J Indwan Inst Scr, Sept-Oct 1998, 78, 311-372
© {ndian Instrte of Science

Differential-difference Kadomtsev-Petviashvili equatio,
properties and integrability

K. M TAMIZHMANL AND S. KANAGA VEL

Department of Mathematics, Pondscherry University, Pondichercy 605 014, [ndia
email tamizh@yahoo con

Recetved on October S, 1998

Abstract

We present 2 review on cerlam miegrability properties of diff iffe Kadomt: (DAKP)
equation We cxplam the differental-difference verston of Sato heory and denve the DAKP equatton as 4 first nontrrv-
1al member 1 the single-component KP famidy In this process, we exploit the Sato theory t6 obtam conservation laws
and generahsed symmetries of the same We further show that the Wronskian form of the N-solhton solutions and 1a-
ttonal solutzons fotlow naturally from thss approach Stmilanty reduction and Passlevé-singulanty confinement analyss
are performed We also discuss a gange equivalence of the DAKP equation and study certair mtegrability properties of
the resulting system as well

Keywords: Integrabuliry, Sato theory, nonlmear systems

1. Introduction

Modern nonlinear dynamics started with a fundamental question—when 1s the given model
ntegrable? Can one define it prectsely? The answer is obviously no. But, at the same tune, we
try to find a close definition of integrability with the meaning of integratng and find the solu-
non/existence theory like Laouville.* In contrast to the linear theory 1t 15 well known that there
is no general theory to handle nonhnear systems and get their solutions However, the present
status 1s not bad, thanks to the discovery of Inverse Scattering Transform (IST) method® *
through whuch a large class of nonlinear partial differentsal equations (NPDESs) had been solved
and special solutions called solitons obtained At first, Zabusky and Kruskal observed soliton
solution, numerically m Korteweg—de Vries (KdV) equauonf Gardner ez al.® developed IST
method to solve the tutial value problem for the KdV equation Thus discovery becomes vital
since, after K@V equation was solved explicitly, many more nonlinear systems of physical im-
portance were also treated with IST method B Again, this method was generalized to matrix
formalism, notably by Zakharov and Shabat (ZS)' and then by Ablowitz, Kaup, Newell and
Segur (AKNS) ® These developments extended the applicability of IST to handle equations
with complex potentials and coupled systems as well Lax first reformolated these settings of
IST 1n terms of hnear operators, now popularly called Lax pair or L-M pawe.® These operators
satisfy certam linear exgenvalue problem Obtaming a suitable L-M pair for a given nonlinear
system 15 eqmivalent to say that the given NPDE has been lmeanized and thus solvability 1s
feasible using IST Those equations solvable through IST are called mtegrable systems and
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they possess sohton solutions, in fact N of them. After these proncermg works, many mathe-
matical tools such as Hirota’s bilinear formatism,'®** Panlevé tests,? recursion operator,
Lie-Backlund symmetries and others™” were developed to identify the mtegrable systems

and study forther analytical and algebraic properties of them

In the case of infinite dimensional sysiems (PDEs), the system 15 considered integrable
(working definition) if 1t satisfies one of the following critena.

1 The syster ss lineatized through suttable variable transformation.

2. The system is solvable through IST method,? after finding surtable Lax paur or ergenvaine
problems.

3 The system possesses infintte number of conserved quantities

4 TIn view of the symmetry approach, “An equation 15 mtegrable 1f 1t possesses infimtely
many time-independent non-Lic pomt syounetries” These symmetnies are called general-
1zed symmetries ot Lie-Backlund transformations.

5 The system 1s bi- or triinearizable through smtable dependent vanable transformations and
admuts N-soliton solutions.

6. The system which passes the so-called Painlevé test 15 a good candidate of an mlegrable
system In this connection, Ablowitz, Ramam and Segur (ARS) formulated the Pamlevé
comecture, “Bvery ordmary differential equation which arses as a reduction of a com-
pletely integrable system is of Pamlevé type (perhaps after a transformaton of variables)”.*
This conjecture provided a most useful mtegrabbity detector. Following thus conjecture,
ARS proposed an algorithm whch tests the Pamlevé property This property stdtes that a
system of ODEs satisfies the necessary condition for the Painlevé property, ve having no
movable critical pomts other than poles, 1f all 1ts solations can be expanded in the Lavrent
series near every one of ther movable smgularities This test was extended by Werss et al ¥/
to PDEs

In the followtng, we briefly discuss various methods used to study the mntegrable systems

1.2. Lax method

The idea betund this approach is to denive the nonlinear evolution equation which arsses as the
compatibility condition of two linear equations assocrated with a spectral problem The spectral
problem and the tume evoluton of the eigenfunction are given by the equ:mons9

Ly= Ry )
and
Gad
== M1 y
5 = MY, @

respectively Assume that the spectral parameter A 15 ndependent of ¢ The compatibility con-
dition of these two equations gives us

%:ML~LM=[M,L] @



DIFFERENTIAL-DIFFERENCE K ADOMTSEY-PETVIASHVILI EQUATION 313

where L and M are lincar operators. Equation (3) 15 called Lax equanon. Lax” explams how to
derive operator M for gtven L Once this goal 1s achieved we can find the solution of the given
nonhnear equation through IST method Numerous generalizations of the ergenvalue problems
such as Zakharov and Shabat,7 Ablowitz, et l b Ablowitz and Habermzm,” Kaup and New-
ell,”® Wadati, et al 757 Shinuzu and Wadan,” Istamort,** Wadat and Sogo,ﬁl Konno and
Jeffrey ® are available m lilerature covenmg 2 wide range of evolution equations

13 Hurota’s bilinear method

Hirota mtrodiced a more direct method'™* to derive soliton solutions of nonlinear equations
By mtroducng a smtable dependent variable transformation, the soliton equation becomes bi-
lincar Applymg the perturbation technique to the resulting bilucar equation one can system-
atically construct the N-solston solution. In fact, if the system admuts N-soliton solution the
sertes expansion 1n terms of small parameter 1 the above perturbative analysis troncates auto-
matically In this process, we obtain a class of lmear parttal differential equations which can be
solved successively to obtam the exact solution The soliton solution obtaned through this
techmique 18 a polynomal i exponential functions. It »s also noted that the N-soliton solutions
of Hirota’s bilinear equation can be written m the form of Wronskian and Grammuon deternu-
nants and Pfalfians > 2 2** The latter formahsm 1 more compact and easy to handle Apart
from finding N-soliton solution using this techmque, we can also obtain the rational solutions
10 & dicect way ™% Recently, bilmear approach has been extended to multimear form, m par-
veular to trlmear case” ® Many interesung titegrable systerus have been brought 1 this
framework In some cases, (be trilinear forms can be wntten in bilinear forms by introducing
exira 7-functions

1.4 Conservation laws and generalized symmetries
For a gtven nonlinear evolution equation of the form

= Flidy ey oy ), ®)
a conservation law 1s defined in the form

L+X,=0 @

which 15 satisfied by all sohutions of (6), where T1s the conserved density and X the flux. Here,
T, denotes the total derivative of T with respect to ¢, kewse, X, denotes the same for X with
respect to0 x Jt1s noted that T mvolves u and its x derivatives only and the terms Iike w, uy, -
are teplaced by u, u,, 1.,  appropoately using (6), the grven equation. The existence of mfi-
nite number of conserved quantities which are m myolution with respect to a surtable Poisson
bracket assures the integrability of the given system, 3% 5626 [t 1 a4 well-established fact that
there 15 a close connection between the symmetnes and conserved quantities through the sym-
plectic operators used in Powsson brackets.

15. Pamnlevé analysis

Panlevé analysis 1s used to study the singularity stracture of the given nonlinear equation.

If only the movable cruscal singularities of all solution of the given system are poles, then we
say that the system passes the Painlevé test and hence 1t could be a good candidate of an inte-
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grable system In practice, this analysis is a very effective tool to classify possible mtegrable
systems 1n 2 systematic way In recent times, the nature of smgularties also dictates the form of
the s-function which 15 used to bilmearize the given system #9.99.19 1y addition, there 15 some
evidence to show that this method can also be used to obtarn Lax paus and Backlund transfor-
mations. ™ However, 1t 15 not yet established completely that one can obtam the last mentioned
properties systematically through this approach.

1 6. Lie symmetries

The theory of Lie pomt symmetries goes back to the 19th century Sophus Lie studied the
mvanance properties of the symmetry groups and used them to solve/classify the differential
equation. Using ope-parameter Lie group of symmetries one can systematically reduce the
order of the ordmary differential equation by one Finding this group of symmetries which
leaves the system mvariant js tedious and computationally complex, neverthcless, it 1s very
much algonthmic and systematic Due to the algonthmie nature, this techmque has been used
widely to find special solutions to reduce the dimension of the independent variables espe-
cially 1 NPDEs, to identify mtegrable systems to one of the six Pamnlevé equations By this

method we can understand the underlying algebraic and geometric structure of the given sys-
tem.S}T}, 101-110

1.7 Sato theory

Various methods developed so far to mvestigate the soliton equations indicate the nch mathe-
matical structure of the soliton systems It 15 Sato who unveiled the algebraic structure behund
them using the method of algebraic analysis " ™ He noticed that the tfunction of the
Kadomtsev-Petviashvili (KP) equation 15 connected with the Plucker coordinates appearing in
the theory of Grassmann mamifolds He also noticed that the totality of solutions of the KP
equation as well as 1ts generalization an wfinite-dunensional Gr manifold
Ohta ef al*** presented a clear description of Sato theory m an elementary way Starting from
the pseudo-differennial operator they construct a Lmear homogeneous ordinary differential
equation and explitly explam the connection between the coefficients and the solutions of the
same They mtroduce an infintte number of time variables m the coefficients and rmpose cer-
tam time dependence on the solutions and derive Sato, Lax, and ZS equations and the lmear
ergenvalue problem associated to the generalized Lax equation. As a consequence, the KP hier-
archy was denived m a systematic manner and various reductions of 1t have been presented.
They brought out the connection between the 7-function and the bilinear forms using Young
diagram After the development of this grand theory, Date et al.'™ ''* and Jimbo and Miwa''®
extended Sato’s 1dea and developed the theory of transformation groups for sohiton equations
which essentially explamns the group-theoretical foundation of Hirota’s method and Sato the-
ory. The mam aim of this theory 1s to reveal the intimate relanion between the KP hierarchy and
the infinite dimensional Lie algebra gi(ee) using the language of free Fermion operators They
mdeed had a big program to classify soliton hierarchies written 1n bilinear form according to
various realizations of Lie algebras Using Sato theory, recently a mee method was developed
1o derive the generalized symmetnes and conserved quantitics of KP hierarchy ™' Hence, 1t
is clear that Sato theory is the most powerful method through which one can obtamn systemati-
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cally mtegrability properties such as Lax paur, soliton solutsons, conservation laws and symimne-
tries of the mtegrable systems 1 an wmfied way "7 Ugng multsicomponent version of
this theory one can armve at Davey—Stewartson equation and nonlinear Schrédinger equation in
2+ 1 dumensions ''* " @

18 Diffe I-difference framework

In contrast to the contmuous equations wherein enormons amount of research has been done to
mvestigate various aspects of integrability, differential-difference or fully discrete systems
have not been studied m depth However, some attempts had been made by Hirota 1n looking
at the bilmear formalism for many known soliton equations mn differential—difference sct-
tngs 218 Alse, Ablowitz and Ladik miroduced differenual-difference analogue of AKNS
scheme and obtamed many differential-difference soliton systems like nonlmear Schrodinger
equation They also extended the IST method to d:fferential-difference case % In addition,
many more important developments have taken place m this area, ! 124155 Using group-
theoretic techmiques, Date ez al.'™ proposed a method and denved a large class of contmuous,
semi-continuous, discrete soliton equations More recently, there was a remarkable discovery
of proposing smgularnity stracture analysis for nonlinear difference equation by Grammaticos
et al *® This techmque, now popularly called singulanty confinement, 15 very powerful m
1dentifying discrete imtegrable systems In particular, 1t 15 wteresting to see that the discrete
versions of Painlevé equations have been obtained through this techmgque and other properties
have been studied ™7 Soon after the discovery of smgulanty confinement, Ramant er a ™
138 synthesized both the classical Pamlevé analysis and simgulanty confinement together and
proposed the singulanty confinement approach to test the nature of singulanity m differential-
difference equations  Again, this has been successfutly implemented for several differential—
difference systems mcluding wmtegro-differenual equations 139172 1 the same penod, following
the 1dea of Maeda,""*** Levi and Winternitz proposed Lie symmetry analysts for differential-
difference systems' 1% which was studied by others also *'** As n the contmuous case,
the existence of Lie pont symmetiies obtained through Lie’s one-parameter transformation
group for differentral-difference equations again becomes very important. Usmg this theory,
as 1 the contmuous case, one could find similarity solutions and use them for reductions
Though this method is still m the early stage many mteresting resuits have already been ob-
tamed.

19 Present work

In Section 2, we discuss the denvations of the differential-difference Kadomtsev—Petviashvili
(DAKP) equation, conservation laws, generahized symmetnes and solutions.' ' Next, we
briefly mention singulanty structures and Lie symmetry analysis of DAKP. Details will be
published elsewhere,'™ 1% Funally, we also discuss a gauge equvalence of the DAKP equation
and study certamn integrability properties of thrs system.” >

In Section 3, prehmnary definitions and results needed to develop the differential-
difference Sato theory are presented. Also, the Sato equation, generalized Lax equation, Zak-
harov—Shabat equanon, and DAKP hierarchy are derrved. The associated eigenvalue problem is
considered and the conserved quantities and generahzed symmetries of DAKP equation are
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obtained systematically, In Section 4, N-soliton solution and the rational solutions of DAKP
and its bierarchy are given m terms of a Wronskian determinant In Section 5, Lie-pomnt sym-
metry analysis 1s performed for the differentialdifference KP equation and the Veselov—
Shabat equation’” is obtawed as a simlanty reduction. Also, smgulanty structure of the soku-
tion of DAKP equation 1s analysed using Pamlevé-singularity confi method for the dif-
ferential-difference equation. In Section 6, we derive a gauge equivalence of DAKP equation
and study certain integrability properties such as Lax pam, conservation laws and generalized
symimetries of the resulting system and perform Lie symmetry and singulanty structure analy-
sis

2. Differential~difference Sato theory

2.1 Introduction

The search for discrete or discrete ble eq started after the identification
of solttons i Toda lattice ™ Toda lattice 1s a prototype model for the differentral-dfference
soliton ion which p all bality properties such as Lax pair representation,

existence of mfinite number of conserved quantities and N-soliton solution, etc as other
soliton equations in continuous case Thus, varfous methods used to identify the integrable
systems 1 the continuous case were extended to semu-discrete case too For example, the IST
method by Ablowitz and Ladik,”*'® discrete bilmear forms by Hirota,'>? group-theoretic
method by Date ef al.** " and Jusbo and Miwa, ' Lax method by Kupershmidt,"*® Lie sym-
metry method of Maeda er al “**'*, Levi and coworkers,"¥™* Quispel and others'*™® and
Gaeta'™ and the Panlevé method by Ramani et al ™ Since Sato theory umfies all these
approaches in the continuous case, it 15 natural to expect that the Sato theory plays the same
1ole for differential--difference case also. This motivates s to look for the Sato theory for dif-
ferental-difference mtegrable equations. Following the work of Ohta er al.'™ we formulated a
suitable framework to treat the differential-difference equations. In fact, using this approach
we have obtamed the Lax paw, conservation laws and generahized symmetries of the DAKP
equation systematically ™!

