, 2705-2712
4	Hroma, R	Discrete analogue of a generalzed Toda equation, J Phys. Soc Jap, 1981, 50, 3785-3791
5	Himota, R and Satsuma, J	Nonkinear ewolution equations generated from the Backlund trausformatuon for the Toda lattrec, Prog Theor Phys, 1976, 55, 20372038
5	Hirota, R and Satsuma, J	Soliton solutions of a colupled Korteweg-de Vrtes equatrons, Phys Lett A, 1981, 85, 407-408
7	Satsuma, J	V-Soliton solution of the two-dimensional Kortewrey-de Vnes equauon, J. Phys Soc Jap, 1976, 40, 286-290
3	Satsuma, J	A Wionskam representation of N -soliton solutions of nonlinear evolution equations, I Phys Soc. Jap, 1979, 46, 359-360
7	Fremikan, N C and Nimmo, J J C	Soliton solutons of the Korteweg-de Vries and KadomtsevPetviashvil equatod The Wronsiaan technque, Phys Lett A, $1983,95,1-3$.
)	Nimmo, J J C and Freeman, in C	A method of obtameng the solton solution of the Boassmesq equaron in terms of a Wronskjan, Phys Letr A, 1983, 95, 4-6
$!$	Mrahe, S, Ohia Y and Satsuma, J	A representation of solutions for the KP herarchy and ts algebratc structure. I Phys Soc Jap, 1990, 59, 48-55

32 Hrota, R Solutions of the classical Boussinesq equation and the sphencti Bousscresq equation The Wronskian technigue, I Phys Soc Jap, 1986, 55, 2.137-2150

33 Erota, R,Ito, M and Kako, F Two-dmensional Toda lattice equatoons, Prog Theor Phys Supp, 1988, 94, 42-58

34 Offa, Y and Hirota, \mathbf{R}
A digcrete KdV equation and its Casorato decermanant solution, J Phys Soc Jop, 1991, 60, 2095

35 Ohta, Y, Hrota, R , Tsummoto. S and Casorati and discrete Gram type deternmant representations of InMI, T. solucuons to the discrete KP heerarchy, J Phys Soc fap, 1993, 62, 1872-1886
36. Ohea, Y, Kajwara, K, Matsukidatra, 3 Casorat ietermanant solutum for the relativistic Tode latuce equaAND SATSLMA, I thon, J Math Phys, 1993, 34, 5190-5204

37 HIgTaRNTA, 5 A search for bimear cquatons passing Hirota's three-solaton conditon I. KdV-type blunear equatons, 5 Math Phys, 1987, 28, 1732-1742

38 Hibtariata, J A search for blunear equatoons passmg Hirota's thres-solton condition II MKdV-type brinear equatens, / Mash Phys, 1987, 28, 2094-2101

39 Hietarinit, J A search for bilinear equations pasing Hirota's threc-soliton condition III Sine-Gordon-type bxinear equations, J Moth Phys, 1987, 28, 2586-2592

40 Hietarintar J A search for blinear equatuons passugg Herota's three-soliton condition IV Complex binear equatuons, J Main Phys, i988, 29, 628-635

41 Hetarmin, 5 Hrota's bulnear method and ats generalization, Int J Mod Phys A 1997, 12, 43-51

42 Hirota, R Reduction of soliton eguations in bitinear form, Physica D, 1986. 18, 161-170

43 RuLowitz, M J amp Secur, H Exact linearizamon of a Pandeve transcendent. Phys Rev Lent, 1977, 38, 1103-1106

44 Ablowitz, M J, Ramani, A and Nonlmear evolution equations and ordinary differentual equatons of Seguk, HI Panlevé type, Lett Nuovo Cimt, 1978, 23, 333-338
45. Ramani, A, Grammaticos, B anto The Pamleve property and singuianty analysts of integrable and Bountis, T non-integrable systems, Phys Rep, 1989, 180, 159-245
45. LakshmaNan, M and Sahadevan, R. Panlevé analysis, Lee symmetnes and iategrability of coupled nonlinear ascillators of polynomial type, Fhys Rep, 1993, 224, 1
47. Weiss, J, TaHok, M. and Cabnevale, G. The Panleve property for partal differental equations, J Math Phys, 1983, 24, 522-526
48. Conje, R Invanant Paulevé andysis of partual differental equatrons, Phys Lett A, 1989, 140, 383-390
49 Levi D and Werternitz, P (eds)
Pamleve transcendents, theor arymplones and physical applucathons, Plenumm, 1992

