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Abstract

Electroencephalogram (EEG), a record of electrical potentuals of the bram, 1s now analysed as a chaotic signal rather
than a stochastic signal in the Iight of new developments in nonhnear dynamics and chaos The paper reviews the ap-
pleation of nonkmear dynamical techmques to anulyse EEG dara Barhier smdies mostly concerned with caleulating the
characiersstics of the systern hike correlation dimension and Lyapunov exponents, and use them for varsous applications
Itke study of diffexent sleep stages, eprlepuc seizures, depths of anaesthesta, ete One major direction 15 to develop
chaotic, realistic models for EEG generation Therr efficacy 15 d by data asan
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1. Introduction

Electroencephalogram (EEG) is a record of electnical potentials 1 the bran which can be
picked up by placing electrodes m the scalp or directly m the cerebral cortex. EEG 15 one of the
commonly used non-invasive techniques to understand bram finetzons. It provides information
on epilepsy, cerebral tumors, cerebral trauma, etc and is also useful to monrtor sleep, depth of
anaesthesia and cessation of brawm function Hans Berger was the first to record the electrcal
actrvaty of the brain in human subjects.’ In normal subjects there 1s a charactenstic BEG pattern
made of waves of varymg frequency which are divided mto four EEG rhythms—alpha, beta,
theta and delta Other EEG activities include transients which occur spontaneously * These
trangients are called spikes, sharp waves, and spike and wave activities depending on thexr
characterstics.

EEG 15 a complex and random-looking signal, and hence was analysed until recently as the
output of a stochastic process, 1. generated by a ‘black box” or a system drzven by some un-
known (or white Gaussian) input. Based on this concept, spectral estumation and several other
techniques like stanstical pattern recogmuion, segmentation,*” syntactic methods,™™® knowl-
edge-based approaches, ™' and artficial neural network methods'® " have been developed for
analysing EEG. Several models have also been developed based on the assumption that EEG 1s
stochastic.'s 19 .

These techniques bear Jittle or no consideration to the process that generates EEG signal
This may be the main reason for the Iimited success of the automated EEG analysis techmques
desptte the large number of attempts at automatmg the EEG mierpretation process and ever-
Increasing sophustication of the methods used.”
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With recent advances m nonlmear dynamics and chaos, EEG is being considered as an out-
put of a determmistic system rather than a stochastic system. Thus is based on the concept that
even a simple nonlinear determunistic system which 15 very sensitive to wutial conditions,
called a chaotic system, can gemevate outputs whch are very complex(-looking). Since BEG 15
a complex-looking signal, it could be g d by such a nonl d ical system. This
concept of chaos mtroduces a d | persp for und ding bram ft and for
analysing EEG.

Thus paper first reviews how nonhnear dynamucal techniques have been applied to analyse
EEG data. It then presents various models that have been developed for EEG signal based on
chaotic principle Their efficacy 15 d d by data compression as an application.

To understand what chaos s and the terms associated with nonlmear dynamics and chaos
used in the paper, a short overview 1s given.

2. Overview of ponlinear dynamics and chaos

Any system whose evolution from some 1mitial state 18 dictated by a set of rules 1s called a dy-
namical system Consider the following dynarmical system whuch 1s defined by a set of ordmary
differential equations

dx.
j‘fl("h"zv oty

dx.
f:fl(xl,xz, CEy)

)

dx
—dii=fN(x,,xz,A..,xN)

where )?(t):(xl(t),...,x,,(t))r is the state of the system at time ¢ and

b =(f1,.‘.,fN)T:R" - R¥ s called the vector field. When the vector field F does not
contain time exphcitly, as given in (1), then we call the system as autonomous The dynamical
system (1) is hnear if f is linear and nonl if f is nonk Ad I system does
fiot have to be deseribed by a set of d I eqp Many dynamical systems are de-
scribed by a set of difference equations and they are often referred to as maps.