22 Prelmmanes
We start from the definition of the forward difference operator A and the shift operator E given
by .
Afin)=fin+1)~fin)
Efm)=fin+1) ®
for all values of n (real or complex), Here the step size 15 taken to be one. From (8) it 1s clear
that A= E - 1, The Leibniz rule for the difference of product of two functions 15 given by

Yo Yt e e TN A I

r=0

or
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o mm—1)-(m-r+l1

A {f(nen))= Y, —+H—)(A’f(n))(A"‘"E’g(n)) (10)

for all integers m Using the Letbniz rule (9) for the difference set-up we arrive at negative and
positive powers of A 1n the form.

&5 (fg)= (B ) g 3B At g+ (A ) g
82 ()= (B2 £)a -2 B A )0 g+ A f g
A ()= (7 )= (B2 A 2+ (B 2 g -
A(7)= (5 e+ (4 an
()= (B P e+ 2(E0F g +(0% e
R (s oo (1)

Throughout this paper, we use the following convention
o pamg= (4 FYamg)
E'a" fakg = (B'A" £ ')
BB =(Elf)(Emg)
where I, m and k are integers Now we define the formal mnner product of the given functions
u(n), v(n) 1 such a way that
<uln), vmp> = A @ln)vi(@)). 12

Also, we assume that u(n), v(n) — 0 as n — eo The formal adjomnt of the difference operator 1s
defined by

(g(m)A™ p()) = (-1)"p(WA™E "g(n) (13)
for all functions p(r) and () Throughout this paper we assume that the difference operator A
and the differential operator -;% commutes.

23. Pseudo-dyfference operator

In the continuous case, the psendo-differential operator plays a fundamental role in developing
Sato theory.!” By proper mantpulation of this operator one can denve Lax paw, conserved
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quantities and symmetries 1n a systematic way. So, by analogy, with continuous case 1t 1S natu-
rat and worth to start with the pseudo-difference operator W, given by

W= 1+wA ™ +wA?+ (14)
where w,, j=1, 2, are functions of n We expect that the 1uverse of the pseudo-difference
operator W 1s also of the same form and is given by

Whe=1+uA" + a2+ (15)
where v, =1, 2, are functions of n. Since W and W are formal mverse to each other, we
have WW' =W W=1.

Using the expressions m eqns (14) and (15) in WW'=1 and rearrangmg the terms and
comparing the like powers of A on both sides we get an mfinite number of equations for vs m
terms of wgs, 1,7 =1, 2, which give the relationshup between v,s and wys, 1,3 =1, 2, . We hist
the first few of them below.

Yy =Wy
Vo= wiE Wy —wy
vy = - E w4 Wiy ~ i wiE Py + wiE s (16)

+wpE zwl — Wy

For convenience, we restrict the operator W to only a finite number of terms say m and thus
consider the mth order linear homogeneous ordinary difference equation given by
Wo"fn) = (A" 4 wid™ +wpA™ b+ ) fn) =0 an
which has m lmearly mdependent solutions say, f(n), f2(n), ,f™(n) Smce these f7(n)s are
solutions of eqn (17) and hence we have a system of m linear equations m m unknowns wy,
W2, °» Way g1ven by
A'"_lf[”wl . A’“‘zfmwz PN f(l)w - __Amf(l)
J m
E. : : ’ (18)
Am»lfm;wl + Am‘zf‘:")wz bt f(m)w _ ‘Aan(m)
; n
Selving this system of algebraic equations using Cramer’s rule (this 1s possible because the
determinant of the coefficient matrix of the above system (18) 1s nothng but the Casorat: de-

terminant which is nonzero, due to the fact that f((n])> s are lnearly mdependent), we arrive at

Am«lf(l) LU0
Am«lf(m) . _Amf(m) N f(m)

" :—Am--lf(l) oA Flu

7

a9

A"'"ff”‘) .. A’ﬂﬂf("t) , f(;")
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fory=1,2, m. Substituting the values of w;s m (17) and sumplifying, we get

f(U . f(m) A

Am—i AL g gl A‘—l
Am @ pmp(m) 1
W, = ! T ! . (20)
f ) f(mJ .

amt 0 gt pled

In eqn {20), the operator A7, j=1, 2,--, m has to be put m the rightmost position when we
evaluate the determinant of the numerator.

We assume that the set of linearly mdependent solutions f™(n), 7 = 1, 2, -, m of the mth or-
der hinear difference equation (17) are analytic and hence can be expanded by using Newton—
Gregory formula,

=3, gy @
[

r=0

where AT?(0)=£Y) and n® = n(n — 1)-(n—r+ 1) Using (18) and (21) we can wrtte the sys-
tem of linear equations (17) as
@ @
W, A’”(l,"—,—"—,m](b:o 22)
121

m

where

& & - g
o=|g g - g @3

Here (1,#,%, ) 15 an 1 X oo matrix and @ is an o X m matrix Let A be the shift matrix

given by

24

o o o
S o O -
o= o
T o o

Using the above matns, we can write



320 K M TAMIZHMANIAND § KANAGA VEL

e}
n
(1+A)"=§ TA’

=0
e
ar T
M
= 1 o (V)
lV
1
Ul
Now, we define,
H{n)=(1+A)®
=
:Z lv— AND
= 7
f(l) f(2) . f('n)
P Y Y 26

- Azf(u Azf(Z) Azf(ml‘

The determmant formed by the first m tows of H(n) 1s nothing but the denominator in W,
which is the Casorat determunant for the solutions of the difference equation (17).

24. Tume dependence

In this section, we discuss the impact of time dependence mm the coefficients of the ordinary
difference equation (17). We imtroduce an mfinite number of time varables t=(t;, &, ) w,
asw =wimf),;j=1,2, Asaconsequence of this, we have

FO= 0 =f %0, ) n
We constder the tume evoluton of H(n) w the form :
H{mt)= i w0 A 28
=L expnls, 28)
where 7(t, A) = i1, A* We wnte formalty,
o ntf , i B
> T oxpn(s A)= Y, Pk, 29
r.
r=0 k=)

Expanding the above expression (29) and comparmng the coefficients of Irke powers of A on
both srdes, we get
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Py=1

Pi=n+n

PR o) PSS WY

G 5(71*' z)

_#n—)(n=2) aln-1) 1., L5

B == “5(’1 +2tz)n+~3—'(tl +6ty8, +61;) (30)
_n(n=0(n-2}n-3) nr-0n-2) 1., n(n—1)

B T ; 2 t’+i(’1 +2t,) T

1 1
+ (113 +608, +6t3)n+z(t1‘ 1262ty +126% + 24151, +24r4)

3l

These polynomials are analogues to Schur polynommals in the continuous case. They have a
special property
.

m

=P, P,=0,Yk<0 md AP, =P, 3

.

—m»

We use the ahove property (31) to express the function H(r,f) in terms of P;s, which 18 written
1n the form

1 B P .
11 Pz O B
Hir1)= A R
0 . . - :
(32)
h(gl)(n;t) h(gz:'(n,t) hé"'}(n;x)
= KW (e (2. (m) (.
=B 0mt) g e ()
where
(10 = £O(m) 63
and
Oy~ M0 _ ) :
() = 2220 = A ). (34
&

1tis easy o infer from (33) and (34) that A(nyd) = A (;¢), and j= 1,2, -, m are solutions of a
set of hnear partial differential—difference equations
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(&i—A" Jh(a,z):(). k=12, 3%

13
with the 1mtial value k(n,0) = fP(r) Hence, the Imear difference equation (17) becomes,
Wt Bt} = (47 4o, & a2, ) =0, j=12,m (36)

Solving these system of equations (36) as earher, we get,

J R I
IR A R
¥, = [ @ (1 i @7
At e AR iy
g A R
and hence
h‘()l) h[()mj A"
Am1p, ‘\] (N AL h(()m] A
N L N S 3%
T ]
0 0
Am—lht()l) A hgm)

Neow w, and W,, are completely given in terms of differential—dfference analogues of Schur
polynomnals Pgs using (30)

2.5. Sato, Lax, Zakharov and Shabat equations

Tt is well known that the bility of the nonl systems is iated with the finding of
appropriate Lax or Zakharov-Shabat equations As m the continuous case,™ the differential-
difference version of Sato theory provides the Sato, Lax and Zakharov—Shabat equations natu-
rally. To achueve this goal we proceed as follows: differentiating eqn (36) wath respect to #;, we
obtain

Wy oz (1) n a‘L’o(l)
“m WoArZS
p AThg + W, & 0, (39

13

since A and ;fk— commutes Usmg the relations (34), m (39), we get
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ow,
AT LW AT A Wh((,])(n, =0 (40)
aty )

‘We factorize the operator 1o (40), as

aw,
AT WA AY = B W, AT @n
k

where By 18 a kth-order difference operator. B;s can be obtamed by applying AW, from the
right of eqo (41)

W,
B, = Moy Wl W, A W (42)
o,
From cqn (42), we can obtair by multplymng W, from right,
W,
== B W, - W, “3)
o

Hence the tume evolution of the pseudo-difference operator W,(x, 7) 15 governed by

aw f
2L B W-WA 44
a, 44

which 15 the differential-difference version of the famous Sato equauon U3 The Bys 1 the Sato
equation can be computed from W using the following relation

By =(watw)" )

where { )" denotes the nonnegative powers of A only. We have discarded the first term of eqn
(42), because it invelves only negative powers of A, whereas B, consists only nopnegative
powers of A Using (45) we can denve the Bys explicitly We list below a first few of them:

B =A-Aw,
2 2 2 7 2
By = &7~ (2w, + &%, JA + (28w, ~ 200w, + v A%, + 2w, ) (46)

ey Aw + 2wy Ay — Alw, —2Aw, )

Next, we will derive the generalized Lax equation, involving mfinite number of time vartables.
For this, we define

L=WAW". “n
Substituting the values of Wand W and rearranging the terms we can write

L=A+up+nd™ + A2+ - (48)



324 K M TAMIZHMANI AND S. KANAGA VEL

where us are expressed in erms of ws 1=0,1, 7=1,2, We present some u,s
g = =Awy
uy = —Awy ~ Awy +w Awy (49)

uy =—Aw, — Awy +Aw B wy +wy Aw, +E W, Awy - wi Aw E 7wy

Differentrating eqn (47) with respect to 7, we get

AL W,
—=—AW" + WA
o, o o,
The first term on the night-hand side of the above expression (30) will be replaced by the Sato
equation (44) whereas for the second term we have to find %f' For ths, differentiating

(50)

WW™ = 1 wath respect to 7, we have

W w
Zwtewlio=0 5
£y > (&)
Operatmg W from the left of the above expression (51) and rearranging the terms we have
aw! W
e =AW W 52,
7, . 2)
Using (52) in (50), we obtam
A W, . AW
Z = aw v wal -w 2w
ER [ , 62

Substiutmg the value of %’{- from the Sato equation (44), we have

a_

= (B W -wa" Jaw™ - AW (B, W - wa w
k

= B,WAW™ WA W —WAWB, + WAR W
=B L~LB, (54}
=[B..1}

Thas, we have the generalized Lax equation
oL
—=[B,L] k=12, (55)
%,

1t 15 noted from (47) that
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1F=watw! (56)
and hence
Bi=(I" <)
From By = (I¥Y", it is now immediate that
Bi=A+uy
B, =A* +(2uu + Auy )A+(Au0 +ud + 2 +Au1)

By = 8%+ 3ty + 38 + &% I + (28 + 3ty + 3] +3uy Aty + (Aty )
+3uy + 34w, + A n; )A+(A2uD +5uyug +3ug Aug +u3 +(Auy )2 +AugAuy

+3ug Auiy g Auy +u1E”lu0 +2A%, +3Au, +3u, +3Au, +A2u2)

. (58)
‘We can show that using (55) and (56),
aL"
. [B,,, b ] mk=12,- (59)
15 also true Now, we will obtain the Zakharov—-Shabat equation. From (59) we can show that
ar - &
E;AE;—[B,,,L 1-[Bns 2] (60)

holds true We denote By = By — I¥ which contains only terms with A7, ;> 0. Employmg this
relation m eqn (60), we amve at

m k

%:—%:[Bk,Lm]—[Bm,Lk]
=[t* + B¢, %] -[B,, B, - B ]
= 150" + B I™ ~I"I* -~ I"B{ B, B, +B, B + BB, - BB,
=BEL™~L"Bf -B,B, +B,B{ +B,B, — BB,
=B(B, - B{B', ~B,,B + BB —B,.B, +B,.B{ +B,B, — BB,
=B,B,, B, B, ~B{BS +BLBS
=[B..B,]-[5{. B3] 61y

But, from If = By — B, wehave
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B, B By B .
A e, Pen ] @

Equating the difference part on both sides of (62), we find that

B, 0B,
Zn Tk 2[B,,B,
o, o, [8:.5.] )

which is the Zakharov—Shabat equation 2

2 6. Differential-difference KP equanon

In the previous section, we denved the Sato, Lax and Zakharov-Shabat equations 1 a sys-
tematic way. In this section, we obtain a hierarchy of differential-difference soliton equations
using Sato theory Since the first non-trivial member m this hierarchy 15 DAKP equation, we
call this as DAKP hierarchy. Consider the L operator and the operators By, k= 1,2, Using the
generalized Lax equation (55), for 2 given By, we can derive a set of mfinite number of equa-
tions involving 4o, 11, S0, 1t 18 possible to generate mfinite set of mfinite number of equa-
tions for ug, 1, . By appropriately choosing the equations 1n different sets, we can denve mte-
grable nonhnear differential-difference equations We wish to remind the reader that not every
member 1o these sets 15 individually mtegrable. For example, taking k=1 m egn (55) we get an
mfinite set of equations given by

—ét—‘ = Auy + Ay Fatgtty = E g 64
1

ot
;2— = Aty + Aty +itgtiy +u E™ Ny~ B ug =, By
1
Also, for k=2, we have
ﬂ, 2y +2, 2 -1
Y = Nuy + 200, + A%y + 1y Auy +2ug Ay + Ao ey +ugny —u E g
2
M _wr 4n 2 2
e Uy + 280, +28%, + 2805 + K% ug + g Auy + Auguy +2ugu,
2
Hay Aty + 2010 Aty + Aty At + 16y Aty + el +u -+ Ay (65)
-2 - - 2 -
-~ Euy + i E 1u0~u1(E luo) —uE 7w~ E g — iy E

Now, We‘consider thg first two equations from the set of equations given 1 (64) and the first
equatton in (65). Solving these equations for uy we arrive at the DAKP equation
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92u0
o

~—+2—==2uy

Al Wy, » WMo Sy
o oy ay

]:(2+A)

327

(66)

Thus equation was first derived by Date er ol through group of transformations approach.™