54 OLver, P y

55 FOKAS, A S AND ANDERSON, R L

56 Fuchssieinier, B and FokAs, A S

57 Oevel, W and Fuchsstiner, B

58 KONOPFLLCHENKO, B. G.

Unversal invariance propertues of Panlevé analysis and Backlund transfomation in nonlinear partial differentral equations, Phys Lent A, 1988, 134, 100-104
Backlund transformations and the Pannlevé property In Partaily uttegrable equatıons (R Conte and N Boccara, eds), NATO ASI Series C Mathematical and Physical Scences, Vol 310, Kluwer, 1990, pp. 375-411
Ordinary defferentual eqtations, Dover, 1956
The recursion operator of the Kadontsev-Fetmashvili equation and the squared engenfunctons of the Schrodinger operator, Stud Appl Muth, 1986, 75, 779-185
Applucations of Lite groups to Afferental equations, SpnngerVerlag, 1986
On the use of isospectral eigenvalue problems for obtaining hereditary symmetnes for Hamitonian systems, J Math Phys, 1982, 23, 1066-1073
Symplectic structures, their Backlund transformations and hereditary symmetnes, Physica D, 1981, 4, 47-66
The br-Hamiltonan structure of some nonlinear fifth and seventhorder differentidel equations and recurston formulas for their symmerres and conserved covarants, I Moth Phys, 1982, 23. 358-363

Nonlitear integrable equations, Lecture Notes in Physics, Vol 270, Sprnger-Verlag, 1987
59 Chen, H H, Las, Y C and Liu, ل E

60 Tamizimani, K M

61 MAGRI, F

62 Dickey, L A

63 Oevel, W, Zhang, H avd Fuchscticnir, B

64 OEvEL, W, FUCHSSTEINER, B., Zhanc, H and Raginisco, O
65 Oevel, W, Zhang, Hind Fuchsitiliner, B
66 FOKAS, A S

67 OAVEL, W AND FUCISSTANER, B

On a new herarciny of symmetries for the Kadomtsev-Petvashyli equathon, Phystct D_{1} 1983, 9, 439-445
Ceometrical, group theoratical and singularity structure aspects of ceriaun nonlmear partal differental equations, PhD Thesis, Bharathudasan Unversity, Tiruchrapall, India, 1986
A simple model of the meegrable Familtonarit equation, J Math Phys, 1978, 19, 1156-1162
Solton equations ond Homiltonton systems, Aiv Ser Math Phys, Vol 12, World Scientufic, 1991

Symmenes, conserved prantities and herarchies for some lattice systems with soliton structure, J Math Phys, 1991, 32, 19031918
Master symmetres, angle vanables and recursion operator of the relativistic Toda latice, J Math Phys, 1989, 30, 2664-2570
Master symmetries and multh-Hamiloman formulations for some integrable lattice systems, Prog. Theor Phys, 1989, 81, 294-308
Symmetres and integrablity. Shud AppI Marh, 1987, 77, 253299
Explicht formulas for the symmetries and conservation laws of the Kadomntsev-Perviashvill equatuon, Phys Lett. A. 1982, 88, 323-327

68 OEVEL, W AND FUCHSSTENER, B New haerachues of nonlinear completely integrable systems related to a change of varables for evolution parameters, Physica A, 1987, 145, 67
69 KOSMANN-SCHWARZBACH, Y Lze algebras of symmetres of partal differental equations in $D_{\mathrm{f}} \mathrm{f}$ ferental geometnic methods on mathematual physics, Vol 24], (S Stemberg, ed), D Revdel, 1984

70 STRAMPP, W

71 Zhang, H, Gur-Zhang Tu, Oevel, W and Fuchestener, B

72 Stephang, H

73 Ovsahneqov, L V
74 ablowita, M I and Haberman, R

75 Kaup, D. J and Neweil, A C

76 Wadati, M, KOMNO, K and Ichikawa, Y H
77. Wadati, M, Xonno, K and ICHIKaWA, Y H.

78 Strpheu, T and Wadath, M

79 IsFimori, Y

80 IsHIMORL. Y
81. Wadatr, M and Sogo, \mathbf{K}
82. KOnNo, K and Jefreer, A
83. Arault, H
84. Arraill, H, McKEAN, H P and Moser, J.