Guven the initial condstion X(0)= X, the solution to (1) 15 written as ¢,(i’0 ), and is
called the flow. We say that the flow $, 15 generated by the vector field f The flow ¢ indi-

cates the posiiion of the initial condstion. X, after tume ¢, The evolution of the dynamical sys-

tem can be descnibed mn its state or phase space which is a Euchidean space whose coordinates
are variables that are necessary to completely describe the state of the system at any moment.
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To each possible state of the system, there corresponds a point 1o phase space. The phase space
of the autonomous system (1) is a coordinate system with coordinates x;, xy,..., xy Plotung the

set of pomts {(5, (}? 0)} m the phase space, as a function of time, gives the trajectory of the

system through X o

It can be proved that a trajectory cannot cross iself or no two trajectories can cross each
other 1 the phase space.™ ** That is because the crossmg pomt would correspond to a single
state from which two different evolutions cannot originate. This 1s different from two trajecto-
rtes approaching an equihbrium point as ¢ — e, which 1s allowed

The local rate of expansion or contraction of a dynamical system can be calculated directly
from the vector field or difference equation (without exphcitly finding any solution), We say a
system 15 conservative if the absolute value of the Jacobian of its map equals exacdy one or if
the divergence of 1ts vector field equals zero for all times and at all points. A physical system 15
dissipatve 1f 1t 15 ot conservative The phase space of a dissipative dynamcal system 1s con-
tmuously shrinking onto a smaller region of phase space called the artracting set

The final state or equilsboum state of the evolution of a dynamical system 1s modeled by
L sets, which are the state-space equivalents of the steady state. The asymptotic motions (as
- o) of a flow are characterized by four general types of behaviour In order of increasmg
complexity these ave eguidibruum pomis or fixed pownts, periodic soluttons, quasiperiodic solu-
nons and chaos, An equilibrium powt or fixed point of a flow 15 a constant, tune-independent

solution, 1. ¢, ()Z p ) = X,, for all £. At an equilibrum point, the vector field vaushes, 1.e

f (}? ) =0 The hamt set corresponding to the equilibrium point 1s simply the equilibrium pownt
uself A penodic solution of a flow 1s a time-independent trajectory that precsely retums to
1tself in tune T, called the period, 1e 6, (}Z ') 1s a penodic solution of an autonomous system.

if, for all 2, ¢, ()‘(*)f rer (X”) for some mmumum penod 7> 0 The restnction 7> 0 18 re-
quired to prevent the classification of an equilibnum point as a pertodic solution. A periodic
solution 15 1solated if 1ts neghborhood possesses no other pertodic solution and s called a fims

o+
cycle The Limit set corresponding to a umit eycle is the closed curve traced out by @, (X )
over one penod. A guasipertodic solution 15 one formed from the sum of penodic sohutions
with mcommensurate periods. Two penods are mcommensurate 1f their ratio 1s urational

A bounded asymptotic motion that is not an equilibriom point, perind or quasipeniodic 1s
often called chaotic Additionally, the asymptoit solutton should possess sensitve dependence
on imtial conditions: give two distmet tnutial conditons arbitrarily close to one another and the
trajectonies emanating from them diverge at a rate charactenistic of the system until they be-
come uncorrefated for all practical purposes

The stable asymptotic motions (or linit sets) descrbed above are examples of afzraciors.
The unstable limit sets are examples of repellers Atiractors that are chaotic are called chaotic
attractors.
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Sensiftve dependence on initral conditions has an fmportant implication. If the initial con-
dinons are known exactly, 1is evolution can be predicted for ever The problem, however, 1
that one cannot have petfect knowledge of the mital conditons, Instruments can measure the
various parameters only approximately There will always be some deviation from the actual
ones. They may be very close to each other, but will not be the same. In such a case, even if we
know completely the physical laws that govern the systemn, due to the nature of the underlying
attractor, the actual state of the system at a later time can be totally different from the one pre-
dicted Due to the nature of the systers, initial esrors are amphfied and, therefore, prediction is
fmted