2.7 Conserved quantities

Onee we have the Lax pair, it 15 natural to ask for the existence of wnfinite number of conserva-
tion laws, a basic property of mtegrable systems Again we uttize the Sato’s framework to de-
1ive them Matsukidawa ef al 'V developed a method to denve conservation laws of the KP
equation through Sato theory and the same method was implemented'"? to dertve the conserved
quantties of Toda lattice. We follow a sumilar approach and derive the mfinite number of con-
served guantities for DAKP equation through Sato theory. For this purpose, we first consider

the linear ergenvalue problem associated with the generalized Lax equation (55)

Ly = Ay
dy

Y op
7 14

and k,k =0 Using B, = Jod + B¢, we rewnite eqn (67), as

%: (+Bi )y

67)

(68)

We recall that B{ consists only the negative powers of A. Now we will express A7, j=1, 2,

10 terms of L7, For this purpose first we find L We assume that L™ 15 of the form
L' =A 4 A P g e

Using Z7'L = 1 we can determine g;s and we list some of them:

g, =~E™u,

gy =Euy—Euy —E 7wy + E 7wy By

94 =—Euy + 260y — B ug + E'uy —E™%uy — E 7wy 2B g E 2y
+E g B uy + B ug B2y + E g E g + B B2
~E7ugEuy B 3u,

g5 = E 'uy ~3E 20y +3E 3wy — Euy —E 7'y + 2620 —E 2w + E My
~Eu, ~E'uy +3E'1qu‘zu0 —3E‘1qu“auo —2E " ugE
RE ugE > + E g B uy —3E 2ug E 2y ~3E 0 E 7y

BE g B ugE uy + B ug E ™ uy +3E 0 E g - E g B ug E ™4y

69)
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" o R T
—E"‘ztDI':"}zA1 +E2ug B +E " E Sy~ E7 g E 7wy E 3,

- = — 2, g4 -1 g4
+E " ugEug +E 3qu4u0—E T E g + B E g + By E 7wy

BB By~ E 7 E i E g — B ug B g E g
~E“1u]E‘3u0.’:‘“‘u0 +E"IuoE‘2ucE‘3quJ'u0
0
Using the Letbniz mle (9) and (69) we can denve the higher powers of L7,5=1,2. Welst
some of them below"

L= X2 4 {E gy 4 a8 +(~E' g, + E gy # By 4 4 E g 4 g )™
+(E"112 ~2E gy + B gy~ E g+ E?q,+Eq, ~24,E7g,
g, E gy +9,E gy +a:E g, +‘14)A"5+

P =87+ (B +E gy g 0 +(-2B2q +2E7q, + E gy + B0 g, )
B B gyt B +E T gy + 0B g, +<13)A_5+ :

L =nt (B, + B gy + B g +q3)A_5+ :

S =a"y

Usmng the expressions for L7 and (70), we can express A%, y=1,2, :

&t = B L (7 - B+ By + Bl 2 (E ) 267
H2E ug E 7wy + B0l + E By v E g -—ZE'ZuO +Euy—-E7y
+E w4 By + B g 1 +(5"u3 +E N3 E B uy -3
~E g E g +3E g By — U E g E g 437wl 4B g E g
A g E ™ 2By E ™y + B3 4+ BBy - EUEE R
H2E g B ugE Ny ~ B E g +2E g B, -4E“2u0E4u0
HE g E T ug By — 4B ug By + E g B g+ E g E
+E B+ B E Ry + B 4 B0l + B ugE e+ B By
SBE G+ B ug By 4 By Bl — 7y +3E Py - 3E g + By

- = - - -
+E N 26 4By - E Y, +E 24, +E My, +4E“1/,0E’3u0
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+E g B (72)
Ar=r?y (E‘zuo +E My, )L“3 +(E‘2ug +E T E g + BN~ E 7y,

FE "y~ Eug +2E 2y + By )L“‘ +(B2u 2B 4] + 2B B,

EugE 7y —2E_Zu(,E_lu0 + 213"21401:"1111 +Eud + BT ulE

—E g E g B uy + E7 g E 2 ~ 2B d + 2B g By + 26 ul

+E P ug Bty + 2E  ug B uy — E 20y + 2B 3w + E My - Bl + BN,

2Eug + E by + 13"214Z )L’5 o
87 = I3 (B + Eug + B Jo* +(E0d + 2w E g + B g E

FEPud +E g E uy + Bl — E 0wy +3E g ~ E2ug ~ E g + E0uy

+E 7w+ E 7y )L‘5+ -

Hence, eqn {68) becomes

L2 (tFrolirteol LT %)
o
where 05")5 are functions of us forallj, k=1,2, ,:1=0, L, On using I/yw= Xy (73), we
obtain

B[y ol
Ek—z[l +T+—;2——+~-~y/. (74)

From this, we get
(k)

3 - 7
Llogy=aF ey . 75
3 og i ; & ()]
We denote o) = Z;”:lo‘gk]l" and hence eqn (75) becomes
(1
ol = ogy) _ 2k 6

13

Differentiating eqn (76) with respect to the time variable f,,, we will ammive at the conservation
laws

i
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0]
s = ..é._ M mk=12, amn
atm atk "

Notice that ¢ and ﬂ;if:l correspond to conserved quantity and flux, respectively, We list the

first few of the agl)s :
051) =~

o) =By -y (78)

o'g” = —ul(E_luo )z B Yy —uy E 7wy~ E 7y —u, E g

—u, By ~ U3
Tt 15 known from Section 2.6 that the Lax equatton with k= 1 gives

(U
—= Ay
= Ay + Ay +ugey —u E 7y

—f: Auy + Ay + gy +u B g~ E 2wy —up B2 79)
1

From the above equations (79), we can express uy, iy, #3, 1 terms of ug, and we list the first
few of us fory=1,2,
Py
gy=At =
*
Uy =A __.32’;“ %

a, M
~E ATt 0 g 4t gy 20
E¥ E N

Py 2%
Uy = AL 0 a2 0 B A 0
i o E% & at

R a ) ot
+2E lug a7 20y A1 gy S0 || P 0
Uy % iy ("o & )+ 7 +ig S‘t,z (80)

9% o 7
A 2D gty a2 TSO +E A
1 1

o oy Oy Ly %, 3
~ANET LA 20 gy, A1 8 M a, ar E
[ R S R

Y- N S
1| g1, =19 % . E "
+A (E A z ]-ZA '[u().?-)+A l[lADE luo——f]
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2 M o
A 2 2o |t B At 20 | A B2, ply, A 2
(uu £y U E " ug ) uyE " ug )

Now snbstituting these values in oﬁl), we obtain the conserved densities of the DAKP equa-

tion (66). We list below some of them:

cgl)=—A“§ﬂ’—
1
2
() 2wy iy O
Oy =A™ ——+ AT — A" | g —
2 at a {" o,
) _ (g1, VPatO 1 1Oy o 1O
o) =(EMu,) A aT-E oA &—l—E Uy A T 1)
2
g P pagr F_po 20 % FE At
% 1 oy o

A, o
FE g B 2ug A =2 B2 A g =2
#y 0 o, 0 o EY

2.8 Generalized symmelries

Another important feature of the mtegrable system is that it admits mfimitely many tume-
independent non-Lie point symmetries called generalized symmetnies Again 1t 15 stmple to
derive the generalized symmetries using the theory of Sato. In fact, Matsukidaira ez al.'"” pro-
posed a method to denve the generalized symmetries of the KP equation using Sato theory
They exphaitly obtamed the eigenfunction of the associated linear eigenvalue problem and
showed that the squared eigenfunction generates generalized symmetries. We show that this
strategy can also be adopted here and denve the generahzed symmetries for DAKP equation
Before domg so, we give a brief review of the basic notions in this theory. We consider an
evolution equation

u,= K(u) (82)

where K 15 a functional of . We call the functional S(u) a symmetry of (82) if 1t satisfies the
Iineanzed equation given by

S =K'(W)(ST, @®3)
where the Fréchet derivative K'(u) is defined by
K’(u)[S]=;—EK(u+ES)L=0. @

It can be shown that a symmetry S must satisfy
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[$, K] =§'[K] - K'[§] = 0. (85)
This means that any symmetry § commutes with K(x).

We will show that the eigenfunction of the knear eigenvalue problem (67) and 1ts adjoint
generate the symmetries of the DAKP equation Notice that L= WAW. Hence, we rewrite eqn
(67) in the form

Ly= Ay
1e. WAW y= Ay (86)
Applying W™ on both sides of (86), we have
AW ty= Wiy =AWty &N
By taking Y%= W yrin the above equation (88), we amve at
Ayp=Ayp. (88)

The above equation (88) 1s just a first-order ordmary lmear difference equation, whose solution
is given by

Vo =gltty A)1+A) ®9)
where (21, t, ;) 18 an integration function. From this result 1t follows that
Wy=th=g i 6 )L+A) (90)

and hence the exgenfunction is given by

w=Wglt, e s A+ A
=(L+w A +wAT+ 1+ D% 1, - A). o1

To find the eigenfunction we need the value of A”(1+ A)". For this purpose, first we derive
A1+ AY. Now we compute A(1 + AY".

ATHA) =(1+ A (14 2)"
=(1+A) (t+1-1) 92

=(1+A)"A
Operating -}%A‘l on both sides of (92), we arrive at
A(1+A) =%(1+).)”. 3
Applyng A™ repeatedly on (93), we have

L (1+A4)
A7 (1+2) =L—1,—), J=12, -, ©4)
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Using (94) in (91), we have

w:(l+%+%+~)(1+/l)"g(rl,tz,- 5 A). (95)
But, we have,
W _ -1 -2
E:—(L L+, Ly (96)
where g, are appropriate functions of 4, i, &, . Onusing Cy=Xy,j=1,2, , we obtain
31!’ ( k B ]
A+ . 97
Btk Z. V. N
This implies
d dlogy 22
=AM+ =4 98
a /‘L A.z (98)

Tlus 18 true for any integer k> 0. On integrating the set of equations, we finally find,
‘V‘ﬁl{z Afrj+to+2§}/l"J @5
=t =l

where 7, ', 18 agam appropriate functions Comparing eqn (99) with (95) at 4,=0, Vy=1, 2, -
weget §, =w,,Vj=1,2,-, and

gltotys -»,l):exp(z l’tj] (100)
=1

Hence
w=[1+%+:—2+-~](l+l)" exp[i l’l,} (101
7=l
We will obtain the formal adjomnt of yas
y/*:{l+w7;+%§+u J(l+1)’" exp(—il’lj} (102)
=

To find the vaiue of y* we have to determine w; ,¥j=1,2, - For this purpose, we consider

Iy’ = ay
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(WAW“YW*:AW*
o Yo <
—AETW =AWy
Taking W™y" = we amve at a lincar difference equation
~AETy g = Ay
Solving the above equation (104) we arrive at
Wo =Wy =k, - A)1+A)"
and hence we have
v’ :(W’l)*h(t,,tzy A+
Using (13) and (15) w (106}, we have
v = (1+v1A”1 AT )*h(z,,tg, L ANEAY"
=(1=A7TE, 87 By iy, AYIH A
Expandig the above equation (107), using Leibmz mle (10), we have
v = (1-B{n A7 - An EA? 4 0 E2A )
+EH A - 200, EA )
S (VR -)+- . »)h(t, e A1)
" =(1- B g 4 {EA, +ET, )E2 47
B8, +288%, + BB Wity - AY(14A)
Now, we compute AE™(1 + )™,
AE (14 ) = a0 2y
=)™ (i)
=+ A) " (1-(1+4)
=-A(1+4)"

(103)

(104)

(105)

(106)

107

(108)

(109)

(110)
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Operatmg —+ A™LE on both sides of (110), we have

- +ay"

ATE(1+4) = @)
and hence
M (E )
ATEN(144) =(_)(T;"1)_,vj=1,z,-n. (112)

Using the above result (112) in (109), we have,
. Ev, (Bv +EY,)
y' = e ——
A A

. (Ea%v, +28E%w, + B,

7 +- Jh(t‘,tZ; AJ1+2)" (113)

Comparing eqns (113) and (101), we have
Bty 1y, 3A) = exp{—z mj] (114)
1=l

and the w5 are given by
wi =By,
w} = EAv, +Ev,
w} = EA%v; +28E%, + By, (115)
wh = EA%, +3E2 A%, 438 Av, + B,

On usmg (16) 1n (115), we get
wy =~Ew;
wy =—Edw, +Ew,E2w, -Ew,
wy =—ENw; —2E*w, +3E%w,E>w +2E%w, ~2E w, Ew, ~E*w,Ew,  (116)

+E%w E?w, - E*w  E2w Ew, +E3w2Ew1 -E’w,
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Now, we will show that the eigenfunction and its adjoint m terms of w and w" can be used to
rat lized symmetries of the DAKP equation. For this purpose, we adopt the proce-

Eure devgloped in Matsmdarra 7 Using the exgenvalue problem (67)

ivi=Bl'V

o

i‘I'/’=Bz'l’ (117)

and 1ts adjoint ergenvalue problem

E_V’_.=-Bf .
%
al{/‘ * K
=—B. (118)
a:z LY
we have
i
LY ap+
3 Vtuy
N _ 2 -1 Oy
= = Ay (20 + Aug A +| sy g +(2+A)A =
oty 1
Ko py gy’ (119)
o
%%:—A?E'zny‘ +AE 2y + By
2
LA
— dug +ud + (24 M)A 2R
[ sy +itg +{2+4) , )ll’
Using (119), we can see that 5 = W‘ satisfies
ds d . 05 29
——2uy —+2—— (24 AAT =0 120
PR e AL v w0

Usmg the definition of Fréchet denvative (83), the linearized DAKP equation is given by
ES N . Sy S 1 9°S
1

=2ty — 28—+ ——(2+A)A” =0. 121)
3 o g, ta ) a2 ¢
From (120) and (121) 1t 15 obvious that if s sattsfies (120), then § = % satisfies the linearized

DAKP equation (121) Hence, 1t 15 immediate that %(W*) satisfies the hneanzed DAKP
equation (121), Using (101) and (102), we have
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N .
A Y R T TR I P 122
w(ﬂzzj(lﬁJk}:gsk az)
where
k
=9 Wi, (123

withwo=1and wy =1 Since Y/ is a polynomual expression n A, and 4 is mdependent of the

time variables, we have

S, :%sk, k=012, -- (124)
13

which are solutions of (121) and hence generabized symmctues for the DAKP equation (66)
‘We present below the first few generalized symmetres.

J .
=5, (=0
3 g
8 = V= 20
o &l(”‘]} P
2 dug | duy  duy
5, =2 - A Sy My 125
2 &](’40“40*( 4) 9‘1] 912+t9tl (125)

.
5= [‘?“0 A ‘93["°+3A‘Z ‘;‘_0 e ;"“ Faupant T J
1 1 1 l

o o
+3A_l(uu %i-uo go—wtuo ~2u} +u§)
1 1

3. Wronskian and rational solutions

3.1 Introduction

1t 15 well known that many IST solvable nonlnear evolutton equations exhibit multisoliton
solutions When we use Hirota's brimear method'®™ these N-soliton solutions can be ex-
pressed as an Nth order polynomial 1n N exponentials Perhaps, a more convenient representa-
tion of such a solution, however, 1s 1n terms of the Wronskian of N exponential functions. The
N-sohton solutron for soliton equations written m the Wrenskmn form was first mtroduced by
Satsuma™ and further developed by Freeman and Nymmo® and Nimmo and Freeman * This
procedure has been applied to the KP,2*! the Boussinesq,”** and other sobiton systems
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1t 15 also known that the N-soliton sofution of KP hierarchy can be denved through Sato
theory," which is expressed by an appropriate 7-function. This 7-function can be expressed m
the form of generalized Wronskian determmant defined on the infinite-drmensional Grassmann
manifold. In this framework, Hirota's bilimear forms arise naturally as Pliicker relations, Using
the Laplace expansion of the determinant, we can eastly venfy that the -function satisfies the
given Hirota’s bilinear form.