85 Abionttz, M J and Satsluma, J
Lax-pars, spectral problerns, and recursion operators, J Math Phys, 1984, 25, 2905-2909

Symmetries, conserved quantales and herarcthes of some lattice systems with soliton strocture, J Math Phys, 1991, 32, 1908

Dfferential equanons Therr solution using symmetries, Cambridge Unversity Press, 1989
Group analysis of differental equetions, Academe Press, 1982
Resonaally coupled nomlenear evolvition equations, / Muh Phys, 1975, 16, 2301-2305
An exact solution for a denvative nonlinear Sehrodinger equation, J Maih Phys, 1978, 19, 798-801
A generalization of the merse scatteng method, f Phys Soc Jap, 1979, 46, 1965-1966
New integrable nonlinear evolution equadons, J Phys Soc Jap, 1979, 47, 1698-1700

A new antegrable nonlues evoluion equation, I Piyss Sor Jap, 1980, 63, 808-820

On the modrifed Korteweg-de Vres equation and the loop soliton, J Phys Soc Jop, 1981, 50, 2471-2472
A relationship between the Ablowitz-Kaup-Newell-Segur and Wadat-Konno-lchikawa schemes of the inverse scatterng method, J Phys. Soc Jap, 1982, 51, 3036-304!
Gauge tansformations in soliton theory, J Phy Soc Jap, 1983, 52, 394-398

The loop soltion. In Advances in nortinear waves (L, Debnath, ed) Piman Research Notes in Maith , 1984, 95, 162-183
Ratonal solutious of Parlevé equatons, Smud, Appl Maxh, L979, 61, 31-53
Ratonal and elliptte solutions of the KdV equation and related many-body problems, Conmun Pure Appl Math, 1977, 30, 95198

Solatons and rational solutoons of norluncar evolution equations, I Muth. Phys , 1978, 19, 2180-2186.
86 Nmap, J I C and Freeman, N C Ratonal solutions of the Korteweg-de Vries equation in Wronikian tocun, Phys Lett A, 1983, 96, 443-446
87 Matsino, Y
A new proof of the rational N-soliton solution tor the KadomseyPetvashvilh equation. I Phys Soc Jap, 1989, 58, 67-72

90 Galkin, V M, PElfovsky, D E AND STEPANPYANTS, Y A

91 Pelnoysey, D
$92 \mathrm{Hu}_{\mathrm{t}} \mathrm{XB}$

93 ADLER.V E

94 Matvecy, V B ano Smac. M A
95 Kamwara, K ant Chta, Y

96 Kudryashoy, N A mid Nikitin, Y A
97. Matsurapaira, J, Satsijana, Jand Strampe, W

98 Grimmaticos, B, Raman, A and Hietarinta, !

99 Ramant, A, Grammaticos, B and Satsuma, J

100 Ohit X', Ramani, A Gramimancos, B and Tamizhmant, K M

101 Lakshmanan, M. and Kaliappan, P.

102 Tamizemand, K M and Punttianathe P
i03 Tamizhmani, K M. Rumani A and Grammaticos, B.

104 Ciarkson, P A and Kruskal. M D
106. Clarison, P A and Hood, S

106 Bluman, G W and Klimei, S
107 Chlmpagne, B, Heremav, W and WINTERNCTZ, P

On a class of polytomals counected with the Korteweg-de Vics equation, Comtmun Moth Phys, 1978, 61, 1-30

Penode wave and rauomal sohton solutions of the Benjamm-Ond equation, JPiys Sac Jup, 1979, 46, 681-687

The structure of the rational solutions to the Boussinesq equation, Physua D, 1995, 30, 246-255

Rational solutions of the Kadombev-Petviashylit herarchy and the dynamoci of ther poles I New form of a general rational solutuon, J Math Phys, 1994, 35, 5820-5830,

Rational sofutions of integrable equanons va nonluear mperposinon formulae (preprant)

On the rational solutions of the Shabat equation In Nonlinear phystas theory and experment (E Alfinuto et al., ensi, World Scremafic, 1996, pp 3-10

Diowoux transformations and solitons, Spinger-Verlds, 1991
Detcomuant stracture of the rational sohotions for the Paudeve IV equaíon, J Phys A, 1998, 31, 2431-2445

