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1. Introduction 

Elecnoencephalogram (BEG) is a record of electncal potenhals In the brmn whlch can be 
plcked up by pldclng elecirodes m the scalp or directly m the cerebral cortex. EEG n one of the 
commonly used non-lnvaslve techniqucs to understand bran funct~ons. It prondes information 
on epdepsy, cerebral tumors, cerebral trauma, etc and is also useful to inonltor sleep, depth of 
anaesthes~a and cessation of bran iunct~on Hans Berger was the fmt to record the elecUlcal 
actlvlty of the btmn m human subjects.' In normal subjects there IS a charactenstic BEG pattern 
made of waves of va~ylng frequency whch are dlvlded Into four EEG rhythms-alpha, bet4 
theta and delta Other EEG acttvities include transients wtuch occur spontaneously These 
transients are called spikes, sharp waves, and spike and wave activlnes dependmg on ther 
chanctenst~cs. 

EEG is a complex and random-loolung slgilal, and hence was anabed unttl recently as the 
Output of a stochasuc process, 1.e. generated by a 'black box' or a system dnven by some un- 
known (or white Gaussian) input. Based on this concept, spectral esMlation and several other 
techniques like stausucal pattern r e ~ o ~ n ~ h o n , ~  ~e~menta t ion ,~ '  syntactic meth~ds,~-'~ howl- 
edge-based approaches,"-'s and anlficial neural network methods1" " have been developed for 
analysmg EEG. Several models have also been developed based on the assumphon that EEG 1s 
stochasnc!~ l9 

These techniques bear little or no consideration to the process that generates EEG signal 
Thn may be the n u n  reasm for the hrmted success of the automated EEG analysis techques 
desplte the large number of attempts at automaeng the EEG lnterpretahon process and ever- 
mcreumg soph~sticatlon of the methods used.2o 



With recent advances m nonlmear dynanucs and chaos, EEG is bang considered as an out. 
out of a detnmuustlc system rather than a stochashc system. Ths is based on the concept that 
'even a simple nodme& detemnlsbc system wiuch IS very sensitive to lrutial condtions, 
called a chaotic system, can generate outputs whch are very Complex(-looking). Since EEG 1s 
a complex-lookmg signal, it conld be generated by such a nodnear dynmcal  system. This 
concept of chaos ~ntroduces a dynanucal perspecbve for understanding bram functions and for 
analysmg EEG. 

Th~s paper fust reviews how nodnear dynmcal techmques have been applied to analyse 
EEG data. It then presents various models that have been developed for EEG s~gnal based on 
chaotlc pnnc~ple Their efficacy 1s demonstrated by data compression as an application. 

To understand what chaos 1s and the terms associated wth nonlmear dynamics and chaos 
used in the paper, a short ovemew 1s given. 

2. Oveniew of nonlinear dynamics and chaos 

Any system whose evolutlon from some lnlhal state a dictated by a set of rules is called a dy- 
namlcal system Consider the followmg dynmcal system whch 1s defied by a set of ordmary 
mfferenual equations 

where %(t)=(xl(t) ..... xN(t))' is the state of the system at time t and 

j = ( f , , . . . , f N ) r : ~ N + ~ N  iscalledthevecforfield. Whenthevector field f doesnot 

w n m  bme exphatly, as gwen in (I), then we call the system as autonomous The d y n m c d  

system (1) is lrnear if is hear and mnlznear d j is n o d e a r .  A dynmcal system does 
not have to be descnbed by a set of dfferenhal equahons. Many dynamical systems are de 
scribedby a set of difference eqwfwns and they are often referredto as m p s .  

Gwen the initial condmon f(0) = go, the solut~on to (1) v d e n  as $,(f o), and is 
. . 

calledtheflow. We say that the flow q, 1s generated by the vector field j The flow $ indi- 

cates the w h o n  of the i t i a l  d t i o n  go after !me f. The evolutlon of the dynamical sys- 
tem can be descnbed m its state or phase space which is a Euchdean space whose coordinates 
are variables that are necessary to completely describe the state of the system at any moment. 
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TO each poss~ble stare of thc system, there corresponds a point In phase space. The phase space 
of the autonomous system (I) is a coordinate Fyrtem with coordinates~~, x,, ..., x, Plotong the 

set of pomts {J, (x,,)) m the phase space, as a function of time, gives the trajectoly of the 

system through go 

It can be proved that a trajectory cannot cross itself or no two trajectories can cruss each 
other m the p11xc space."," That is because Uie crossmg pomt would correspond to a single 
state flom wh~ch two dfferent rvolut~ons cannot origmate. Thls 1s dfferent from two tmjecto- 
nes apgroachrng an equ~librium polnl as t -;r m, whxh IS allowcd 

The local rate o l  expansion or conkacton of a dynamical system can be calculated d~rectly 
from the vector field or difference equation (without eltplrc~tly findmg any solution). We say a 
system IS consevrr-vanvu IF the absolute value of the Jacobran of its map equals exactly one or rf 
the dfvergence of 11s vector field equals zero for all tunes and at ail points. A physical syatem 1s 
dissipanve ]fit  is not conmvative The phase space of a &ssipatwe dynamical system 1s con- 
bnuousiy shnnkmg onto d smaller region of phase space called \he anracring set 