It has been recogmzed that 1ntegrable systems, in the sense of IST, possess other class of
solutions as well, cafled rational solutions > *% The rattonal solutions of the soliton equations
can be obtamned through various means On the other hand, Sato theory provides a systematic
approach to find the rational solutions of KP hierarchy ! The fund 1 ones are rep {
1n terms of Schur polynomials which sansfy a certain set of lear differential equations

3.2 N-Soliton solution
Now, we consider the DAKP equation (66) n the form

e du du *u
M ——+2-—-2u— | =(2+A)—; 126
(9’2 ! ué"l] ( )9’f 29

wheze u = u(t, &, n). Now, using the dependent varable transformaton

L0 T
u(ty, ty,m) =a[—logATﬂ‘— (127
1 n

m eqn (126), we armve at

o I, 0T I, I, Or s It
7, o Tnior Dot g OTn 59Tt 0w ntl n
PR " Trsl a + EAEY Tn *? Trnl EY) 0.
(128)

We represent this equation m the Hirota’s bilinear form, which can be wntten in terms of Hi-
rota’s bilinear operators These operators are defined by the following rule.

a_3YV'(a aY .
D*Dla = 77_) CANER
"Dfa 7w W a(x, 1)b(x’, . (129)
1'=t
where m and k are arbitrary vonnegative mtegers. Using the ahove defimtion (129), we can find
91, o9,
DnTm-l Ty =T, 3;:1 “Tnit ‘é;
ar, ar,
DyTag T =1, 3;2*‘ g (130)
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& LAY ‘%m 97»_”. 'z,

DT T =1, THE Ty oy e s
Now, we can easily see that eqn (128) can be written m the bilinear form
(D, +2D, ~ D}ty 7, =0. 31)
Next, we prove that the soluttons of the DAKP equation can be represented m the form of
Wronskian (Casoraty) determinant

e =W AP 1Y)

fn(l) Af,fl] » AN lf() f[u f:” . fn(i)Nvl
2] h 2} 2 2,
. s Aff'm . AV fl 72 f;f+:)mv 3

LR L R

"The determimant 7, in (132) 15 nothing but the denomunator in the expression (38) given m Sec-
tion 2. The entres m the determmant (132), £ = f(’)(rl,tz,n), 7=12,.. ,N are the solu-
fions of a set of linear partial differentral-difference equations

@c(J) o
= A,
o
1)
% =8fY, y=12, N (133)

One of the particular solutions of (133) 1s readily given by
u
f,l{’):(l'l-p]) exp(pltﬁ»pjzlz), 7=12, N (134)
To obtam N-soliton solution in the Wronskian form, it is well known that f,,(’ ) can be chosen
it the form
B o, rexp, (135
with 73, and & given by
— s
N, =Pt ph +nlog(1 »pl)-w;m
& =gttt +n]og(l+q,)+§1,, (136)
29,30

Following Freeman and Nummo’s notation, we denote 7, 1 (132) as
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7 f%é v
(2) )L D
7, =002, . N-1 =" fai o v 137

g
The terms mvolved in (128) may then easily be computed as
Tan =12 . N

o, =012, ., N-2,N-NpL2,. .,N~]
oty
Fad cpo3. N-LN+1I-N12, M
atl
P NO12, N-1—J0L2  N=3,N-LA|
o

H0.12, N-2N+1-2002, ,N-2M

%:N}l,z, NP2 N2 N N+ (138)
2

12, N-LN+2-212, ,N-LN+]]

Pz, _ 2
watT=N 0,02, . N-1-2N012,. ., N-2,N|
1

HOL2,.., N=3, N-LN+]012, ... N=2, N+

E
—&-“1—:1\12\1,2, JN|-2N[L2, . N-LN+]
1

H12, . N=2, N N+1+]12, ,N-LN+2|

wherem the linear equations (133) are nsed 1o the derivation of the above results, Using the
above expressions (138) m (128), we get

0Ty J1, ar at T, OT
PR UEY SR N, T e N, T N It
5‘!2 +1 9‘2 " (9[1 ntt 9!, (?tl at,
%, J*
-zn—at—;ﬂ-rm a;" =20002,.  N~1[L2, . ,N-2,N,N+1]  (139)
1

2002, . N-2,N[12,. .N-LN+]|
#2012, N-2,N+1{[L2, N

which 15 the Laplace expansion of the 2N x 2N determmant?!
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A
0 N-2 0 N-1 N N+ (140
D O N2 N-l N N+l

where N/-\—Z =I1,2, , V-2l and O denotes the (N - 2) X (N —2) zero matrix Since the above
determumnant (140) is zero 1t indeed verfies that 1, satisfies the bilinear equation (128) identi-
cally Thus we have proved that the 7-function detined by (132) gives the N-soliton solution of
the DAKP equation (126) 2

3 3. Ranonal solutions

In this section, our aim 15 to describe the method of finding a class of rauonal solutions for the
DAKP equation For this purpose, we consider the set of hnear partial differential-difference

equations (133) with (134) as particular sotutzon Notice that f,,‘" ) 10 (134} can be expressed as
a formal power series 1n p, and hence we have

. ,2) R
(Hp,) cxp(p]tl +p/2t2)=[]+n“)pj +i2'—p/2+-- J(H(pjtl +p}'t2>

+%(sz1+p}z2)z+--~]=i1’,,,p;" (141)
m=0

From (141}, we have a set of polynomals in the variables n, #; and £, They can be expressed in
a compact way as
(n—D{n-2)- (n—o, +1)1°

E
P, = 2 RPN (142)

g,06,0, 20
g0 $20 =m

where P, =0, Ym<0 These P,s are called the differential-difference analogues of Schar
polynommals Also, one can see that they satisfy the followmg equatons.

APu=P,
LN 143)
%
ﬂ)ﬂ_ A'P,
a

From the above equations (143), we see that the £, are solutions of the equations i (133). But
we have already shown that the Wronskian formed by any solation of (133), satisfies the bi-
linear form of DAKP equation (128) Thus P,s are also solutions of bilinear DAKP equation
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(128) Therefore, the polynomials Py, can be used to generate a class of rational solutions for
(126). Constder the Wronskian formed by the Pr.s

L B
P B v B
P’xlz = ' Z -, : (144)
Pll—ml B =N+ PI,, ~N+1

where I, I, -, ly are distinct integers We list below first few rational solutions generated usmg
(144):

Py=1
Py=n+t
nn-1)
R TR Tl

aln=-1n-2) 1 nln-1)  w}
P3=——————3l +—3‘+—2! r,+~—2' *nt, s,
2
n n 1y
Py =4ty +nt +
B E T T

S i
Py =t imtntty hmt? 4
3 3 3

2 4

3 2,2 3 4
n? nty nn on*t ond ¢
Py sy g - L DL T L
1212 3 3 2 3 12
2 3 2 2 3
non n nt, net, biix Iz
Py m—d—t iy b L ¢ DL L
32 6 2 2 2 6

Next, we construct a more general form of rational solutions For this purpose, we consider the
T-function given by

T, = W(f,f”, M, f,f‘w) (145)

where the f,,(’ )s are gven by

7

"y
= [%J exp[n(p) )]E 2, (r,) exp[n(p, )} j=12, . Nom, 20 (146)
nd they satisfy eqns (133) with

11(p,]:(n+n])10;;(1+p,)+p,(t1 + )+p]2 (rz +5, ) (147)
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where #,, ﬂJ and TZ are arbitrary phase constants From (146), we have

el

B (ps)=m,! ~ (148)
@g,00, 05,20 k=0 k:
Gotatyt2ay=m,
where
1 ¢
ole)= gt} 19

These polynomials Pm’ (p ) ) are the differential--difference analogues of the generahzed Schur
polynomuals Agaun, 1t should be noted that the Wronskian formed by these generalized Schur
polynonuals are also rational solutions for the DAKP equation (126). But this tume the entries
m the determinant are arbitrary linear comb of the hized Schur polynomials
(148) It 1s easy to denve the N-soliton solutions and the rational solutions of DAKP hierarchy.
If we mtroduce the mfinite number of time varrables i the functions f,,(] ) 1n such a way that

they sansfy the linear equations

atif,,‘f)m”f,f”, 7=12, N, m=12, (1503

then the Wronskian formed by these functions 1s the N-soliton sohution of the DAKP hserarchy.
The rational solutions of the DAKP hierarchy can be obtained as before.

4. Lie point symmetries and Painlevé-singularity confinement analysis
41 Introduchon

In this section, we discuss the underlying Lie pornt symmeiries of the DAKP and also study the
singularity structures of the solutions of this equation. These two aspects played mportant role
m integrable systems for many years. The first one helps us to find specral class of solutions 1
terms of new vanables called simularity variables Using these vanables we can also reduce the
equation to a lower dimensional system. Furthermore, the structure of the symmetries reveals
the nature of the associated Lie algebra of symmetry vector fields. The classification of Lie
algebras of symmietry vector fields in tum brings out the associated solutions As far as the sec-
ond part, it is well recognised that the Pamlevé-singularity analysis played a vital role for sev-
eral years in :denufying possible integrable systems both in ODEs and PDEs. This 1s more di-
rect and simple and yet a powerful approach to 1dentify mtegrable systems though the nature of
the singularities appears 1n the solutions. In the following discussion we give brief mtroduction
to hoth these methods and apply the techniques to DAKP. Detailed analysis will be published
elsewhere.”**

A Lue point symmetries

The concept of symmetry 1s extremely general, and the precise meaning of the term depends to
a larger extent on the context we deal with When we use this concept in connection with dif-
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ferental equations, we reserve the word symmetry for group of transformations which leave
the gven system of dsfferential equations mvariant For computing the symmetries we adopt
mfinitesmmal analogues of the transformauon However, there are methods (o recover the full
group from fintesimal symmetries In particular, the importance of Lic's invanance analysis
lies m the fact that 1t 15 a systematic approach to discover a class of solutions, reductions to
simpler equations through a new set of vanables called similarity vanables and similarity fune-
tions * ™ Numerous equatons were analysed using this powerful tool Over the years, the
method of Lie has been generalized m many directions Though there was mtense activity on
the symmetry analysis for contmuous systerns, 1t 18 surprismg that unttl recently this theory had
no smpact on differential-difference systems and discrete equations as well However, it 15
worth mentioning that Maeda was the first one to apply the theory of symmetries to discrete
systems m the varational formalism "***** Duc to resurgence of interest m the mtegrability of
chscrete and differential-difference systems, the symmetry approach agun becomes vital 1o
look for symmetnies, special solutions and reductions In this background, Levi and Wintermitz,
and later Quispel, Capel and Sahadevan deveioped the Lie symmetry method for differential-
difference equations " The Lie point symmetnes for the fully discrete equations were also
mitiated ' Symmetry analysis for fully discrete systems 15 yet to be developed as an efficient
tool as m the contimuous case In view of the importance of Lie theory rtselt and the nontrivial
appheability, we denve the Lie pomnt symmetries of the DAKP equation 1 this section, and use
them for reduction process

42 Lie’s method
Let us consider a function u(x, n}, u € R, x € R, ne Z We consider the differential-difference
equation of the form

F(X, 1 Uy W30 Mty Mty x, ) =0 (151)
where ] & Z We say that the Lie point symmetry group of transformation*®

A=n¥=A (x)i, =0, (xnu,) 152)
where g denotes the group parameters, A, and @, are mverlible smooth functions, 18 admtted
by the system (151) if u,(x) 15 2 solution of (151), then 7, (%) 15 also a solution of (151) The
power behind the Lie group of transformation technique lies 1n the mfinrestmal formulation of
the group Lie’s first fundamental theorem expheitly gives the connection between the ifini-
tesimal wansformatton and the Lie group of transformation.™ The mfinitesimal one-parameter
Lae pomt transformation corresponding to (152) 1s given by
=n

=ated(xnu,) (153)

@, =u,+ e¢n(x,n,un)

7
b3

and the vesior field corresponding to the wifmitestmal transformation (153} 13 given by

s

B3 8009, +0,(0m,)0, . (154)

=1

i
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The vector field (154) should be expanded to a Jarger space based on the order of the given
equation (151) For example, if (151) is of order & then (154) should be extended (or pro-

longed) to pe¥) £ defined by

PR =38 (99, + S byt

=1 !

»
*ZE*’;Q (mnt Lty Wi - (155)
P
with
N P
Ot =Dy P~ E(Dx, g, )‘m,@
=
b
Gt =D, b ‘E(Dxﬁj)“w,x,x: (156)
I
where
X, 5 Oy oy
D= WM 157
i ax, Z‘Bun o, as7)

denotes the total derivative operator as i the continuous case.> Now, the mvariance condstion
18 given by

Pl § Fp =0 (158)

The main difference between the contmuous and diferentral-difference case 1s the summa-
tion over /1 (155) The number of terms we have to keep depends on the discrete order of the
equation. As m the contmuous case, eqn (151) 1s mvanant under the action of (152) if the
cendition (158) holds good. Equation (158) gives the invariant conditron from which we have
to find the mfinitesimal generators of the symmetry group (153) To do this, we expand eqn
(158), use eqn (151) and equate the coefficients of the various derivatives of u,; to zero. This
resuits 1n an over-determined system of linear equations for the mfinitesunal generators of the
group. We can solve these determimng equations in a closed form and obtain symmetries.
These symmetries are then used to find simlarity solutions and reductions, etc In order to de-
nve the similarity solutions of the system (151) we use the syrmetries &s and ¢ i the charac-
teristic equation

dx _dry dx, - i,y (159)
51 'gz gp ¢n+l

After solving the above equation we armve at p — 1 new independent variables called sumlarity
variables. The new dependent vantable 1s the function of similarity variables, called the symi-
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larity function Substimting the value of u, in terms of sinulanty function 1n the system (151),
and simplifying we arrive at a new system which has the number of independent variables re-
duced by one compared to the given system. Obtainmg lower dimenstonal equations using this
procedure 15 called suulanty reduction. We can also use mfiniteszmal generators to classify the
solutions It can be shown that vector fields assoctated with infinitesimal generators form Lie

algebras
43 Symmetries and symilanty reduction of the DAKP equation

In this section, we present the classical Lie point symmetries for the DAKP equation, Using
these symmetries we find sumilanty solution and similarity reduction of the DAKP equation, As
a simularity reduction we obtain Veselov-Shabat equation, '

For thus purpose, we start with DAKP equation in the form
Byt =21t + 21—~ 1 = 0 (160)
where we have used u,=u and &, =% Let us assume that the mfinitesimal Lie group of
transformation as

n

161
=t+et(m xtu) ey

7
F=xted{nxtu)
¥
F=uted(nxtu)
The vector field corresponding to (161) is given by

R=Hnx 6w, +(nx1u)d, +6(n x4 1)3, (162)

Smce the order of DAKP equatton 18 two we consider the second prolongation of the vector
field (162), which1s given by