Paulevé analysus, ratonal and spectal solutions of a vanable cocflichent Korteweg-de Vrues cquations, f Phys $A, 1994,27$, LIá

Sohton equatons expressed by thlinear forms and therr solutions, Phys Lett A, 1990, 147, 467-47t

Multhinear onerators The natural extension of Hrota's bilenear formalism, Phys Lett A, 1994, 190, 65-70

Bhlnear discrete Panievé equations, I Phys A, 1995, 28, 46554665

From duscrete to conmuous Panleve equations A bidnear approach, Fhys Lett A. 1996, 216, 255-261

Lee transformatons, nonijacar crolution equations, and Panhevé forms, J Wath Phys, 1983, 24, 795-305

Infinte-dimensional Lie algebage structure and the symuctry reduction of a nonlincar bugher-dimensional equatuon, J Phys Soe Jap., 1990, 59, 843-847
Lie symmetnes of Herota's bilinear equatrons, J Malh Phys, 1991, 32,2635-2659
New similanty reduction of the Boussucsq equation, I Math Phys, 1989, 30, 220t-2213

New symuxtry reductons and cxact solutuons of the Davey-Stewarison system I Reductions to ordinary differental equatuons, J Marl Phys, 1994, 35, 255-283

Symmetres and duferental aquations, Sprigex, 1989
The computer calculaion of Lie pornt symmetries of large systems of doffernatial equatons, Comp Phys Common, 1991, 66, 319349

108	Hereman, W	New trends in theoretical developments and computational methads (N HI lbragnovy, ed), CRC Handbook of Lit group analysis of dufferental equations, Vol 3, pp 367-413, CRC Press, 1996
109	Head, A	Lee a MUMATH program for the calculation of the Lie algebra of dofferental equations, Comp Pkys Comonur, 1993, 77, 241-248
110	David, D, Kamran, N, Levi, D and WINTERNTZ, \mathbf{P}	Symmery reduction for the Kadomsev-Petviashvilh equation using a loop algebra. J Math Phys, 1986, 27, 1225-1237
111	\$ATO, M	Soliton equations as dynamical systems on an infinite dimensional Grassmann mantold, Pabi Res lnst Maih Scr, Kokyoroku, 1981, 439, 30-46
112	Sato, M and Sato, Y	Solton equations as dynamical systems on anfinte Grassmann mamfold In Nonthear partal differential equations in appled science (H Frupita et al, eds), Kınokumya/North-Holland, 1983, pp 259-271
113	Ohta, Y', Satsuma, J Takabasih, D and Tokifiro, T	An elementary introducton to Sato theory, Prog Theor Phys Suppi, 1988, 94, 210-241
114	Datr, E, Jmbo, M, Kashiwara, M and Miwh, T	Transformation groups for sohton equations, Proc RIMS Symp Nonlinear Integrable Systems, Classtial and Quantum Theory (M Jimbo and T Miwa, eds), Kyoto, 1981. pp 39-119, Worid Sctentufic, 1983
115	Date, E, Jimbe, M and Mrwa, ${ }^{\text {T }}$	Mehod for geperatug discrete soliton equatuons I-V, J Phys Soc Jap, 1982, 51, 416-4126, 4125-4131, 1983, 52, 388-393, 761765, 766-771
116	Jimbo, M and Mina, T	Solitons and mfinte dmensional Lie algebras, Publ Res Inst Math Sct Kyoto Unv, 1983, 19, 943-1001
117	Matsukimara, J, Satslima, J. and Strampp, W	Conserved quantules and symmetnes of KP herarchy, J Mark Phys. 1990, 31, 1426-1434
118.	Kaimara, K., Matsusidara, J and SATSCMA, J	Conserved quantities of two component KP herarchy, Phys Lett A, 1990, 146, 115-118
119.	Kamwara, K and Satsuma, I	The conserved quastuies and symmetriss of the two-damensional Toda lattuce buerarchy, J Math Phys, 1991, 32, 506-514
120	Konorelchenko, B G and Oevel, W	Sato theory and integrable equations in $2+1$ dumensions. In Proc 7th Workshop on Nonlonear Evolution Equations and Dynamical Systems (NEEDS'91), Bava Verde, Italy, June 19-29, 1991
121	Konopelchenko, B and Oevel, W	An r-matnx approach to nonstandard classes of integrable equa tuons, Publs Res Insi Math Scs Kyoto Untv, 1999, 29, 581 -666
122	ABLOwtLL, M J And LADIE, J F	Nonlmear differential-difference equatoons, J Math Phys., 1975, 16, 598-603
123	Ablowith, M J and Ladik, I F	Noalmear dufferental-difference equations and Foumer analysis, J Kath Phys, 1976, 17, 1011-1018
124	Ueko, K and Taxasaki, K	Toda lattece herarchy, Adv Stud Pure Math, Kınokunyya, Tokyo, 1984, 4, 1-95
125	Oevel W	Pousson brackets for integrable lattuce systems In Algebrate aspects of integrable systems in memory of irne Dorjman (A.S Fokas and I M Gelfand, eds). Burkhauser, 1995, pp 26t-283