The final shitc or siluilrbnum slate of the evolution of a dynamical system m modeled by 
lirnir sets, whch are the state-space equivalcnts of the stead) state. The asymptotic mohons (as 
t -i -) of a flow are chmacterized by four general types of behavrour In order of increlsmg 
complex~ly thr.;e are rquiibrium pvlnrs or fired pooit~, penodrc rulurion., qirasipenod~c s o b  
tronr and chaor. An equil~hnum pomt or fixed point of a flow IS a constant, tune-mdependznt 

solutlon, 1 e. q5, (f ,) = x,, for all 2. At an equlrbnum pomt, the vector field van~hes, 1.e 

j ( i )  = 0 The llmlt %t colrepmding to the cqulhbnum polat IS slmply the equrl~bnum pomt 

Lrlf A penodlc soluoon of a flow IS a time-independent trajectory that prec~selg returns to 

itsclf in tune T, called the period, I e $, (fLj e a penodrc soluuon of an autonomous system 

IF, for all t, ~ , ( f * ) = ) , + ~  (2') for some mmmlum penod T>O Theresmcuon T>O ~s'rc- . . 
qured to prevent the cliws~ficat~on of an eqnil~bnum point as a pmod~c solut~on. A period~c 
solution 1s Isolated if ~ t s  naghborhood poasesscs no other p e n d ~ c  solut~on and IS called a limll 

cycle The bmit set correspondmg to a I ~ m s  cycle is the closed curve traced our by @ , ( f a )  

over one penod. A quaslpenodic solulion is one formed from Ihe sum of penodic solutions 
wlth lncommensumte periods. Two pcnods are incommensurate d thea ratio JS ~lrational 

A hounded asyrnplotrc motion that is not an equbbnum pomi, penod or quaslpenoda IS 

ofkn called chaocic Addlt~onally, the asymptotic solutlon should posscss scnslhve dependence 
on lrutlal cond~uons ;rive two dratmct mtial condit~ons arbitrarily close to one another and the 
kajcctones emanatmg from them &verge at a rate charactenstic of the system until they be- 
come uncon'elated for all practical purposes 

The stable asymptotic motions (or lunit sets) described above are examples of ahractors. 
The unstable limit sets are examples of repliers Attractors that are chaohc are called c h a o t ~  
attractors. 
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Sensifive dependence on h u a l  conditions has an important ~mplicanon. If the initial con. 
dit~ons are known exactly, ~ t s  evolubon can be predicted far ever The problem, however, is 
that one cannot have perfeet knowledge of the lmhai wndIhons. IIIsbuments can measure the 
vanous parameters only approximately T h m  will always be some devtation from the actual 
ones. They may be very close w each other, but will not be the same. In such a case, even if we 
know completely the physlcal laws that govern the system, due to the nature of the underlying 
amactor, the actual state of the system at a later hme can be totally different from the one pre- 
mcted Due to the nature of the system, initial enors are amplified and, therefore, pxdction is 
lmnted 

The dynmcs  of a system are dxtated by the geomehy of the phase space and 11s attractor 
Tlus geometry can be quantified by a series of dunensions and Lyapunov exponents There are 
different types of dimensions; the most farmliar ones being the Euclzdean and topological di- 
mensions Accohlmg to the Euclidean d e i k h o ~  a configurahon a called one dimens~onal if ~t 
is embedded on a straight h e ,  two dunensional tf it 1s embedded on a plane and three dimen- 
sional $11 e embedded on space. But the topological dimension of a pomt is zero, of curves is 
me, of surfaces is two and of space IS three. None of these dunensions allows non-mteger val- 
ues and none can be used to describe strange attractors The genenc tenn for a dimcnsm that 
bas non-mteger dunensions 1s called afractal. Almost all strange atuactors are fractals Three 
dfferent types of fractal dmension, the capacity dimemon, the information drmension and the 
corelatron drmension, are presented below. 

Capacity drmensron: The suuplest type of dunension 1s the capaclty dimenslon. Cover an at- 
tractor A wth volume elements (wth Euclidean dmensions of A) with diameter & Let N(E) be 
the innumum number of volume elements needed to wver A Then N(@ 1s inversely propor- 
uonal to 8 where D IS the Euchdean dnnension of A, i e. 

N(e) = k ~ - ~  

for some constant k. Then the capaclty drmens~on~~ 1s obtamed by solving for D and taking the 
h t  as E appmaches zero 

Dm, can take non-mteger values For example, the capacity dunension of Koch curve (which a 
generated by consldedng a stmght-lme segment of length L and replacing 16 middle b r d  by 
two equal segments of side U2 forming of an equilateral mangle and repeating t h ~ s  proce- 
dure many times) is glven by D,, = = 126 

Informanon dimension: Capacity dimenslon is a purely metric concept. It does not utilize the 
mf~rmahon about the time khanour of the dynarmcal system Infomt im dunension, on the 
other band, takes it lnto account Let N(&) be the minimum number of volume elements wlth 
diameter &needed to cover attractor A Then the informahm dimension D ~ i s  defined asz3 



ANALYSIS AND MODELLVG OF CEF DATA 377 

where H(&) = -$?)P,h p , .  p, is the relative frequency with which a mjectory enters the ith 

volume element, and WE) the enixopy, i s .  the amount of information needed to specify the 
state of the system to an accuracy of E if the state is known to be on the amactor. 