B 2o, 403, 49004 B0g 447D, 405, +0'0; 470, +970,,

73 +979, +679; +¢"0, +9°9; (163)

Ty
We get the mvariant
O~ +20% ~ 20" ~206" - 2Git, + 2uf” +24u, - §* -7 =0 (164)

on using the invasiant condition (158) and applying (163) on eqn (160) To evaluate this ex-

pression we need §%, ¢%,¢*,9°,6™, 8™ and we can explicitly find them using (156). They
are listed as below-

# =0, +(0: L g -8 - Ea2 %
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¢ =0+ (BT, G, T

§ =9, ~ &, (B ~F iy~ gl T, ~ Ty

0% = (2~ e e Tty + (B = 26 0 03
DTy = &t = T iy +(0, 28, i

=200y, =36, T e, =2 e
P =9 +(2¢x; ‘En);‘ ~T il +(aﬁ “23,@)’73
2 8,8, — L) = T, + (’b* -2¢, )ﬂxx
DT iy =3 — Ty, — 25 W
Now solve eqn (160) for u_, and hence we have
o =W =2, + 200, + 20, - 200, 1, (166)

In order to get the deternumng equations for the mfinutesimal generators we substiute the val-
ues of (165) m (164) and usmg (166}, replacing ., m the resulting expression, we have an

EXPICSSION 1L Uty , Uy, iy o By Uy Uy 2. Brjuating the coefficient of vanous powers of the de-

rivattves of i and i n the resultimg e-xpressxon to zero we armve at 4 linear homogeneous sys-
tem of partiat differenbial-difference equations. Solving this overdetermined system we obtam
the symmetries

E= oAl 4 40)

= f(r) 67)
0= flou= w105 40)
; 2 5 8lr)
In order to perform siularity reduction first we have to solve the charactenstic equation
dx - iil du (168)
Ty

and dertve the simulanty variable and sirmulanty function. On mtegrating (168), we relate u to
the simmlanty function F({, ») through

f (t} é/(t)I 0I5 (169)
4f(z)? fmt M@
where the similarity variable {'1s given by
J 20 4, (170)
f f gt e
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Substituting the value of 1 m DAKP equation we get the reduced equation
E+F{+F2~F2=a(n) a7
which 15 the Veselov-Shabat equation *”* The above system can be denved using l-reduction

technique 1 Sato theory, and moreover this equation can. be wdeniified with delay Pamlevé
equattons %17

B Painlevé-singularity confinement enalysis

Even hefore the discovery of soltions, we had a remarkable theory to test the wtegrability of
ODEs called singulanty-analysts first proposed by Kowalevski ™ ™ The motivation for her
discovery emerged from the fact that the critical sngularities of a linear ODE are fixed 4%
This means that the Jocation of sngularnties of the solutions of a linear ODE 15 determmed en-
tirely by the coefficients of the ODE This 1s certaraly not the case 1 nonlineer systems. The
structure of the singnfanty in nonlinear equations is more comphcated. While the smgulanties
are fixed for lmear ODEs, in the case of nonlmear differentral equauons, their location (in the
complex plane) depends on the minial conditions These singulariues are called movable. Pan-
levé started asking for nonlmear ODEs with fixed entical smgalarnes and atrempted to classify
ali the second-order equations that belong to thus class In particular, e examined equations of
the form

W=, w,2) (172)

with f polynomal m w', rational 1n w and analytic 1 z This classitication was completed by
Gambier 7 Thus came the discovery of the famous six Painlevé equations.”

The Pamlevé equations are integrable n principle, however, their mtegration could not be
performed with the methods available at that tune. This situation has changed after the discov-
ery of IST Ablowitz and Segur'” showed that the IST technique could be used to hneanze the
Painlevé equations Scon after, Ablowitz, Ramani and Segur (ARS)* proposed the followmg
copjecture “Bvery ODE which anses as a reduction of a completely 1ntegrable PDE 15 of
Pamlevé type (perhaps after a transformation of variables)” The mtegrable systems also pos-
sess what 1 called the Pamlevé property. If all movable smgulanttes of all solutions of an ODE
are poles then we say that the system possesses Pamlevé property ARS also provided an al-
gorithm to test this property for ODEs. The ARS approach twmed out to be the most powerful
ool to isolate good candidates of mtegrable systems * Improvements made to it by Weiss et
2% and Gabbon and Tabor'™ to treat PDEs duectly without the constraint of considering re-
Iuctions have resulted in several new equations The Pamlevé test 15 undoubtedly powerful but
tdoes not have the rigour of a theotem,

In recent years there has been a growing interest i the study of discrete equations Tn wod-
mm science discrete equations play an rmportant role *> 1 With the advancement of high- *
peed computing, discretisation becomes unavoidable. Quite often, discrete models are more
2alisac than contmuous ones to understand the physics of the problem better However, we
an clearly see a close paratlel behaviour between the properties of the contmuous systems and
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their discrete analogues ' At the same tume, 1t 15 not obvious to find the discrete analogues of
all mtegrable equations In the past the focus was not much m this domamn, but, has changed
very recently due to the appearance of discrete Painlevé equations 1%

Although there was some progress n discrete systems, no singularity-structure analysis
(Parnlevé method) existed for such systems until the discovery of singulanty confinement (the
equivalent of Pamlevé analysis for discrete systems) by Grammaticos ez al *® As 1 the Pam-
levé method for contmuous systems, smgularity confinement method becomes a powerful tool
to detect possible discrete integrable systems The smgulanity confinement was complemented
by pre-image nonproliferation condions which means that at each pomt the mapping will have
a single pre-image In the case of mapping, f no umque pre-uwage exusts then there is no need
to use smgularty confinements 1 The most striking use of singularty confinement 1s the dis-
covery of discrete Pamlevé equations *° Tt also plays a vital role m gettmg other mtegrability
properties of discrete systems "%

44 Algoruhm

The principle of smgulartty confinement can be stated as follows In a rational mapping, sigu-
larity may appear spontaneously due to a particular choice of mitial condition In analogy with
the continuous case we call this simgulanity ‘movable’ The conjecture states’ that i mnte-
grable systems tins singulanty must disappear after a few 1terations. This 15 what 15 meant by
‘confinement’ Also, memory of nittal conditions must be recovered beyond singularity We
can present the method of implementmg simgulanty confinerent m the following way as Pamn-
levé analysts 1n the ARS method™ (detasls m Appendix 1)+
1) Find all posstble singulanities and check that they are movable.

ARS - Find all possible leadmg behaviours
2 Deternune when, at the earhest, the smgulanties can disappear.
ARS Find the resonances
Check that fine cancellations ensure that they actually disappear (gives constramts on the

parameters)
ARS Check compatibility conditions at resonances

w

For the purpose of dealing with differential-difference equations, nerther Painlevé method
nor smgularity confinement 1s enough to capture sigulanities. But Ramam ez al 1313 pave
shown how a nice combination of these two methods will allow us to treat differential-
difference equations In fact, 1t goes beyond m treating integro-differential equations as well.
The basic 1dea 1 to consider the effect of a singulanity in the continuous varable on the dis-
crete evolution For Pamlevé property the singularity must be a pole, as well as the subsequent
ones and 1n addition, this must disappear after a few 1terations (in the discrete variable). This
1dea 1s very fruitful in dealing delay-differential equations As an application of this method a
few delay-Pamlevé equations have also been obtamed 1”2

43 Pamlevé-smgularity confinement analysis for DAKP

We illustrate the Pamnlevé smgulanity confinement techmque on DAKP and study the singular-
1ty structure of the solutions We mtroduce the following notations 1n our discussion # =X,
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1 =u, Eu, =i Bluy=a R=u,2=u Loy, Let us wate the
L=t Eluy=u, wo=u, Eug =8B uy =i 5 =5 Slhyyod = e
DAKP equation as
4 21t =2t + A1 A a3
According to singularsty-confi t analysts, we assume that a given u 1s regular and using

the above equation, we should study the propagation of singulanties that appear for u The
leading behaviour around the free smgnlarity mamfold ¢(x, ) =018
u= 4 174)
4
To simplify the calculations, we apply Kruskal’s ansatz, ie we put ¢(x, 2) = x + y(1) without
loss of generality In this situatton, » has a Taylor expansion and thus # be expressed m the
Laurent series

u=Y a, (e’ (173)

=0

where @y = 1. Using the expanstons (174) and (175) m (173) and performing the usual Painlevé
analysis we find that ARS-resonances are j = -1, 2 and the compatibility condition for j= 215
automatically sausfied

Thus is not enough to test mtegrability through singulanty confinement., For this purpose we
have to consider the first and second iterations of the recursion (173} and perform the usual
Painjevé analysis and check the passing of the test The iterations of eqn (173) are

B 421~ ~ kg =uy 21—, +uy (176)
and
Z,+2(1-§)Z,—Zu =0, + 21~ 0, +7,, 77

We apply the nature of the smgulanty of the solution from the previous analysis to these above
upshifted equations while domng Pamnlevé analysss and notice that DAKP equation satsfies the
smgularity confinement critenon and Painlevé property, thus confirming the ntegrability of
ths equation from smgulanty analysis point of view Details will be published elsewhere 154

5. A gauge equivalence of differential-difference Kad Petviashvili equati

5.1 Introduction

Ig the previogs sections we have studied the DAKP equation in view of Sato theory We de-
rived Lax pair, conserved quantttes, generalized symmetnes, Wronskian solutions, rational

solutllsolng za&d 1ggua powt symmetnes and tested the Pamlevé-singularity confinement prop-
erty.” ** In this section, we discuss a gauge equivalence of the DAKP equation,™* '

Oue of the frequent questions asked 1n the theory of wmtegrable systems is that of the rela-
nonship among various eigenvalue problems and of the assoctated systems. This question has
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signsficant mmplications, and to mvestigate 1t, gauge transformation has been introduced which
connects one eigenvalue problem to the other and subsequently one mtegrable equaton to the
other Such equivalence of mtegrable equations has been a subject of intensive research 7%
For example, a gauge equivalence of the nonlinear Schrodinger equation and Hessenberg fer-
romagnet equation was estabhshed by Lakshmanan,”™ and later Zakharov and Takhtajan'®®
showed a gauge equivalence between the eigenvalue problems. It has been applied by
Kundu®> ™* to many systems n both 1 + 1 and 2+ 1 dimensions. It 1s well known that three
different ergenvalue problems, that 1s, Ablowitz—Kaup-Newell-Segur (AKNS), Kaup-Newell
(EN) and Wadati-Konno-Tchikawa (WKI) are connected through gauge transformation * ' In
view of Sato theory, Kiso derived the modified hierarchies using gauge transformation. '™
There 1s a close connection among KP, modified KP and Harry-Dym hierarchies which has
been established through gauge transformation An umified approach to gange transformation
and reciprocal ks for a broad class of nonlinear evolution equations has also been mvesti-

gated 134, 185

Motsvated by these works we discuss a gauge equivalence of the hnear esgenvalue problem
of DAKP and denve a differertial-diference equaton related to DAKP through a gauge trans-
formarion, "™ We find the conserved quantities and generalized symmetries for this system.

52 A gauge equivalence of DAKP equation
We start with the pseudo-difference operator
W= w) + wia +wp A (178)
whete the w;s are functions of n, 15, 12, The formal mnverse of W 15 given by
W=y +uja +vpA4 a9

Using W =W =1, we get

1 (w{, +wiAT rwi A+ <-)(v{, AT v A

=wg (v +viaT +va 4 Jewf(EvpaT - B Avg A + (180

A g (ERvpa e
Rearrange the terms on the nght-hand side of the above expression (180) and compare the hike
powers of A on both sides of (180) This results in an wnfinite number of equations for v/s in

terms of w's, 1,7=1,2, .
J

1
Vo =—r

Wy
= (181)
ng“Lwé

<

.
1
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/ rpl
wy W W wiE™ )

2z = LR I
woE 2wy woE wh woETwg wiETwiE W

V.

W

Now we introduce a gauge transformation for the L operator (48) defined n Section 2 by
I=¢"L¢ (182)

whete ¢! means % and the resulting expression for L 1 given by

Tewhvuf +uiA” +upA™+ (183)
with
=B
¢
,_Ep—ptusd
uU —-—-—¢———-
-1 (184)
L _mETY
w =122
4
o _mEP-m EV gt B¢
i =—_.—¢_/—.-_

Tt 15 possible o decompose £ in ( 183) as
=i (185)
xpanding the right-hand side of equation (185), and comparing 1t with eqn (183), we artive
Dat the u/s can be expressed m terms of wis forall 1,7=0, 1,2, 'We list the first few of
hem.
.
Ewg

- [ T T S R PR
u, wo© ~woEw) —w)Ew +WEW)
] 0 (3 (

w{,Ewé( 0 RN TIER,

- I Ew? e 2 B 10t 2B’ 4wt i Faof —vof2 Tha? 4 o d T

Uy = = (Wywo Ewg — Wy  Ews —w( Ew] + Ewi —w*Ew( + 73

0 ~ (10 0~ Wy Ew) wow Ewl —w*Ew, +wiwyEw
WéE(’]EI{) 0 1 (8 1 1 0 27 l))

- (186}
vthe continuous case,™ the Bys are defined by

Be=y (187)

here (" denotes the strictly positve powers of 3 for the modified KP Iuerarchy. Here also we
pect the same and therefore define
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~ +
B, =(Z") (188)

where ()" involves strctly positive powers of A and the generalized Lax equation is given by

L s
E =B =12 (189)
From (188) and (183), we get’
B =ua
By =w BN {wB - B A 190)

Using the Lax equation (189) for k= 1 we have the following set of equations

’

= ' Eug —u'ug
on o 0
Sl
=L =y By - w'uly + B — B (191)
%
and for k=2 we have,
3’4',,2 Y I T S Sy 2N TS S R
ér—uEuE —u'En'Fug +u'Bu'E ul ~u' " Eug +u (Euo) +u’"ug
2
~uw'uy? —uwu{E~ 'y’
(192)
Solving the above set of equations, we arrive at
A%y
WP W, A.,a L), QLA,(IQu 193
x, o’ EY P AT

Next we derve the conserved quantities and generalized symmetries for this system

5.3. Conserved quantities

In Section 2, we have derived the conserved quantities and generalized symmetries for DAKP
equation (66) For this purpose we follow the procedure described m Matsukidiara et al 1w
Here, we adopt the same techmque and present the conserved quantities and generalized sym-
metries of the equation (193) For this purpose, we first consider the lnear eigenvalue problem
associated with the generahzed Lax equation (189)
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Ly =21y
ETa (194)
}t%: By

where 4, =0 We assume that B = B, - I, and hence rewnite eqn (194) as
M (T By (195)
ay

It 15 noticed that BF congists of terms mvolvmg A7, 7=0, 1,2, . Now we will express A”,
7=1,2, mtermsof £~ For this purpose, first we find L™ We assume that 70 15 of the
form

=g + a7 + a7+ (196)

Usimg Z7L =1 we have
L=(gia ™+ a7+ Ywhtug +ula +upate )
= ql’(E’lu’—E/zAu’A"l FEP A WA T BT AT - B A A 197)
R L T R L TSl (U R |
Comparing the like powers of A on both sides of (197) we get
1

’

g =
1 g,

, 1 1 o2 -
L el C Y i Y S THA
2 E_lu'EJu'( O)