126 Blaslak, M, and Marciniak, R

127 Levi, D, Pilloni, I. and Santint P M

128 WIERSMA, $_{4}$ G AND CAPLI, H W

129 Nuhoff, F W and Capbl., H W

130 Vimoff, F W. Papageororou, V G, Capel, H W and Quisfel, G R W

131 Papageorgiod, V. Nemoff, F and Cafel. Hiw

132 CAPEL, H W, NIfHOH, F W AND Papageorgou, V G

133 QUSPEL, GR W, ROALETS, J A G ANO THOMTSON, C.I

134 QUSEELG R W., ROBIRTS, J A G AND THOMPSON, C J

135 TODA, M
136 Kuperstumpt, B A

137 Ramant, A, GRammaticos, B AND Trmpzmanj, K M

138 Raman. A, Grammaticos, B and Tamizhmans, K M

139 TAMEAMANI, K M, RAMANI, A AND Grammatcos, b

140 Maeda, S

141 Mafda, S

142 Maeda.S The sinulanty method for difference equations, MAA J Appt Main,

144 Levi, D and Wthternta, P

145 Levi, D and Winternity P

146 Levi. D, Vinet, L ano Winternitz, P

1987, 38, 129-134

Contumous symmetetes of discrete equations, Phys Lelt A_{1} 1991, 152, 335-338
R-Matrix appooach to lattice megrable systens, J Math Phys, 1994, 35, 4661-4682

Lntegrable three dumemional lattices, J Phys A, 198i. 14, 15671575

Lattio equations, heranches and Hamilonian structures, phystcat $A_{1} 1987,142,199-244$

The direct Imeansation approach to huerarches of untegrable PDEs in $(2+1)$ dimensions I Lattice equations and the differentaldufference herarches, Inv Prob, 1990, 6, 567-590

The Iatice Geldand-Diku herarchy, Inv Prob, 1992, 8, 597-621

Integrable mappings and nonlinear integrabie lattice equations, Phys Lett A, 1990, 14T, IK6-114

Complete rntegrobrity of Lagrangran mappings and lauces of KdV қype, Phiss Len A, 1991, 155, 377-387

Integrable mappings and soltone equatons I, Phys Lert A, 1988, 126, 419-42!

Integrable mappongs and soliton equations II, Physica $D, 1989,34$, 183-192

Nonimear waves and solitons, Kluwer, 1989
Descrete lax squations and differentral-dufference calculus, Astérisque, 1985, 123, I

An untegrability test for differenluat-diference systems, J Pidys A, 1992,25, L 883 -L886

Panleve analyses and singulanty confinement The uitmate comecture, I Pligs A, 1993, 26, L53-158

Singolanty confinement analysis of integro-differentral equatroas of Eerjamun-Ons type, J Phys A, 1997, 30, 1017-1022

Canomeal structure and symmetries for discrete systems, Moih Sap, 1980, 25, 405-420

Extensina of discrete Noether theorem, Math Jap, 1981, 26, 85 90

Symmetres and conditional symmetres of differentral-difference equacions, I Math Phrs, 1993, 34, 3717-3730
Symmetnes of discrete dynamed systans, J_{i} Main Phys, 1996, 37,5551-5576

Le group formalista for difference equatons, I Phys $A, 1977,30$, 633-649

14 CuSper, GRW, CAPEL,H W ANU SAHADEVAN, R

148 QUISPRL, G R W, CAPEL, H W AND Sahadevan, R

Continuous symmetnes of differental-difference equatoms the Kac-van Moerbeke equaton and Panlevé teduction, Phys Left A_{3} 1992, 170, 379-383