Correlation dimension: Correlation dimension is another probabiistic type of dimension. Let 
N(&) be the nununum number of volume elements with drameta &needed to cover atomtor A. 
a hen the correlauon dimension Dc 1s defmed as 

wherep, is the relative frequency with which a trajectory enters the ~ t h  volume element. Now, 
define the correlation funct~on as 

where H(@ 1s the Heaviside function and N the number of points of the mjectory The sum- 
mahon counts the number of paus of points (X,, &) such that IU: - X,II < &. Thenz3 

The m a n  reason for findlng the dimension of an attractor is to estimate the mmimum num- 
ber of vanables needed to describe the steady-state dynamics. So, there seems to be no theo- 
rehcal reason for choosmg one type of dunension over another, except for ease and accuracy of 
lts computation. 

Another set of exponents that can characterize the properties of an amctor of a dynarmeal 
system is the Lyapunov exponents. The Lyapunov exponents are related to the average rates of 
convergence andlor divergence of nearby trajectories in phase space, and, therefore, measure 
how predictable or unpredsctable the system is. A formal defktion of Lyapunov exponents a 
oven below: An attractor embedded m an n-dimensional Euclidean space is cons~dered and a 
Set of mtial condlhons in the amactor that are confined withm an ndimensional sphere is 
taken ' h e  space 1s allowed to evolve in time and its long-term evolution monitored The pnn- 
clpal axes of this s p h m  are ordered fmm the most rapidly to the least rapldly gmwlng, and the 
mean growth rate 4 of any given principal axis p, is computed These growth rates may be 
defmed as follows: 



Herep,(0) s the radius of the pnnc~pal axis p, at t = 0 (1 e In the miual hypersphere), and p , Q  
a Ifs after a long ume T The set of &s IS refened to as the Lyapunov exponent speo - ~h~ are as m y  Lyapunov exponents as the d~mension ofthe phase space. 

When at least one Lyapmv exponent IS posttive, then the rystem at hand rs chaonc, and 
there mil be exponenhal d~vergence of nearby pomts along at least one direchon on the stuac- 
tor This results m an inabil~ty to prehct the evolut~on of the tralenory beyond an mtetval of 
hme appmx~mately the mverse of the mvergence rate. When no posltive Lyapunov exponent 
ensts, there IS no exponenhal dwergence, and the long-term premctabll~ty of the system at 
hand 1s guaranteed 

3. Application to EEG analysis 

In the prevlons sechon, a short overview of nonbnear dynmcs  and chaos was glven. In this 
sechon, we wdl see how these concepts are useful m the analysis of EEG Srnce a dynanuc 
model may be preferred to a phenomenolog~cal slochast~c descriptor, a formalism of chaotlc 
dynam~cs has found applrcatlon m analps~ng the EEG sgnal and In understnnding bram func- 
tions. So, EEG 1s now being conxdered as the output of a nonlinear dynamic (chaotic) system 
and efforts are on to calculate the vanous charactenstic parameters of the sytem d~scussed in 
the last secnon and to develop vauous applicat~ons usmg them. 

Most of the siuhes made m tlus dnect~on are towards the evaluauon of correlat~on dimen- 
smn oEEEG signals recorded under hfferent neurophys~ologxal states Smce the dlmennon of 
the attractor 1s a charactenshc feature of the underly~ng neuronal processes generating EEG 
agnals, ~t has been applied to classficanon of neural achvlhea, feature detecuon of various 
bra111 states, stndymg the effects of drugs on brain, etc Babloym et al.?s-z' calculated the 
correlahon dimension of different levels of sleep stages and found it increasmg w ~ t h  increase in 
mental achvity They have reporled a correlahon thmension of about LO for EEG recorded 
fmm mentally anwe subjects, of about 6 from alert but restmg subjects and of around 4 from 
sub~ects m sleep stage 4. EEG of C~eutzfcld-Jacob hseare recorded has a dmens~on slightly 
less than sleep sfage 4. Other r e s ~ b ~ c h e r s ~ ~ " ~  have calculated the correlat~on dlmens~on of al- 
pha waves from normal relaxmg snb~ects w~th eyes closed 

Conelahon dunensron of EEG s~palls reveals d~fferences in the state of the neuronal net- 
works as 1t gets mvolved in epllephc selzures when it IS lower than that of wakmg state 
Babloynotz and ~es texhe2~ " found a conelahon dvnens~on of around 2 for EEG recorded 
d m g  pehtmal epdepuc smzures Iasemdes et al" performed a phase space analysis of BEG 
m mPoral lohe epliepsy and reporfed decrease In correlat~on dimension and mcrease In 
Lyapunov exponent dunng an cpdephc attack This m&cates that although the attractol ha? 
relauvely smaller dlmenslon dunng epdephc attack, the s-g lnslde the attractor 1s greater 
and informauon on the m i e l  con&noos e lost 