1 (198)

-———%ﬂ(—E‘]u'}I'Zu’JrE’]u'E’Zu’— EYugE !
WEWE W ! 0

2EPWET W+ B E N 4 280 g - E g B+ B B uh)
Using Leibruz rule (9) and (196), we can dentve the higher powers of LV, y=1, 2, . We list
some of them.
72 el a2 E - [ PSP S g
L? =glE" g7 + (~a{E g + 1B +{E™ 43 + 3B g JA -

7 = gl E B g a7 v (199
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Usmng (198) and (199}, we can present the values for A¥, j= 1,2, - m terms of negative powers
of Las

e W 4 (B EE B E g ) (s
2E WA E Y BT E 4 2 )+ B E
“2EWE W E W - BB E < 0B W E g B
~E W E W E R - ET W E B E N BT E

3 i 200
~E B <2 W E T+ B E 0B wE @00
~ERy ey + B E'zug)L‘ +
N =EWEWE - (E"‘u'zE"zu’i—E"u’E~2 2B WEWE
~E"u’E‘zu’E'2 f B WE R ,) -3
&2 = EWEWE W E R
Now, using these 1esults, we can wite down eqn {195) in the form
‘?'V =T+l +ol I rol e @o1)

where Uﬁk)s are functions of ', ;s foralli,j=0,1,2, andk=1,2, OnusmgZy=~Ny

i (201), we obtain

{0 gl
%“.’.:[l’uag‘*u(’i + /172 + ]w

k

ORI
13y i, 0, %1 92 7
A A Lt Syt S 02,
' [A +oy o+ 3 + PE + (202)

We denote ¢ = =1 j_ocr ) 7 and hence eqn (202) becomes

ot 2 0gY) 5 203)
oty

Differentiating eqn (203) with respect to the variable f,,, we will arrive at the conservation laws

(k)
do =_§_ 91<>g!f/r mk=12, - m#k. (204)
o, d | o

n m
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We the fist first few of the 0 -

) .
‘751] ==y
i —
ol =B
- (205)
0'(2” =u{Ew? —ul’E‘zu'E‘lu’~ul'E"lu’E‘lu6 —uy B E
Q) e ror e e el
Oy =—uw'Euf+u'uy —u'EBuf —ug® ~w B u
052) =B B ' B —w B Bl B v E N
(206)
—wETWE
It 18 known that the Lax equation with k= 1 gives
',
=1’ Eutfy ~u'ug
o ) 0
(207)

o -
ED‘ =B —u'ug + ' Euf —u ™'’
1

From the above equatons (207), we can express ug, #{,- -, in term of 4’ and we list the first
few of u)s fory=0,1,2,

s 2 . (208)
oo (e o 2o
ETw an\u o o

Now substituting the values of ug,uf, - m 6(11) {205), we obtain the conserved densities of
the differential-difference equation (193) We list below some of them

of) =ont (l 2"_']

7
U n

6(21) =Elp? i(lﬂ_ 'EilM'A“li—E“zu’A‘z K2 L
o \u o o on \u’ oy
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g, df 1w 1o
$E AT A | S L
“ oy an ' N w

L d (1o} 4f 1 ou oo’ 1 du
47— A e AT
[ 3’1) (“"*l] o (" ‘7‘1)
0w’ Paw') iyt g 91 0 H
AT A FATNE At 2| Lo e O
& [" ] { ! ‘?‘\("'9'1] £ 'laﬂ:l

. (209)
e 2180
A l: A " 3[ -u Py

2 a2 @1 0n - '
i pta O Lo 2,4t M
-4 { (uﬁl} E BtlJ

iy s 2(130) 3
A{F“a[rlu' ) u&t S

54. Generalized symmetries

In this section, we derive the generalized symmetries of the differential-difference equation
(193).1% 1% For this putpose, we consider the mear exgenvalue problem

Ly, =4y,
W By, (210)
m
and the adjomt eigenvalue problem
Dy, =4y,
L. -By, 210

m

where 2 15 the spectral parameter and 15 independent of » and #,. We follow the same procedure
as n Section 2 to compute the exgenfunctions y, and y, They are given by

o[t Yooy enf S0

v _[w(;ufﬂ;t—-;-—w ](]4»1) exp[ Ztl) (212)
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with
W' =g
et
wy =—Ey en)
wy' = ~(EAv] + 2B 00 + B3

For convenience, we detiote « as %, The equations representing the hinear exgenvalue problem
and 1ts adjomt are given by

I
*;i‘n—*“n'l’nﬂ 2 Vn

M=uu Y ran ~ g1 W g —U2W +au~\// iy
alz ¥ ntlY n2 nat ¥ a1l T ntl af 4] n
af U oy o, o 1 du, /
— —2u, A 14
+2u, A (uﬂ S W nas — a, =Yy~ 2y s 7% )
?—Wi—unwn Uy Vy
9‘!’1 =V " P
o, wbbua W =Wy 2V 2=y, o Ya n_x‘l/"—
1 o, 1 )«
+2u,A” -2u, A7 & I VA
- ( 4y Oh }V" ot [“H o }V“ ary Vi
By taking
v, =AE7'g, @13)
and
5= Y, 216)
one can check that
& 9% 3 d(1 ) & o1
—— =R, 2 A“ Q_A“ 2% 217
& ar? an " 311 u, o @m

15 consistent with (214). The solation of eqn (217) 1s dentved from

By =Y s, (218)
m=h
vhere
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.
S = DWW @19

=0

We depote §= —— &ﬂd w, =y Then, equ (217) becomes

2Hdk 254 1P S aqu

ow a a PN R VX I

Lo 13%) e 4f135 § 1o
A e el L P o el B (L 220
* (ul £ ua:f}’ 7, [u?tl T et v @0

which 15 nothing but the symmetry invariant equation of (193). The solutions of eqn (220) are
the generahized symmetries of eqn (193). We first hist a few generalized symmetries of (193):

5 ~;':

M :%Jr%

5 =%{%+2mfl[£%]—u2 +u3—3u2A_1(-i—%]+3u[A' (1 ;’:Dz (@21)
+3uA“Z[-T%T+£gI%J—3M"l%+;?Z+3§:—A (i;") 3u§7’:—
+3uA™ [— —12-—%’”7+%;—2}D

5.5. 2-Reduction
In this section, we derive the 2-reduced gauge equivalent DAKP equation. For this, we consider
? =B, (222)
which will give the constraints
w'Buf ~u'ul +uw'Eul v ug? +uE7w =0

- -2
B ~ '] + 0By +upe] —w BV uf B (B ) vy B =0 (223)

Imposing these on the constraints in eqns (191) and (192) we finally arrive at the reduced sys-
fem
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1 Moy +i—-——a4; = U~ Uy (224
i Y n T Up J
U Oy, O

Here u, =1’ and eqn (224) is related to the Kac~van Moatbeke systern”” by the transforma-
tion uy = log("J;fJ-) The Pawlevé-singularity confinement analysis and Lie symmetry analysis
of (193) will be published elsewhere.'

Ackmowledgements

In this paper we review some of the results obtained recently with our collaborators Grammaty-
cos, Ramani and Thamizharasi Tamizhtnani,

We express our stcere thanks to B.Grammaticos, A Ramani, Thamizharast Tamizhman,
Y. Ohta, J. Satsuma, J. Hietarmta, J J C Nimmo and W, Qevel for frustful discussions and
encouragement as various stages KMT 15 supported by the Tndo-French Project 1201-1 5K
Iikes to thank the Council for Scientific and Industrial Research (CSIR), India, for financiat
support

References
1 Awvop, V1 Mathematical methods of classical mechamics, Spnnger, 1978
2 LARSHMaNAN, M Nonlmear physics Integrabristy, chaos and beyond, J Frankln

Inst B, 1997, 334, 909-969.

w

ABLOWITZ, Mj AND CLARKSON, P A Solttons, nonlmear evolunon equations and mverse scatiering,
: Cambndge University Press, 1991

4 Faopesv, L D aND TaRHTAIAN, L A Homlroman methods m the theory of soittons, Sprnger—Verlag,
1987

5 Zasusky, N ¥ axp Kpuskar, M D Tnteracions of ‘solitons’ 10 & collistonless plasma and the recur-
1ence of the mstial states, Phys. Rev Lett , 1965, 15, 240-243

6 GamDNER, C S, GREENE, J M, Method for solving the Korteweg-de Vres equation, Phys Rev
BruskaL, M D 4N Miura, R M Lett, 1967, 19, 1095-1097
T Zaxmanov, V E AND SHABAT, A B Exact theory of two~d If-fe g and
self-modulation of waves n nonbmear media, Sov Phys JETP,
1972, 34, 62-69
8 A'BLOWI'E,M T, Kave,D J, Method for solving the Sme-Gordon equation, Phys Rev Lett,
NewsL, A C aND Secur, B 1973, 30, 1262-1264
9 LaPD

Integral of nonlinear equations of evolution and solary waves,
Comnun Pure Appl Math , 1968, 21, 467-490

10 Hirora, R Direct method m solizon theory, Twanamt, Tokyo, 1992 (n Japs-
nese)

11 Marsuso, ) Bulmear transformesson method, Acaderc Press, 1984

12. HmoTA R

Exact N-soliton solntions of a nonlwear lumped-network equation,
J Phys Soc Jap , 1973, 35, 286-288



DIFFERENTIAL~-DIFFERENCE KADOMTSEV-PETVIASHVILI EQUATION 361

Hrota, R

Hirota, R

Hrora, R

HiroTa, R

HiroTa, R

Hirota, R

HiroTa, R

HiROTA, R, OHTA, Y AND SATSUMA, §

HiroTA, R, OHTA, Y AND SATSUMA, }

HiraTA, R

Hirora, R

Hrora, R

HIROTA, R AND SATSUMS, J

HiroTa, R AND SATSUMA, J

SaTsuma, J

Satsuma, T

Feeeman, N C anp Nivmo,J J €

NiMmo, I T C AND FREEMAN, N C

MIYAKE, 8, OHTA, ¥ AND SaTSUMA, T

Exact N-soliton solutions of a nonlinear lureped self-dual network
equation, J. Phys. Soc Jap , 1973, 35, 289-294

Drrect methods wn soluon theory In Soltons (R K. Bullough and
P J Caudrey {eds)), Springer-Verlag, 1980, pp 157-176

Nonlinear partial difference equations I A difference analogue of
the Korteweg-de Vres equation, J Phys Soc Jap, 1977, 43,
1424-1433

Nonlinear parual difference equanions 1L Discrete-tume Toda equa-
von, J Phys See Jap, 1977, 43,2074-2078

Neniinear partsal difference equations I Discrete Stne-Gordon
equation, J Phys Soc Jap , 1977, 43, 2079-2086

Noplnear partial difference equations TV Backlund transformation
for the diserete-ume Toda equation, J Phys Soc Jap, 1977, 45,
321-332

Nonlinear partial difference equations. V Nonlinear equations te-
ducible 1o linear equatons, J Phys Soc Jap , 1979, 46, 312~319

Solutions of the KP equauon and the two dunenstonal Toda equa-
tions, J Phys Soc Jap , 1988, 57, 19011904

Wronsgkian structures of soliton equations, Prog Theor Phys
Suppt, 1988, 94, 59-72

Soliton solunons to the BKP equatrons I The Pfaffian techmique,
J Phys Soc Jap , 1989, 58, 2285-2296

Solitan solutions to the BKP equation II The mtegral equaton,
J Phys. Soc Jap, 1989, 58, 2705-2712

Discrete analogue of a generalized Toda equation, J Phys. Soc
Jap , 1981, 50, 3785-3791

Nonkmear evolution equations generated from the Backlund trans-
formation for the Toda lattice, Prog Theor Phys, 1976, 55, 2037
2038

Sohton solutions of a coupled Korteweg~de Vries equattons, Phys
Lett A, 1981, 85, 407-408

N-Soliton solution of the two-dimensional Korteweg-de Voes
equauon, J. Phys Soc Jap , 1976, 40, 286-290

A Wronskian representation of N-soliton solutions of aonlmnear
evolution equations, J Phys Soc. Jap , 1979, 46, 359-360

Solnon solunons of the Korteweg-de Vries and Kadomtsev—
Petviashvili equabions The Wronskian techmque, Phys Len 4,
1983, 95, 1-3,

A method of obtamng the soliton solutior of the Bonssimesq equa-
ton m terms of 2 Wronskean, Phys Lex A, 1983, 95, 4-6

A representation of soluhons for the KP hierarchy aod its algsbraic
structure, J Phys Soc Jap , 1990, 59, 43-35



362

36.

37

38

41

%

45.

46.

47.

49

K M TAMIZHMANI AND § KANAGA VEL

Hrota, R

HiroTa, R, Iro, M anp Kako, F

Onta, Y AND HROTA, R

OHTA, Y, HROTA, R, TSUIMOTO, § AND
anm, T,

Solutions of the classical Boussinesq equation and the sphencal
Boussinesq equaton The Wronskian technique, J Phys Soc Jap,
1936, 55, 2137-2150

Two-dmensional Toda latuce equations, Prog Theor Phys Suppl,
1988, 94, 42-58

A discrete KV equation and s Casorati deternnant solution,
T Phys Sec Jap , 1991, 60, 2095

Casorats and discrete Gram type determunant representations of
solutions to the discrete KP hierarchy, J Phys Soc Jap, 1993, 62,
1472-1886

Onra, Y, Kanwara, K, M, T Casoratt solatron for the Todz lattice equa-

AND SATSUMa, ton, J Mash Phys , 1993, 34, 5190-5204

HIETARINTA, A search for biltear equations passing Hirota's three-soliten con-
diton 1T KdV-type bilnear equations, J Matk Phys, 1987, 28,
1732-1742

HIETARINTA, ] A search for bibmear equations passing Huota's three-soliton con-
dion JT MKdV-type bilinear equattons, J Mash Phys, 1987, 28,
2094-2101

HIETARINTA, § A search for bilinear equations passiag Hirota's three-soliton con-
ditton T Sine~Gordon-type bilimear equations, J Math Phys,
1987, 28, 2586-2592

HETarmTA, J A search for bilmear equations passing Hirota's three-soliton con-
diton TV Corplex bilmear equauons, J Math Phys, 1988, 29,
628-635

HETARINTA, § Hota’s bilipear methed and sts generalzation, Ins J Mod Phys A,
1997, 12, 43-51

Hwrora, R

Asuownz, M J Ako SEcur, H
ABLOWITZ, M I, RAMANL, A AND
Secur, H

RaMaNL, A , GRAMMATICOS, B AND
Bounts, T

LaksuMANAN, M AND SAHADEVAN, R.
Weiss, I, TABOR, M. aND CARNEVALE, G,

Contg, R

LEVL, D AND WINTERNTTZ, P (BDS)

Reduction of soliton equations 1n bilinear form, Physica D, 1986,
18, 161-170

Exact | of & Panlevé Phys Rev Lett,
1977, 38, 11031106

Nouhnear evolution eqaations and ordinary differenttal equations of
Pawlevé type, Lett Nuove Cumt , 1978, 23, 333-338

The Pamlevé property and singulanty analysis of mtegrable and
non-integrable systems, Phys Rep , 1989, 180, 159-245