Contmous symmetries and Panleve reducton of the Kac-van Moerbeke equaton, Proc NATO Workshop on Applicanons of Anolytic and Geometric Methods to Nonlonear Defferemal Equatons (Clarkson, P A , ed), Kluwer, 1993

149 QUIPPE, GR W AND SAHADEVAN, R
Lie symmetres and the integration of dufference equations, Phys Lett $A, 1993,184,64-70$

150 GAETh, G
Le pont symmetres oi discrete versins contunous dynamical systems, Phys Letl A, 1993, 178, 376-384

151 Kinaga VEl, S and Tandzhant, K M Lax part, symmenes and conservanon laws of a differciai-difference equation--Sato's approach, Choos. Soltons Fractals. 1997, 8, 917-931

152 Thamizharasi Tamizhmani, Fhanga Vel, S and Tamizhaint, K M

153 TAMLHMANI, K M AND Kanaga Vel, S

154 TAmezemank, K M, Kanaga Vel, S , Grawmaticis, B and Ramana, A

155 Kavata Vel, S

156 Grammaticos, B , Ramant, A AND Parageorciou, V G

157 Ramani, A, Grammaticos. B ard Hetarinth, J

158 Papaggitolit, $V \mathrm{G}_{1}$ Nitioff, F W, GRAMMATICOS, B and Ramant, A

159 Tamithmani, X M, Grakimaticos, B SNo Remant, A

Wronskian and rational solusons of differental-dufferente $\mathrm{K} P$ equation, J Phys A, 1998, 31, 7627-7633

Gauge equivalence and i-reduction of differental-difference kP equation, Choos, Solitons Fractals (to appear)

Singulanty structure and algebraic properties of the differentuatdifference Kadomtsev-Petvashvil equaton (preprma)
On certapr integrabliny caspects of differentmindifference
 versity, India, 1998

Do integable mappings have the Panleve Property", Phys Rev Letw, 1991, 67, 1825-1828

Discrete versions of the Punbleve equatons, Phys Rev Lett. 1991, 67, 1829-1832

Iscmonodromic deformation problems for discrete malogaes of Panlevé equations, Phys Lett A, 1992, 164, 57-64

Schlesuger transforms for the discrere Pumleve [V equation, Lett Maih Phys, 1993, 29, 49-54
160 Grammaticos, B and Ramand, A Disarete Panleve equabons Derivation and propertics, NATO ASl C, 1993, 413, 299-314
161 Razani, A AhD Grammancos, B Morra transforms for discrete Pandevé equatoons, I Phys A, 1992, 25, 1.633-1.637
162 Grammaticos, B anu Ramanz, A
Integrablity and how to detect it In integrability of nonhtuear systems, Lecture Notes its Phystcs, Vol 495, Proc CIMPA Int Winter School on Nonimear Spstems (Y Kosman-Schwarzbach at al, cds) Sprouger-Yetlag, Berlin, 1996, pp 30-94
163 EATWARA, R, OHPA, Y, SATSUMA, J, GRammaticos, B and Ralkan, A

164 Gramacaticos. B and Ramani, A

Casorat determinant sofatons for the discrete Pamleve-II equatorn J Phys A, 1994, 17, 215-922

Investagahng the antegrability of discrete systems, lut j Mod Phys B, 1993, 7, 3551-3565

165 Grammaticos, B, Pafactrordion, V and Ramant, A

166 Ramanj, A, Grammaticos, B, TAMZHMANI, K M AND LAFOKTUME, S

167 Foras, A S, Grammaticos, B and Ramani, a
168 Grammatcos, B, Ohta, Y, Ramani, A, Satsuma J and Tamizhmana, K M

169 Satsuma, J. Kamwars, K. Grammaticos. B , Hiemarinia, I and Ramanj, A

170 Grammaticos, B, RAMANI A AND Tamizumani, K M

171 Bruschi, M, Ragnisco, O, Santin, P M and Tu, G Z

172 Grammations, B, Ramainl, A amo Morejra, I C

173 Veselov, A P and Shasar, A B

174 Kowalevisi, S

175 KOWALEVSKI, S

176 Eillee, E
177 Ablowrry, M J and SEGUR, H

178 Gibeon, ${ }^{\prime}$ D and T'abor, M

179 Lakshmanan, M

180 Zakhaiov, V E ant Takhtajan, L A Equivalence of nonlinear Schrodmger equation and equation of

181 Kundu, A

182 Kundor, A

183 Kiso, K

184 Oevel, W and Rogers, C

Heisenberg ferromagnet, Teor Mat Fzz, 1979, 38, 26
Duscrete dressug cransformatrons and Paunievé equatrons, Phys Letr A_{1} 1997, 235, 475-479