Smntists at the Center for Nonhnear St&% at Los Alamos b e h e  that a may be poss~ble 
to develop a ComPukr a n a l ~ ~ l s  of BEG recordings to characterize d~fferent forms of se~zure?~ 

way as in a kmdhng experiment Indeed, a low codahon  dunension value was observed uu- 
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M y  only In entorhlnal cortex and fascia dentata In the course of the seizure, the EEG slgnal 
recorded from the ipsllateral hippocampus showed a low correlahon dimension, but the contra- 
lateral hlppocampus tended to a low value only m the late serzure, while the value of comla- 
tlon dmension of the slgndl recorded from cortex in~leased apprectably and became more ir- 
regular. Thts tune sequence of changes m comlauon dunenslon suggests that the recmltment 
of different areas lnto the serzure takes place according to a glven sequence: fxst the cortex and 
facia dentata, then the  psil lateral hippocampus, and later the contralateral hippocampus, while 
the cortlcal changes In the late phase to a much less regulw pattern. 

The clear uansltlon from a very hlgh to a very low comlauon d~mens~on dunng seuum 
acuvlty may be used to detect the onset of epilepuc sazure acuvlty as well as for the localiza- 
tlon of an epileptogenlc focus In eptteptlc patlents 35,34 Yaylali et al, have calculated the com- 
lawn dmension of the unbiased autocotrelation funct~on of the scalp EEG data and used ~t to 
~dent~fy various types of semres." 

Studies on EEG signals dunng htgh-level thmking or creativity show a change n~ the come- 
lahon dunenston dunng intenswe cogmuve activlttes "." Trent et 01." have presented a com- 
plenty measure which shows a peak dunng transitron between dunking and non-thinlmg 
rtetec. Alw. :orrel~t~m dtmnslor. shouc d:ftrrelre helwcen the RFM (raptd eye nlmement) 
and nun-U.\l ~~gt lance  srsto." Ilil" has wdlrd thc effccr of medlcduos on dlpha aakl r )  ill 
pahents and drd not find any change ID dynamlc measures. 

Studies" 'bow that In schtzophrenic pauents the dimensional complexity of EEG patterns 
at the frontal siles is larger than that at the central sltes and the reverse 1s observed in control 
subjects Thls Indicates that a higher frontal than central dnnenslonal complexity is a character- 
lshc m schuophrenic patients. Zbigmew er al." have proposed an algorithm for computation 
of chaotlcity based on local Lyapunov exponents and present posstble applicabons of this 
method for specific schuophrenic cases. They also show that chaotictty will be able to detect 
cnhcal transitions whlch occur in the dynamics of the brain. 

Several visualmhon techniques in phase space have also been proposed for lnterpretauon 
of climcal EEG records and to characterize clinrcally sign~ficant feames such as spkes and 
seizures."" Abu-Faraj er 01:' have presented comlatton dunension as a topographcal map- 
ping across the scalp which allows the cornpanson of the dimension across different sites of 
the head visually. 

Studtes w ~ f i  different levels of anaesthes~a~'~"~'~ show a decrease in the drmensionality of 
EEG s~gnals as anaesthetic depth increases. Tb~s helps in assessing bran integlity andlor depth 
of anaesthesia d u n g  surgrcal procedures. 

Regardmg the absolute values of the attractor dimenstons reported m l i teram, the follow- 
mg polnt has to be noted. The dlmenslon estimates are dependent on factors hke the number of 
data polnts considered, the algorithm used for fmdmg thew etc. Hence, ~nstead of focusing on 
the absolute values of correlation dimension estimates, it may be better to concentrate on the 
changes m the values of correlat~on dimension under mfferent ppschophysiological con&- 
tions.2' Albano et als l  belleve that though there can be difference in the estimates of c o d a -  
tion dmens~on o b m e d  with different algorithms and s~goal samphg protocols, the raU0 of 
conelahon dimenslous is robust. 



From the foregomg discuasmn it wlll be noted that signlticant amount of work has been 
done on cdculamg the charabmstrcs of (he system, I rk  correlatlurl drmension and Lyapunov 
exponent, and applymg them to analyse drfferenl sleep stages, epllepuc Feaures, depths of an- 
aeshan .  etc. Howcver, vely htrk work has been done beyond rlns pomt Oalcuiatmg the pa- 
rametem ls just another feawe cxhacuon process (hke the EEG spectral estimate) and sul  
too much of a phe~~omcnolog~cal approaclr One should go beyond this bur where to? One ma- 
jm drecuon e to develop chaooc, nalatic models tor EEC generation. 

Once a powerful predxtive model IS in place, one can thmk of Indliy appilcatlons using 11, 
lrkc compressmn of EEG data which e of pructlcai nnportauce The next sectam dcals w~th 
vanous nodmcar dyoamcal models that are warlable in l~telafure Compression of EEG dala 
usmg nonlmear dynamical models IS also enplaned 

4. Nonlinear dynamical modeling of EEG data 

A m a p  work ID the dlrca~on of modchg the bran dynaa~cs was done by Frceman and hrs 
colleagues 52-56 Tkey have modeled the olfactoq rystem of the rabbit? as 3 chaot~c system us- 
mg a set of coupled nonhnear or&nary drfferenhal equmons5" 5' The11 solutions slmulatc 
vilrious EEG pnerns observed experimentally and thus crtabl~ch to a large extent the phys~o- 
logzal mechamrms by wh~ch these partems emerge Fmrn the model and other ohservat~onn, 
they have concluded that chaot~z olfactory dynamrca in the olfaftor) bulb auppurta a global 
attractor that affords qulck access to and dtssemmaUon of mlbmatlon. 