Painlevé analysis, Lie symmetnes and integrabihty of coupled
ronlmear oscillators of polynorual type, Fhys Rep , 1993, 224, 1

.
The Pamlevé property for partal differential equations, J Math
Phys, 1983, 24, 522-526

Tnvanant Pamlevé analysis of partial differennal equations, Phys
Lent A, 1989, 140, 383390

Pamlevé transcendents, thew asymptones and physical applica-
tions, Pletwm, 1992



50

52
33

54

57

58

61

62

63

65

66

67

DIFFERENTIAL-DIFFERENCE KADOMTSEV-PETVIASHVILI EQUATION 363

Contg, R

Waiss, J

Inee, E L

FOKkAS, A 8 AND SANTINL P M

OLVER, P 1

Fokas, A § AND ANDFRSON, R L

FUCHSSIEINER, B AND FORAS, A §

OBVEL, W AND FUCHSSTLINER, B

KONOPELCHENKO, B. G,

CHEN,H H,Lig, Y C ann L, § B

TaMIZEMANL K M

MacRL F

Dicksy, L A

OERVEL, W . ZHANG, H AND
FUCHSSTEINIR, B

OEVEL, W , FUCHSSTEINER, B.,
ZHANG, H anD RagNisco, O

OsvEL, W, ZHANG, H AND
FucHssTIINGR, B

Fokas, A §

OnvEL, W AND FUCHSSTEINER, B

Universal mvarance properties of Pawlevé analysis and Backlund
transformatzon 1 nenlnear partial drfferential equations, Phys Lert
A, 1988, 134, 100-104

Backlund transformations and the Pamlevé property In Partally
integrable equarions (R Conte and N Boccara, eds), NATO ASI
Series ¢ Matiematical and Physical Seiences, Vol 310, Kluwer,
1990, pp. 375-411

Ordinary differennal equations, Dover, 1956

The recursion operator of the Kadomtsev--Petviashvih equation and
the squared exgenfunctions of the Schrodinger operator, Stud Appl
Math | 1986,75, 179185

Applications of Lie groups to differential equations, Springer—
Verlag, 1936

On the use of 1sospectral eigenvalue problems for obtaning here-
dutary symmetries for Hamultorwan systems, J Mark Phys, 1982,
23, 1066-1073

Symplectic structures, their Backlund transformateons and hered-
tary symmetoies, Physica D, 1981, 4, 47-66

The ti-Hamiltoman structure of some nonlmear fifth and seventh-
order differential equations and recursion formulas for ther
symmetries and conserved covanants, J Math Phys, 1982, 23,
358-363

Nonlinear imtegrable equations, Lecture Notes un Physics, Vol 270,
Spnnger-Verlag, 1987

On a new hierarchy of symmetries for the Kadomtsev—Petviashvilt
equanion, Phystca D, 1983, 9, 439-445

G eal, group th 1 and structure aspects of

certan nonhnear partial differential equanons, PhD  Thesss,
University, T Indra, 1986

A sumple model of the mtegrable Hamiltoman equation, J Math
Phys , 1978,19, 1156-1162

Solton egquations and Hamltoruan systems, Adv Ser Math Phys,
Vol 12, World Scientfic, 1991

Symmetries, conserved quanuties and tierarchies for sore lattice
systems with soliton structure, J Math Phys, 1991, 32, 1908
1918

Master symmeines, angle vanables and recurston operator of the
relatrvistic Toda Jattice, J Marh Phys , 1989, 30, 2664-2670

Master and muly-F for some
imtegrable latuce systems, Prog. Theor Phys , 1989, 81.294-308
Symmetries and mtegrability, Stud Appl Mah, 1987, 77, 253-
299

Explecst formulas for the symmetnes and conservation laws of the
Kadomtsev-Perviashvili equanon, Phys Leit. A, 1982, 88, 323-327



364

68

69

8

86

K M TAMIZHMANI AND § KANAGA VEL

OeviL, W awp Fuc) B

New of nonlinear megrable systems related

KOSMANN-SCHWARZBACH, Y

StraMre, W
ZHaNG, H , GUI-ZHANG Tu, OBVEL, W
AND FUCHSSTEINER, B

STEPHANL, H

Ovsianxmov, L V

ARLowrrz, M J AND HABERMAN, R
Kaue, D.J anp NeweLL, A C
Wapat, M, Kowxo, K avp

Tcrkawa, Y H
‘WapAT, M, Konng, K anp
Tcukawa, Y Ho
Sevzy, T AND WADATL, M

IsHMORY, Y

IsHMORL, Y

‘WapaT, M AND S060, K

Konno, K aND JRFFREY, A

Amauit, H

ARauLT, H, MCKEAN, H P aND
Moser, J.

ABLOWITZ, M ] AND SaTSUMa, J

Nowo, I T C anp Preevan, N C

MaTsuNo, Y

to a change of vanables for evolution parameters, Physica A, 1987,
145,67

Lae algebras of symmetnes of partial differential equations In Dif-
Serentual geometric methods m mathemancal physics, Vol 241,
{S Stemberg, ed ), D Rerdel, 1984

Lag-parrs, spectral problems, and recursion operators, J Math
Phys , 1984, 25, 2905-2909

Symmetries, conserved quantiies and higrarchies of some Jatuce
systems with soliton structure, J Math Phys , 1991, 32, 1908

Dyfferennial equanons Thewr solution using symmetries, Cambndge
University Press, 1989

Group analysis of differential equatons, Academc Press, 1982
Resonantly coupled nonlinear evolution equations, J Muth Phys
1975, 16, 23012305

An exact solution for a derrvauve nonlinear Schrodinger equation,
J Math Phys , 1978, 19, 798-801

A generalization of the wnverse scattenng method, J Phys Soc
Jap , 1979, 46, 1965-1966

New imntegrable nonlmear evolution equanons, J Phys Soc Jap,
1979, 47, 1698-1700

A mew wtegrable nonlnear evolution equation, J Phys Soc Jap,
1580, 63, 808820

On the modified Korteweg-de Vries equation and the Joop soliton,
J Phys Soc Jap , 1981, 50, 2471-2472,

A rel hp between the Abl
Wadat-Konno-Ichikawa schemes of the tnverse scattering method,
J Phys, Soc Jap , 1982, 51, 3036-3041

tz-Kaup-Newell-Scgur and

Gange transformations m soliton theory, J Phys Soc Jap , 1983,
52, 394-308

The loop soluon. In Advances in nonlinear waves (L. Debnath, ed )
Pitman Research Notes in Mazh , 1984, 95, 162-183

Ratsonal solunons of Pamlevé equatons, Stud. Appl Math , 1979,
61, 31-53

Rattonal and elliptic soluuons.of the KdV equation and related
many-body problems, Commaun Pure Appl Math , 1977, 30, 95—
198

Solitons and rational solutions of nonlinear evolution equations,
J Muath, Phys , 1978, 19, 2180-2186,

Rauonal sofutions of the Korteweg—de Vries squation m Wronskian
form, Phys Lett A, 1983, 96, 443-446

A new proof of the rational N-scliton solution tor the Kadomisev—
Petviashvilt equason, J Phys Soc Jap , 1989, 58, 67-72



89

92

97

98

99

101

102

103

104

105.

107

DIFFERENTIAL- DIF
ADLER, M aND MoOSER, J
SATSUMA, J AND IsHIMoRI, Y
GALKIN, V' M, PELINOVSKY, D B AND
STEPANPYANTS, Y A
PELINOVSKY, D
Hu, X B
ADLER, V E
MarveLv, V B aND SAl L, M A
Kamwara, K anp Onta, Y

Kupryasiov, N A axD NIKITIN, V A

MATSUKIDAIRA, § , SATSUMA, | AND
S1RAMPE, W

GRAMMATICOS, B, RAMANL, A anD
HiETARINTA, §

RAMANG, A, GRAMMATICOS, B anD
Satsuma, )

OHTA, Y, RaMANI, A, GRAMMATICOS, B

AND TamzemaNs, K M

LAKSHMANAK, M. AND Katiaeean, P,

Tamizaman, K M anp
PUNITHAVATH], P

TAMIZHMANL K. M, RAMANL A AND
GRAMMATICOS, B.

CLARKSON, P A AND KRUSKAL, M D

CLARKSON, P A anp Hoop, §

Brumar, G W anp Kumer, S

CHaMPAGNE, B , HEREMAN, W AND
WINTERNITZ, P

INCE KADOMTSEV-PETVIASHVILI EQUATION

365

On a class of polynomsals connected with the Korteweg-de Vres
equanion, Commun Math Phys., 1978, 61, 1-30

Perodic wave and rauenal soliton solutions of the Benjumin-Ono
equation, J Phys Soc Jup , 1979, 46, 681-687

The structure of the rational selutions to the Bovssmesq equatson,
Physua 1), 1993, 80, 246-255

Ranonal solutions of the Kadomtsev~Petviashvili beerarchy and the
dypamics of thew poles 1 New form of a general rational solution,
J Math. Phys , 1994, 35, 5820-5830,

Rauonal sofutions of mntegrable equations via nonlnear superposi-
uon formulae (preprnt)

On the ratonal solutions of the Shabat equation In Nonlmear
physics theory and experrment (B Alfimto et al., eds), World
Serennfic, 1996, pp 3-10

Darbow reansformanons and solitons, Sprnger-Verlag, 1991
Detceninant structure of the rational soletions for the Pamievé [V
cquation, J Phys A, 1998, 31, 2431-2446

Pawmlevé analysis, ratonal and special solutions of a vanable coeffi-
cient Korteweg~de Voes cquatons, J Phys A, 1994,
L101

Soliton equatiens expressed by tnlmear forms and therr solutions,
Phys Leit A, 1990, 147, 467471

Multiinear operators The natural extenston of Hiota's bilnear
tormahsm, Phys Lent A, 1994, 190, 65-70

Bilinear discrete Pamlevé equations, J Phys A, 1995, 28, 4655~
4665

From discrete 1o contnuous Pamlevé equations A bimear app-
toach, Phys Lett A. 1996, 216, 255-261

Lie transformations, noafcar cvolubon equations, and Painlevé
forms, J Math Phys , 1983, 24, 795-805

Infinite-dimensional Lic algebrasc structure and the symmetry re-
duction of & nophnear hugher-dimensional equation, J Phys Soc
Jap., 1990, 59, 843-847

Lae symmetnies of Hurota's bilmear equations, J Math Phys, 1991,
32, 2635-2659

New smilanty reducton of the Boussmesq equanon, J Math
Phys , 1989, 30, 22012213

New symmetry reductions and exact solutions of the Davey-Stc-
wartson system [ Reducuons to ordinary differeniial equations,
J Mash Phys 1994, 35, 255-283

Symmetries and differennal equations, Springer, 1939

The computer calculanion of Lie porat symmetries of Jarge systems
of differential equanons, Comp Phys Commn, 1991, 66, 319~
340



118

mn

1z

us

114

115

16

17

118.

119,

120

121

K M TAMIZHMANI AND $ KANAGA VEL

HeremaN, W

HeaD, A
Dav, D, KaMraN, N, LEVL D AND

WavErNTz, P
Sato, M

8410, M AXD SaT0, Y

Onra, Y, SATSUMA, J, TakaHAsH, D
AND TOKTHIRO, T

Date, E, IMBO, M, KaSHIWARA, M AND
Miwa, T

DaTE, E, JIMBO, M AND Miwa, T

JivBo, M anp Mrwa, T
MATSURDAIRA, T, SATSUMA, J. AND
Stravrr, W

Kanwara, K., MATSUKIDAIRA, ] AND
Satsuma, J

KATWARA, K AND SATSUMA, §

KONOPELCHENKO, B G AND OBVEL, W

KoNOPELCHENKO, B AND OgvEL, W
AgLOWITZ, M T AND LaDIK, ] F
ABLOWITZ, M J AND LADIK, J F
UBno, K anp Taxasaxy, K

OBvEL, W

New trends P and meth-
ods (N H Toragmnov, ed ), CRC Handbook of Lie group analysis
of differential equations, Vol 3,pp 367-413, CRC Press, 1996

Lie a MUMATH program for the caleufation of the Lie algebra of
differential equations, Comp Phys Commun , 1993, 77, 241-248

Symmetry reduction for the Kadomtsev-Petviashvili equatson using
aloop algebra, J Math Phys, 1986, 27, 1225-1237

Soltton equations as dynamical systems on an mfintte dimensional
Grassmann mamfold, Publ Res Inst Matk Sci, Kokyoroku, 1981,
439, 3046

Solstont equanons as dynanucal systems on wfinte Grassmann
manfold In Nonhnear pertial dhfferental equations in applied
science (H Fupta et al, eds), Kinokumya/North-Holland, 1983,
pp 259-271

An elementary mtroduction to Sato theory, Prog Theor Phys
Suppi , 1988, 94, 210-241

Transformation groups for soliton equauons, Proc RIMS Symp
Nonhnear Imegrable Systems, Classial and Quantum Theory,
(M hmbo and T Miwa, eds), Kyoto, 1981, pp 35-119, World
Scentific, 1983

Method for geperaling discrete soliton equauions I-V, J Phys Soc
Jap , 1982, 51, 4116-4126, 41254131, 1983, 52, 388-393, 761
765, 766-771

Solutons and mfinte dimensional Lie algebras, Publ Res Inst
Math Sai Kyote Unv , 1983, 19, 9431001

Conserved quantsties and symmetnes of XP Inerarchy, J Math
Phys, 1990, 31, 1426-1434

Conserved quantities of two component KP hierarchy, Phys Lett A,
1990, 146, 115-118

The conserved quantities and symetries of the two-dunensional
Toda lattice hierarchy, J Math Phys , 1951, 32, 506-514

Sato theory and mtegrable equations m 2+ dumensions. In Proc
7th Workshop on Nonlinear Evolution Equations and Dynamical
Systems (NEEDS'91), Basa Verde, Italy, June 19-29, 1991

An r-mainx approach to nonstandard classes of integrable equa-
t1ons, Publs Res Inst Math Sci Kyoto Umv , 1993, 29, 581666

Nonlmear differenttal-difference equations, J Math Phys., 1975,
16, 598-603

Noulnear differentral—difference equations and Fourter analysss,
J Math Phys 1976, 17, 1011-1018

Toda lattzoe hierarchy, Adv Stud Pure Math , Ksnokumya, Tokyo,
1984, 4, 1-95

Paisson brackets for ntegrable lattice systeros Tn Algebrare aspects
of tegrable systems Jn memory of Irne Dorfman (A. S Fokas and
I M Gelfand, eds), Bukhauser, 1996, pp 261-283



126

127

128

129

130

131

132

133

138

139

“

“2

143

144

145

146

DIFFERENTIAL-DIFFERENCE KADOMTSEV-PETVIASHYILI EQUATION 367

Braszax, M, anp Marcmiak, R

IEVL D, PaLont L anp
Santing, P M

WizksMa, G anp Cavel, H W

NUHOFF, F W aNp Caper, H W

NuHors, F W, Papacicrcior, V G,
Carer, H W aND QuiskrL, G R W

PAPAGEORGIOU, V ., NUHOEF, F AND
CareL, H W

CapeL, H W, Nunort, F W aND
PapaGEORGIOU, V G

Quiserr, G R W, Rosirts, ] A G
anp Taompson, C J

QuiskEL, G R W, RosIrTs, J A G
AND Thiomeson, C J

Toba, M

KueErstmMipT, B A

RAMaNL, A , GRAMMATICOS, B AND
TasvazeMany, K M

RAMANL A , GRAMMATICOS, B AND
Tamizians, K M

TAMZHMANT, K M, RAMANI, A AND
GRAMMATICOS, B

Magpa, S

Magpa, §

Mapoa, §

LEv, D anp Wiwrernmnz, P

Levi, D Anp Winrernirz, P

Levi, D anp WinteRNnz, P

Levi, D, Viner, L ANp WivTrRNITZ, P

R-Maurx spproach to lattice integrable svstems, J Math Phys,
1994, 35, 46614682

Tntegrable three-dimensional lattices, J Phys A, 1981, 14, 1567
1575 )