Agann, lenearizable mappings, Pityaua A, 1988, 252, 138-150

From continuits to discrete Panlevé equatrons, J Math Anal Appl, 1993, 180l, 342-360

A Miura of the Panlevé I acuation and its discrete analogs, Leat Math P/y's, 1997, 39, 179-186

Binedr discrete Panleve-II and its partculat solutuons, $J P h y s A$, 1995, 28, 3541-3548

Non-prohforation of premages metegrable mappings, y Phys A, 1994, 27, 559-566

Integrable symplectic maps, Physica D, 1991, 49, 273-294

Delay-cufferental equations and the Patnlevé transeendents, PhyskaA. 1993, 196,574-590

Dressing chans and the spectral theory of the Schrodinger operator, Func Anal Appi, 1993, 27, 81-96

Sur le probleme de la rotation d'un corps solide autour d'un point fixè, Acta Math, 1889, 12, 177-232

Sur une propriété d'un système d'équations dxfférenticlies qui defion la rotahon d'un coops solide autour d'un point Fixè, Acta Math, 1889, 14, 81-99

Ordtary differential equatons th complex doman, Wiley, 1976
Exact linearzation of a Painlevé transcendent, Phys Rev Lett. 1977, 38, 1103- 1106

On the one- and two-dimensional Todi latteas and the Fanaleve property, J Math Phys, 1985, 26, 1956-1960

Contmumen spon system os an exactly solvable dynamical system, Phys Letr A, 1977, 61, 53-54

Landau-Lifschitz and hghet-order nonlmear systems gaage generated from nominear Schrodinger type equations, J Wath Phys. 1984, 25, 3433-3438
Exact solutoons to highet-order nonlinear equatons through gauge transformetions, Physica D, 1987, 25, 399-406

A remark on the commating flows defined by Lax equanons, Prog Theor Phys, 1990, 83, 1108-1114

Gauge transformations and reciprocal links in ($2+1$) dimensions, Rev Math Phys, 1993, 5, 299-330

185	Konorlchenko, B armoevel W	An r-matrix apruach to nonstandard classes of atestrable aquatrons, Publ Res Inst Math Sct, Kwo Unw, 1993, 29, 581-666
186	Komprechtace, B G	Soltwns in multudmensions Inverse spectrai transfonn method, World Scmentict, 1993
187	Kovorelfherko,	The two drmensmal matix spectal problem Genecal strucure of the integrable equations and their Backlund Iansformations, Phys Lett A, 1981, 89, 346-350
188	Konofelchenko, 3	On the gauge-invarant description of the evolution equations mategrable by Geltad-Diky spectral problems, Phys Leit A, 1982, 92, 323-327
189	Konofelchinko, B	On the general smacture of norinear evolution equandins megrable by the two-dmensional marix spectral problem, Commian Math Phys, 1982, 87, 105-125
190	Gerdikov, V S, lvanov, MI and Vallev. Y S	Gauge trausformalions and gencrating operators for the discrete Zakharov-Shabat system, In Prob, 1086, 2,413.
191	LTOOSKY, Y D And Sblrokor, A V	An exarmple of gauge equivalence of muludmensional antegrable equations, Func Anal Appl, 1989, 23, 65
192	Leo, R A , Martria, L and Soliant, G	Gange equralence theory of the noncompact Ishunon model and the Daver-Stewartson squaton, I Mawh Phes. 1992, 33, 1515