Lopes da Sdva et als%ave dewloped a lamped parameter model of con~cal  columns lor 
aloha rhvthm and ~ a n s d '  h a  demonatrdted the mesence of chaot~c bchavmur m it. The model . , 
is based on two interactmg populatror~s of neumns, one conslrting of main cells and the other 
of local lntmeurons Tne population of man cells 15 ckaractenzed by two llncar transfer h c -  
hons representing excitory a d  mh~bltory poat-spapuc potenti,lls and a stauc, nonlmwr ele- 
ment whrch relates the average lcvel of memhnne putmhal to the pulse deils~ty of nchon I*'- 
unn& fired by the neurons The populatron of mternerullns is simlarly described by analo- 
gous lmea and nunlmear functions Finally, interconnect~vrty conitants whsh reprerent h e  
avcrage number of synaptic cuntacts from man cells to mtenreuronr, and from interneurons to 
man cells fur both excicoly and ~nhibilory brancbes are used The ~nput to the model IS the 
external pulu! dens~ty wh~ch can takc on vanoua f o m .  Thrs model n c~pable of cnmplzn be- 
havrour when lt IS allowed to operate m a noolmear mode. 

Mukesh and Natkdg have used a genaal regressmn neurai network with different promaa- 
ing elements to model EEG signals d u n g  awake, sleep and raphd eye movement stages They 
have also stuhed the relauon belween he numher of prh-essmg elements rrqwred for sirnula- 
tion and the complexq of the EEG pattern They also observed a coirelatlon be~ween the 
number of procesing elementq and fractal dunenslon. Pankh and pratap" proposc a rmp to 
describe EEG achvlty and ohserve that the predictive abrl~ty of the model a l i m t d  to a few 
tlme steps as expected lor a chaohc tune sene? Goll~ales et o16' have proposed a nonlmear 
model of the form Xtn + 11 = Co + C~Xtnl+ C2x[nl2 i C&17 to describe EEG dynamics and 
have smhed the predicbon of bifurcahoos due to change of parameters. 
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A low-order model of sleep stage I1 EEG, based on gannna kernel, has been proposed by 
de Sllva and de Ohvema Assurmng that the EEG can be obtamed as the output of a non- 
hear me-mvanant system excited wrth Gausslan wh~te nolse dunng short petiods of sleep 
stage 11, they have developed a model for the system based on dtspers~ve tapped delay h e ,  the 
gamma neLb2 coupled wlth a feedfonvard neural net. l h s  model 1s used to snnulate the EEG 
s~gnal. 

Bhnowska and M d m ~ w s k y ~ ~  have applled a method by Sughara and ~ a ~ "  for prediction 
of chaohc signals to forecast EEG hme senes and compare the perfarmme w~th  AR model 
The EEG data IS embedded m an Gdimensional plane and predxtion of one E-diienaonal 
pomt 1s done by keepmg track of the movement of neighbors of that pomt givmg them expo- 
nentlal wexghts dependmg on then d~stance. 

We have proposed a model for EEG data (PEE model) based on nonlinear d y n m c d  pnn- 
clples whch 1s explamed below What we have on hand is one-dmennond tune s e n e  and we 
assume that thls has come from a nonlinear d y n m c d  system of more than tluee dnnensions 
wh~ch la veq scusltrve to lnlual cond~t~ons Hence, the first step towards developing a model is 
to get back the approximate phase space from the one-dunens~onal tune senes Thw can be 
done usmg Taken's embeddmg theorem" by generating the E-d~mens~ond vector X gwen by 
X[n] = [x(n), x(n + z), x(n + 27). ., x(n + ( E -  l)z)lr, from the time senes {x ( r ) )  Here r n 
called the delay tlme and E the embedding dmens~on. The process Itself a called hme delay 
embeddmg We have to choose E and r such that the dynamcs 1s brought out properly 

Once E and z are chosen properly, we can fit a model for the cvolut~on m the E- 
dmens~onal state space; we have modeled the dynamics of the bram as 

X[n + 11 = F(X[n]). 

F 1s expressed as 

M 

F ( X )  = C C ( ' ) ~ ( ' ) ( X )  
1x0 

where I is E-dmenslonal vector mdex, do represents the set of orthonormal polynomals 
whch serve as the baas and 6'"s are the expansion coeffinents < #, da> =a,, Each ele- 
ment of F 1s expressed as 

where n 1s the order of the polynormd and C, are the expanslon coefic~ents correspondmg tofs 
wlth s =  I, 2, 3, ..., E. The set of orthonormal polynomials is constructed uslng Gram- 
Schundt's orthogonalizatlon process startmg with do) = 1 and findmg the other d's recursively 
kom thls For fiudtng the expanslon coeffic~enis, we follow a method proposed by ~ i o n a ~ ~  
The metl~od docs not mvolve multiparameter optimzahon and ~t expresses the expansion co- 
effinenls rn terms of h l e r a h e s  of moments and funcaonal moments. 