Lathice equanons, hierarchies and Hamaltorman structures, Physica
A, 1987, 142, 199-244

The direct Imeansation approach to hierarchies of mtegrable PDEs
m (241} dmensions ] Latuce equavons and the differential-
ifference hierarchies, Jny Prok , 1990, 6, 567-390

The Jattzce Gel'fand-Diky merarchy, Jav Prob, 1992, 8, 597-621

[nteprable mappings and nonbinear integrable lattice equations,
Phys Le A, 1950, 47, 106-114

Complete tegrability of Lagrangian mappmgs and lattices of KAV
type, Phys Len A, 1991, 158, 377-387

Integrable mappmgs and soliton equabons [, Phys Len A, 1988,
126, 419421

Integrable mappings and soliton equations I, Physica D, 1989, 34,
183-192

Nonhnear waves and solitons, Kluwer, 1989

Drscrete lax equations and differential-difference calculus, dsté-
risque, 1985, 123, 1

systems, J Phys A,

An ry test for hife
1992, 25, 1.883-L886

Pamnlevé analysts and singulanty confinement The ultinale conjec-
e, J Phys A, 1993, 26, L53-L58

Smgulanty confinement anatysis of integro-differentsal equatrons of
Benyamin-Ono type, / Phys 4, 1997,30, 1017-1022

Canomeal strucwre and symmetnes for discrete systems, Mah
Jap , 1980, 25, 405420

Extension of discrete Noether theorem, Math Jap, 1981, 26, 85~
90

The simylanty method for difference equations, IMA J Appl Math
1987, 38, 129-134

Continuous symmetzies of discrete equanons, Phys Lett A, 1991,
152, 335-338

and of
equations, J Math Phys 1993, 34, 3713-3730

" -1 ffer

Symmetnes of discrete dynamical systems, Ji Math Phys , 1996,
37, 55515576

Lie group formalism for difference equatons, J Phys A, 1977, 38,
633-649



147

348

149

150

15

153

154

135

156

157

158

161

162

163

K M TAMIZHMANI AND 5 KANAGA VEL

Quisess, G R W, Caest, H W anp
SAHADEVAN, R

Quipr, G R W, CapeL, H W axp
SAHADEVAN, R

QuiseeL, GG R W AND SAMADEVAN, R
Gagms, G

KANAGA VEL, S AnD TamizaMant, K M

THAMIZHARAST TAMIZHMANL,
KANAGA VEL, § AND Tanazumang, K M

TamizeMant, K M anp
KANAGA VEL, S

TAMIZEMANGL K M, KaNAGA VEL, S,
(GRAMMATICOS, B AND RAMAN, A

KANAGA VEL, §

GRAMMATICOS, B, RAMANI, A AND
PAPAGEOROIOU, V G

RAMANL A , GRAMMATICOS, B AND
HETARNTA,

PAPAGECRGIOU, V G, NDHOFR, B W,
GRAMMATICOS, B AND RAMANI, A

TAMZEMANL K M , GRAMMATICOS, B
AND RAMANL, A

GRAMMATICOS, B AND RAMANY, A

RAMANG, & arD GramuaTicos, B

GRAMMATICOS, B A Raman, A

Kanwara, K, OHTa, Y, SATSUMA, §,
GRAMMATICOS, B AND RAMANL, A

GRAMMATICOS, B AND Raman, A

Contimous symmetnes of differential-difference equations the
Kac~van Moerbeke squation and Pamlevé reduction, Phys Lest 4,
1992, 170, 379-383

Conumous symmetries and Panleve reduction of the Kac—van
Moerbeke equaton, Proc NATO Wurkshop on Applicanons of
Analync and Geometric Methods 1o Nonlnegr Dyferential Equa-
fons (Clarkson, P A , ed), Kluwer, 1993

Lse symmetries and the mtegration of difference equations, Phys
Lett 4,1993,184, 6470

Lie pomt symmetnies of discrele versus contnuous dynamical sys-
terns, Phys Lett A, 1993, 178, 176-384

Lax pas, and o Jaws of a il-dif-
ference equation—Sata’s approach, Chaos, Selitons Fragrals, 1997,
8,917-931

Wrenskian 2nd savonal soluvons of differenuat-difference KP
equation, J Phys A, 1998, 31, 7627-7633

Gauge e and Foredh of differental-thife KP
equation, Chaos, Soluons Fractals (to appear)

Smgulanty stucture and algebrarc properties of the difterential-
iference Kadomtsev~Petviashvih equation {prepnnty

On  certan wpects  of  diffe i~differ
Kadomtsev~-Petviashvis equation, Ph, T) Thests, Pondwherry Uni
versity, Tndia, 1998

Do mtegrable mappings have the Pamlevé Property?, Phys Rev
Letr , 1991, 67, 1825-1828

Discrete versions of the Pawlevé equatons, Phys Rev Lett, 1991,
67,1829~1832

Isomenodromic deformaton problems for discrete analogues of
Pamnlevé equations, Phys Lett 4, 1992, 164, 57-64

Schlesinger transforms for the discrete Pamilevé [V equation, Lezt
Mah Phys , 1993, 28, 49-54

Discrete Panlevé equations Dervauon and properties, NATO AS!
C, 1993, 413, 299-314

Muura transforms for discretc Pawlevé equations, J Phys 4, 1992,
25, 16331637

Tntegrability and how 1o detect st In hutegrability of nonlinear sys-
vems, Lecture Notes in Physics, Vol 495, Proc CIMPA Int Winter
School on Nonlnear Systems (Y Kosmann-Schwarzbach ¢t af,
eds) Sprmger-Verlag, Bethn, 1996, pp 30-94

Casoraut determinant sofutans for the discrete Pamlevé-IT equation,
J Phys A,1994,27, 015-922

Invesnganng the miegrabilty of discrete systems, Int J Mod
Phys B, 1993, 7, 3551-3565



165

166

167

168

169

170

171

1m

173

174

175

176

17

178

179

180

18

182

183

184

DIFFERENTIAL-DIFFERENCE KADOMTSEV~PETVIASHVILI EQUATION 369

GRAMMATICOS, B , PAPAGECRGIOU, V
AND RAMAN), A

RAMANI A , GRAMMATICOS, B ,
TAMIZHMANL, K M AND LAFORTUNE, S

Fokas, A §, GRAMMATICOS, B AND
Raman, &

Discrete dressing wansformatsons and Painlevé equations, Phys
Lert A,1997,235, 475479

Agan, lmezrizable mappings, Physica 4, 1988, 252, 138-150

From contmuous to discrete Panlevé equations, / Math Anal
Appl , 1993, 130, 342-360

GRAMMATICOS, B, OHTA, Y, RAMANL, A, A Mura of the Pamnlevé T equation and its discrete anzlogs, Leit

Sarsuma, J AnD TAMizHMANL K M

Satsuma, J, Kanwara, K.,
GRAMMATICOS, B , HIETARINTA, ] AND
RAMANL, A

GRAMMATICOS, B, RAMANI, A AND
Tamzumari, K M

BruscHt, M, Racyisco, O,
SantiNg P M aNp To, G Z

GRAMMATICOS, B, RAMANL A& AND
Morera, I C

VESELOV, A P AND SHaBAT, A B
KOWALEVSKI, §

Kowarevsi, S

HILLE, B

AsLowrtz, M J anp SEGUR, H

GiseoN, ] D AND TaBOR, M

LAKSHMARAN, M

Math Phys , 1997, 39, 179-186

Bilinedr discrete Panlevé-Il and 1ts parcular solutions, 7 Phys A,
1995, 28, 35413548

Non-prolaferation of preimages wtegrable mappings, J Phys A,
1994, 27, 559-566

Tntegrable symplectic maps, Physica D, 1991, 49, 273-294

.
Delay-differential equations and the Panlevé transcendents,
Physua A, 1993, 196, 574-590

Dressing chams and the spectral theery of the Schrodimger operator,
Func Anal Appl, 1993, 27, 81-96

Sur l¢ probléme de Ja rotation d'un corps solide autour d'un poine
{ixe, Acta Math , 1889, 12, 177-232

Sur une proprété dun systdme d'équations différenniclies qui
defimt Ja rotanon d'un corps solide autour d’us pownt Fixé, Acta
Math , 1889, 14, 8193

Ordmary differennal equanions in complex domam, Wiley, 1976

Exact of a Pamlevé dent, Phys Rev Lext,
1977, 38, 1103-1106

On the one- and two-dimenstonal Toda lattices and the Pawlevé
property, J Math Phys , 1985, 26, 1956-1960

Contimuum spin system as an exactly soivable dynamical system,
Phys Leu A, 1977, 61, 53-54

ZAKHAROV, V E AND TAkHTAIAN, L A Equivalence of nenlmear Schrodmger equation and equatton of

Kunou, A

Kunpy, A

Kiso, X

OveL, W AND RoGERS, C

Hesenberg ferromagnet, Teor Mo Fiz, 1979, 38,26

Landau-Lafschitr and higher-order nonlmear systems gauge gener-
ated from nonlmear Schrodmger type equations, J Mark Phys,
1984, 25, 3433-3438

Exact solutions to higher-order nonhnear equations through gauge
ransformations, Physica D, 1987, 25, 399-406

A remark on the commuting flows defined by Lax equations, Prog
Theor Phys , 1990, 83, [108-1114

Gauge transformations and reciprocal luks 1 (2+1) dimensions,
Rev Math Phys , 1993, 8, 299-330



370 K M TAMIZHMANI AND § KANAGA VEL

185 KoNOPELCHENKO, B anp OeveL, W An r-matrix approach to ponstandard clagses of meegrable equa-
nons, Publ Res fnsr Math Sct, Kvolo Univ |, 1993, 29, 581-666

186 KonopeLcmMKG, B G Solitons i mulndimensions  Inverse spectral transform method,
World Scienufic, 1993

187 KoNoPELCHENKO, B The two drensional matnx spectral problem General structure of
the miegrable equations and their Backlund transformations, Phys
Lerr A, 1981, 89, 346-350

183 KONOPELCHENKO, B On the gange-invariant description of the evolution equations mte-
grable by Gel'fand-Diky spectral problems, Phys Leir A, 1982,
92,323-327

189 KONOPELCHENKO, B On the general structure of aonlinesr evolution equations ntegrable

by the two-dimenstonal matrix <pectrdl problem, Commun Math
Phys, 1982, 87, 105-125

190 Gesonkov, V' S, bvanav, M T axp Gauge transformalions and gencrating operators for the discrete
Vaasy, Y § Zakharov-Shabat system, nv Frob . 1936, 2,413,
191 Lwovsky, V D AnD Sumokov, A V. An example of gauge equivaience of muludimensional mtegrable

equations, Furc Anal Appl, 1989, 23, 65

192 Lo, R A, Marress, L AND Sotiant, G Gauge eguvalence theory of the noncompact Ishimon model snd
the Davey-Stewartson equation. J Matk Phys , 1992, 33,1515

Appendix L
Painlevé analysis for PDEs

ARS* proposed an algonthm to analyse the Patnlevé property of ODEs This has beem ex-
tended by WEC ¥ The Pamlevé analysis for PDEs due to WTC can be stated as follows: Let ns
vonsider the evolurion equation of the form

U+ Ky =0, AD

where K(u) 1s some nonlmear function of  and 1ts dertvatives of order A, in the complex do-
mam We say that an NPDE possesses the generalized Pamlevé property™ f the following
two condriions are satisfied

(a) The solutions of the NPDEI(A 1) must be ‘single-valued’ about the ‘non-chagacterisiic”
movable singnlanty manifold. More precusely, if the singulanity mansfold 15 determined

by
&, =0, ¢x, H#0 (A2)
and ulx, )15 a sofution of (A 1), then we seek
u:apaz u, ¢’ (A3
=0

where §= §(x, 1), u,=ux, ), ug% 0 are analytic functions of (x, £) 10 a neighbourhood of
the manifold and cr1s a negative mteger

(b) Then by Cauchy-Kovalevskaya's theorem, the solution (A 3) should contam N arbrteary.
functions, one of them bemg the fumction ¢ and others comung {rom the us The algo-
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nthmic procedure to test the given nonlinear evolution equation for its geperalized Pam-
levé property consists essentially of three steps. We shall describe each of these steps be-

low

Leadmng order analysts
The analysts starts with the deternmnation of the possible values of o and i 1n the expansion
(A 3) For each values of @, the homogencous terms with the highest degree may balance each
other The terms that balance each other are called leadmg terms Then all the os must be
negative integers by (a)

For each choice of the &, an algebraic equation for the i, 1n (A 3} is usually obtamed by re-
quiring that the cocfficient, say A of the dommant term A¢™® should vanish, where d 1s the
tughest degree I w, 1s arbitrary, A should identically vamsh.

Resonance analysis

After Wdenufymg all the possible branches i the solution (A 3), our next aim 1s to find the
resonances When the coefficient », of the term ¢’ “ in the expression (A 3) 15 arbtrary, then
we say that the resonance occurs at j m the above series. In order to find the resonance values,

we substitute

u=u0¢'x+uj¢”” Ad)
m eqn (A1), retaming only the most dominant terms, and exiracting the coefficient
0(7) = Q()u, of the term ¢’ “~* Then Q(j) =015 called the resonance equation, in which 1
18 always a root, which corresponds to the arbitrary nature of ¢. Substtuting the values of uq
(obtamed carlier  the leading order analysis) mn the resonance equation, one can find the re-
maming roots of Q)

Arbitrary functions

Having obtaned the resonance values, we have to show that necessary arbitrary functions exist
at these resonance values in the senes without the introduction of any movable critical mami-
fold. Let r, be the highest of the allowed resonance values Then we substitute

u=Y e, %)
"y

m the original equation (A 1) and for; =0, 1,2, , r,requires
O+ R =0, (A6)

where the lefi-hand side of eqn (A 6) 15 the coefficient of ¢/ *" and &, is a polynomual m the
partial derivatives of ¢ and us (k=0, 1, ,j~1). Smece @) =0, R, should 1dentically vamsh
for any resonance ;7 and m which case i, is arbitrary Supposc if 1t s not so, we have to intro-
duce loganthmic terms of the form a,+ b, log ¢ n the series But due to this addition, the
Togarithmic sigulartties will appear in the solution mamifold. Thus, the condinion &, =0 en-
sures that the solutton 1s free from movable critical mamfolds.
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Note: We have noticed rather late in production stage that eqns (4) and (5) do not figure m the
paper of K. M. Tamizhman: and $ Kanaga Vel, 1998, 78, 311-372 This omission bas proba-
bly occurred during revision