Appendix I

Painleve analysis for PDEs

ARS ${ }^{\text {did }}$ proposed an algonthm to analyse the Panlevé property of ODEs This has been extended by WTC ${ }^{47}$ The Panlevé analysis for PDEs due to WTC can be stated as follows Let us consider the evolution equation of the form

$$
\begin{equation*}
u_{\mathrm{t}}+K(u)=0, \tag{A.1}
\end{equation*}
$$

where $K(u)$ is some nonhnear function of u and its dermatives of order N, in the complex domam We say that an NPDE possesses the generalzed Pamlevé property ${ }^{47.60}$ if the following iwo condithons are satısfied
(a) The solutions of the NPDEI (A I) must be 'sngle-valued' about the 'mon-characterstic' movable sungularty manfold. More precisely, if the sungulanty manifold is determined by

$$
\begin{equation*}
\phi(x, t)=0, \phi_{x}(x, t) \neq 0 \tag{A.2}
\end{equation*}
$$

and $u(x, t)$ is a solution of $(A 1)$, then we seek

$$
\begin{equation*}
u=\phi^{c} \sum_{j=0}^{\infty} u, \phi^{\prime} \tag{A3}
\end{equation*}
$$

where $\phi=\phi(x, t), u_{j}=u_{j}(x, t), u_{0} \neq 0$ are analytic functions of (x, t) ar a nerghbourhood of the manifold and α is a negative ninteger
(b) Then by Cauchy-Kovalevskaya's theorem, the solution (A 3) should contan N arbitrary functions, one of them bemg the function ϕ and others comng from the us The algo-
nthmic procedure to test the given nonlinear evolution equation for its generaluzed Painlevé property consists essentially of three steps. We shall describe each of these steps below

Leading order analysts

The analysts starts with the determmation of the possible values of α and u_{0} in the expansion (A 3) For each values of α, the homogencous terms with the highest degree may balance each other The terms that balance each other are called leading terms Then all the os must be negative intcgers by (a)

For each chonce of the α, an algebranc equation for the $u_{0} 1 n(A 3)$ is usually obtaned by requaring that the coeffictent, say A of the dommant term $A \phi^{-d}$ should vanush, where d is the hughest degree If u_{0} is arbutrary, A should identucally vanush.

Resonance analysis

After identifyung all the possible branches in the solution (A 3), our next aim is to find the resonances When the cocfficient u_{j} of the temm ϕ^{p+a} in the expression (A 3) is arbitrary, then we say that the resonance occurs at j in the above sentes. In order to find the resonance values, we substitute

$$
\begin{equation*}
u=u_{0} \phi^{\alpha}+u_{j} \phi^{\prime+\alpha} \tag{A4}
\end{equation*}
$$

In eqn (A 1), retainung only the most dominant terms, and extracting the coefficient $\tilde{Q}(j)=Q(t) u_{j}$ of the term $\phi^{j+\alpha-N}$ Then $Q(j)=0$ is called the resonance equation, in which -1 is always a root, which corresponds to the arbitrary nature of ϕ. Substututing the values of u_{0} (oblatned earler in the leading order analysis) in the resonance equation, one can find the remaming roots of $Q(i)$

Arbitrary functons

Having obtamed the resonance values, we have to show that necessary arbitrafy functions exist at these resonance values in the senes without the introduction of any movable critical manafold. Let r_{s} be the hughest of the allowed resonance values Then we substitute

$$
\begin{equation*}
u=\sum_{j=0}^{r_{5}} u_{j} \phi^{j+\infty} \tag{A.5}
\end{equation*}
$$

in the onginal equation (A 1) and for $j=0,1,2,, r_{s}$ requures

$$
\begin{equation*}
Q(j) u_{j}+R_{i}=0, \tag{A,6}
\end{equation*}
$$

where the left-hand side of eqn (A 6) is the coefficient of $\phi^{+\alpha-s t}$ and R, is a polynomal in the partal derivatives of ϕ and $u_{k} s(k=0,1,, j-1)$. Since $Q(j)=0, R_{j}$ should dentically vanush for any resonance f and \mathbf{m} which case u, is arbitrary Suppose if it is not so, we have to introduce loganthmic terms of the form $a_{j}+b_{j} \log \phi$ in the sernes But due to this addition, the logarithmic singulanties will appear in the solution manfold. Thus, the condtuon $R_{\mathrm{f}}=0$ ensures that the solution is free from movable critical manfolds.

Note: We have noticed rather late in production stage that eqns (4) and (5) do not figure in the paper of K. M. Tamizhmant and S Kanaga Vel, 1998, 78, 311-372 This omission bas probably occurred during revision