The whole Issue can be mewed as an ecumatinn problem We arc trying to estlmate 
X [ n i  I] trom U n ]  Let us call the est~mated s t p d  as X[n -k 11'. We can esnmale Xfn +2], 
an + 31, etc from X[n] by the lollovmg procedure 

X[n t I]' = F(X[n]) 

X[n + 21' = F(X[n + 11') 

and so on In general, 

X[n + i]' = F(X[n + 1 - 1 I*) I = 2,3 

Viewnp the estlmahon in the E-dlmenslonal apace, we can ante,  

ahere x(I)'s repreqent the eswated data pornts 

Let us look at X[n + I]' = [x(n + I)'. n(n + 1 + z)" , x(n + l + [ E  - 1)2)3' whch IS o b  
tamed bom X[n] = [x(n), x(n t T), , xin + @ - 1).r)jr Smre x(n + I)', x(n + I + I)', , 
x(n t 1 t (E-2)~) '  are cst~mated from rhe past and futurc values, I e from ~(IL),  x(n + TI, , 
x(n + (6- l)z, we call the process as amootheinnp Slnccx(n + I + (E - 1)~ ) '  1s estlmated from 
thc past values alone, we can call the process as przdlction 

To get back the one-dmensional hme senes from the E-drmensronal space, we pdl out 
xjn + 1)' from ant I]', -r(n + 2)1 from X[n + 21' and so on iioiv, ~f ac look at the estlmated 
one-d~menslonal series {x in  + r ) ' )  wlth r = 1,2, , a e  can say that [r(n + 1)') with 
I = 1.2.. ,(E- Ijr are got by smoothemng and {x(n + r)'] with r > (E- l)z are got by pred~c- 
toll. So, in general, we can call F as a non-causal transfom~aoou whch takes X[n] to X[n + 11 

he performance of the model is presented here for deep simp EEG data (delta wave) Dlf- 
ferent methods have been applpplled to find out the mmmal E needed and the optmum value o l  
2,674Y an E of 7 or 8 and a 7 of 10 to I S  are found to be optlmal for the data To tent IE the 
 odd works well, e?umauon using !he model was came6 out F~gure I shows the actual and 
esbmated signals for E = 7 ,  7=  10, p = 2  2nd E=7. z =  13. p =2,  respemvely As can he seen 
from the figures, the m d e l ~ s  able lo earnate the data we11 up to around 61 and 81  plots,  re- 
spect~vely. The performance ol the model has been analysedforvanous values of E, randg." 

11 NNA model) 1s as follows Wc already haie m hand a set of consecutive wlnts of evolut~on 
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n2- 

(a) (bl 

El0 I Actual und calrnidtedvgnris lor (a) E = 7 ,  onlw=2, t= iOiind(b)E=7, ocder=Z, r= 13 

of the dynamcal system, also called a set of base pomts, and we wnnt m see where a glven 
pomt, not included rn the basc points, moves or evolves m the E-dmenslonal space. For that, 
we fmd closest ne~ghbon to the gven po~nt from the set of base pomts Then to see where the 
glven polnt ha? moved In the phase space, we see where the nerghbors have moved (whlch 1s 
known qlnce we already have the evolution of them), and add up the evolutions of the neigh- 
bars after glvrng exponentla! welghts depending on the nerghbors' &stance from the glveu 
point This IS represented mathematrcally as follows~ 

Let x(l), x(2), , x(N) be the one-dimenslanai time senes we have m hand The fust step 
towards modelmg is to embed thls In the appropriate E-dlmens~onal space Let X[l], X[2],. , 
X [ N W  1)al be the set of embedded points (wtb X[n] being (x(n), x(n + r), .., x(n t (E- 1) 
'0)' where E IS the embedded dunenslon and z 1s the delay time Cons~der the set of points 
X[B,l, X[B2], , X [ B N ~ ]  as the base and the evolution of some pomt, say X[kl, which does not 
belong to the base, IS to he found It IS to be noted that to get back the one-dunensional hme 
senes from the E-dlmenslonal pomt, x(k + 1) is pulled out from X[k+ 11, x(k+ 2) fromX[k + 21 
and so on So, the erolutlon of the one-dlmcns~onal point x(k), j p  steps Into the future a gven 
by 

NNB 

r(k + f )  = x x " ( k ,  + f)exp[-A drst (~[k],~*[k,])] 
,=I 

where k, +f<  NB. f [ k J s  are the closest ne~ghbors of X[kl, xS(k,)s are the first coordmates of 
the E-dlmensional pomts X'[k,js, &st() the Euclidean distance m E-&mensions. A a constant 
and NNB the number of neighbors to he considered. This 1s a non-parametric method whch 
uses no pnor ~nformauon about the model used to generate the time senes, lt uses the mforma- 
uon in the output rtself. 

It can be looked at as an esttmauon problem as was done In the prerious model. The data 
Polnts x(k + 1), x(k t 2). , x(k +L) are estimated from X[kl = (x(k), x(k+ z),. ., x(k- 
(E- 1)z))'and the set of bampomts. whereLrr the length up to whch estlmatmn is done Let 
the estimated data pornts be represented as x'(k + l), f ( k  + 2),.. , .?(k+L). Since ?(k + I), 
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?(k+ 21, , x'(k + (E- l)z) m estimated from the pa* and iuhire samples, the process e 
called smoothening Esmation ofx6(k + (E - I)%+ I), i ( k  + (E - l)z+ 21, , x'(k + L) IS based 
only on past samples and hence the process is called predlchon 

We present the performance of the model for deep sleep EEG data The data was first em- 
bedded m a 7-d~mensional space wlth a delay of 13 Estunatron was caned out, keeplng the 
mual 1.750 data p o r n  as the base and cons~denng 200 neighbors wth an A of 0 1 One un- 
portant point to be noted is that the eshmated slgnal follows the actual slgndl only In shape, up 
to a certarn polnt, and If we need exact matciung wlth the esumated signal, weight A should be 
vaned bll a good matclung IS obmed, another way 18 to scale and translate the estimated s~g- 
nal to match wlth the origrnal signal Tius is done as follows' firs< each data pomt of the esb- 
mated signal n multipl~ed wlth a scale factor and then a trmlatlon factor is added to ~t The 
scale factor and vanslabon factor are glven below 

vanslabon factor = mean of actual slgnal-mean of estimtted s p a 1  

The scaled and translated slgnal a shown m Fig 2 As can be seen, there is good matchmg 
between the aciual and evmated s~gnals up to some pom, and then they dewate 

4 1. Compression of EEGdata 

The esbmauon capac~iy of the models can be effecbvely used to compress the EEG data The 
general ~dea 1s explmed below a model is fitted for the data to be compmssed, and the model 
coefficients are stored Assume that the mdel  is able to estllnate well up to L pomts, t h n g  
one data. point as mput. Then, comprersioi~ can be achieved m the following way the first data 
polnt 1s stored The next L data points can be estunated fmm rhe first data point using the 
model and so are not stored The next data point to be stored IS the L+Znd one. The subsequent 
L data points, I e. L+3 to 2L+1 are not stored smce they can be estimated fram the L+2nd data 
point usmg the model. Tlus procedure a continued The compressed data set wlll contan only 
the data points m lntmak of L 
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The qual~ty 01 the co~npresslon technique depends on how well the model IS ahle to estr- 
mate, the compression ratlo depend3 on how long the model 1s ahk to cstlmate well, and the 
complex~ty 01 the compresslon scheme depends oil the complexity of h e  model To get a h g h  
compresslon rxio and a g(lud-qlldllty drcompresscd s1gn:11, we need a model wb~ch can esti- 
mate well for z long1  dur.1Uon 

When thc mmlcl bawd on o;tllonorma! polynomial expanslon (PEE model) 1s used for 
compressrnf the d m  as explamed ahove, we arc ahle to get up to 50 1 compremon ram w ~ t h  
very good-qunl~ty dcromprcsscd sign3is '" The dccomprcssed s~gnal 1s sad  to be of 'good 
quahty' whcn it matche?. well w11h the orlglnnl ilgnal, in a scale that is presentable to the phy- 
aicm 

We have dcvelopcd"' nnolher compreas~on technique uslng the NNA model. The idea 1s 
explaned below 

Let N he Ihc number of one-d~mens~(~nel pomts to be cumprc%ed: compcsalon IS ach~evcd 
in the followmg way 

1 The f rsl NX Gdimens~r~nal pomli. XI I I lo X[M], are s a ~ d  and they wrll serve as the base 
lor estlrnmm uanp the model 

2 Take the next E-dimensional pomt XIk] ,  i; bang NB + 1 

3 Estin~ilte the E-dimenamnal point X[kl =(I(&), i ( b  + 7). . x(k+ ( E  1)~) ) '  further up to 
( E -  1)rpolnts uvng the model; the ne~ghbors of X[k/ are %arched w~thm tile base points 
Xjl] toXIN8I. 

4 Scale and iranslate the est~mated slynal and check ~f the esumated slgnal matches well with 
tlrc ong~nal signal by calculating some parameter (called the cut-off parameter), W;e the 
corrclatlon cocfiic~ent betweon the or~gmal and the esnmated s~gnal? 

5 If the csumated slgnal matches well with the original r~gnal, save the lnltlal E-dimensional 
point XIB] = ( x (k ) ,  x(k + T), ., s (k  + (E - I)OT along wlth the scale factor and the translation 
factor and do not save the next (E- I )r pomnta smce thcy can he tsl~in'dted from Xlkl usmg 
the model Then go to the next E-d~mensmnal pomt, I e. increment k lo k +  ( E -  I)?+ 1 ilnd 
repeat from step 3 

6. If the estimated signal does not mach well uith the onginal signal, save the z one- 
dunensional pornts .qk), z(k t I), .., x(k + T- I) and go to the next E-d~menslonal pomt 1.e. 
Increment k  to k  + z+ 1 and repeat from step 3 

To demarcate each step, some number, which 1s qu~te ddferent fmm the data polots, should 
be added or s e e d  m the beglnmng of steps 5 or 6 Different delnarcatlon numbers should he 
used for steps, say D, for step 5 and D2 for step 6. 

The compression ratio 1s calculated as follows Lct Z  be the number of tunes step 5 gels 
executed and let Y be the number of times step 6 gets executed, 1 e. Z a the number of tunes 
there 1s good matchmg between the estimated and the onglnal %goals and Y the number of 
tinlcs there n no good marclung beween the ungitlili and the esumated signals. Then the nunl- 
ber of pomts to he stored (Arj becomes 

N = r ( E + Z ) z l + [ ~ l 7 + [ Z + ~  



- [(E-t 3121 + [(z+ 1)V (2 )  

The term (E+?lZco~responds to one E-d~rncns~ond pomt, one scale factor and one translation 
fadw to be stored Z times, the tenn ZY coresponds to zone-rilmnens~onal po~nts to hc slored Y 
umes and Z+ Y corresponds to the demacal~on porn& to be stored l'hc comprcssron rat10 IS 

N K 

The follou~mg procedure should be foliowcll for uncomprcsmg the data 

1 Check if the demarcat~on number l a  DL or Dz 
2 H rt 1s D,, then the data stored alter that u,dl be the E-dmiensonal point, say Xb], dong 

wrth the scale and t r ~ ~ s l a t l o ~ i  facton So, esumate sip + 1) .  .LO? + L), , x@ i ( E  - I)T) from 
xb] using thc model, x@) can te extracted from XLp] ~tself Then rcale and iransiate rhc es- 
lmaled argnal uslng lhe scale and uandat~on Factor? and go to step I 

3 If the demarcatron number la Dz, then r dare pomta lhemselres, ssy rV), .r(r+ I ),. 
x(r+ r I ) ,  w~l i  be stored aiier D, and so nothing necda to be done, go lo step 1 

The techmque gives a moduate conlpresslon  rat^ with a mudmite quality or decom- 
pressed signal We are able to get :round 15 I compresslon raim wherea thc method dlscusaed 
before this is able to give up to 50 1 sonlpresilon rallo with extiemeiy good-qualtlp decum- 
preased s~gnal But the advantage here n bat  thra method ?a!m less tune to decompress, for 
example. t h ~ i  method takes only 0 9 seconds to decompress 1,000 pomts"' whereas the tec11- 
nque d~scussed earl~er takes as much as 13 6 seconds (with E = 7 and p = 2) The computatron 
was done usmg a shared memory parailel computer, DEC TuiboLaser 8400 w ~ t h  8 plocessors, 
so, the m e  here represents the CPU time taken by the above-ment~oned computer ro decom- 
press 1,000 polnts 

5. Conclusions 

'The paper discusses how nonl~near dynarmcal tcchnques are ascd to anelgsc EEG data It 
deals w~th  various models that have been developed For BEG signal based on chaot~c pnnc~plc? 
and ahout data compresslon as a11 apphcallon of chaot~c modelmg BEG bemg a complex q~g- 
nal. ~ t s  analysis was based untd recemtly on the aswmpbon that ~t 1s the output of a stochasuc 
process. Wlrh recent developments ~n oonirnear dymwcs and chaos, ~t is bemg considered aa 
an output of a chaotlc system Thts 1s ha~ed on the Idea that even a simple nonlmear dcterm- 
mshc system whch 1s very sensrtlrc lo mruJ conhtluns can generate outputs which ;Ire very 
complex(-Ioohng) S~nce bEG is a complex-loolung s~gnal. r could have been generated by 
such anonlmea dynaimcal Fystern Most of the studles done ~n thls dtrection are on calculatlng 
h e  characten?hcs of the system hkc conelamn dimension and Lyapunov exponelts, and ap- 
plyng them ro analyse d~ftnent sieep m g a ,  epiltpuc szrzures, depths of anaesthes~a, etc 
Sel.eral models, based on chaubc prrncrples, have also been developed for BEG data The 
models are able to g v e  good estunat~on oi the data and lhis concept can be used for compress- 
n g  the data efiicienily. Up to 98% compwslotx c m  be obtmed w n g  the chmhc model-based 
:ornpresaon tecbmques. 

We expect that a model-dnuen apprmch rhould reauk In a hetter uderstand~ng nl EEG 
vavdorm than the conventtonal phenomznoiogical approach Ir may help m rhc constniction 
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of physlologtcally realistic math.%mUCal models lhat slrnulate brain activities. Nonlinear dy- 
nmcal  tools have potentla1 apphcaWn in feature extractlon, data cornpresslon and analys~s of 
EEG data The techntques have great potential In studying transitional states of bmn acttvlty 
seen in epilepsy, cogmttve task pedomitnce and various states of consciousness. More sruches 
are reauued to tap the ~0tentlal of nonlinear dynamical tech~aues for these a~olications to 

A x  

EEG i d  thrs pap& 1s &I anempt In that dmc&. They wdl have a great impact on research 
and cl~n~cal use if EECi data 
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