The dynamucs of a system are dictated by the geometry of the phase space and its attractor
Thus geometry can be quantified by a series of dumensions and Lyapunov exponents There are
different types of dimensions; the most familiar ones being the Euchdean and topological di-
mensions Accordimg to the Fuclidean defimtion, a configuration is called one dimensional 1f 1t
is embedded on a straight line, two dimensional 1f it 1s embedded on 4 plane and three dimen-
sional 1f 1t 18 embedded on space. But the topological dimension of a point is zero, of curves is
one, of surfaces is two and of space 1 three. None of these dumensions alfows non-mteger val-
ues and none can be used to describe strange attractors The generic term for a dimension that
has non-integer dunensions 1s called a fracral. Almost all strange atrractors are fractals Three
different types of fractal d the capacity di the information dimension and the
correlation dimension, are presented below.

Capacity dimension: The simplest type of dumenston 1s the capacity dimenston, Cover an at-
tractor A with volume el (with Euclidean d jons of A) with diameter € Let N(g) be
the miumum number of volume elements needed to cover A Then N(€) 1s inversely propor-
tonal to £” where D 1 the Euclidean dimenston of Aie.

Ny =ke®

for some constant . Then the capacity dimension” 1s obtamed by solving for D and taking the
Limit as € approaches zero

InN(e)
i’

Dcap = hme =0

Dip can take non-integer values For example, the capacity dimension of Koch curve (which 1s
generated by conmden’ng a straght-lme segment of length L and replacing its middle thurd by
two equal segments of side L/2 forming part of an equilateral tnangle and repeating this proce-
dure many times) is given by Dy = %:1.26 b

Informatwn dimensian:. Capactty dimenston is a purely metric concept. It does not utilize the
formation about the time behaviour of the dynamucal system Information dimension, on the
ofher band, takes it mto account Let N(g) be the minimum number of volume elements with
diameter £ needed to cover attracior A Then the information dimension Dyis defined as™

Hie)

Pr=imen T
£
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where H(e)= -E,ﬁe) p.hn p,. p, is the relative frequency with which a trajectory enters the ith
volume element, and H(g) the entropy, i.e. the amount of information needed to specify the
state of the system to an accuracy of £if the state 1s known to be on the attractor.

Correlation dimension: Correlation d ion 15 another probabilistic type of dimension. Let
N(g) be the mummum number of volume elements with diameter £ needed to cover attractor A.
Then the correlanon dimenston D 1s defined as

Ng) 2
2, p;

D =T, —+

where p, 13 the relative frequency with which a trajectory enters the ith volume element. Now,
define the correlation function as

Cle)=limy... X};;H(E—HX, ~x,])

where H(8) 1s the Heaviside function and N the number of points of the trajectory The sum-
mation counts the number of pairs of pomnts (X, X) such that ILX, - Xl < £. Then
InC(g)

Dg =lim, -

The matn reason for finding the dimension of an attractor is to estimate the minimum num-
ber of variables needed to describe the steady-state dynamics. So, there seems to be no theo-
retical reason for choosing one type of dimension over anather, except for ease and accuracy of
1ts computation.

Another set of exponents that can characterize the properties of an atiractor of 2 dynamical
system is the Lyapunov exponents. The Lyapunov exponents are related to the average rates of
convergence and/or divergence of nearby trajectories in phase space, and, therefore, measure
how predictable or unpredictable the system is. A formal definition of Lyapunov exponents 15
@wven below: An attractor embedded m an n-d ional Euclidean space is dered and 2
set of mutial condittons in the that are confined within an n-di 1 sphere is
taken The space 15 allowed to evolve in time and its long-term evolution monitored The prin-
cipal axes of this sphere are ordered from the most rapidly to the least rapidly growing, and the
mean growth rate 4, of any given principal axis p, is computed These growth rates may be
defined as follows:

) 17 d. [p
A, =limy.. —T-L dr;t-lr{m]
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Here p{0) 15 the radws of the prmeipal axis p, at £= 0 (te m the mtal hypersphere), and p(T)
15 1ts radhus after a Jong time T The set of A3 s referred to as the Lyapunov exponent spec-
trum There are as many Lyapunov exponents as the dimension of the phase space.

When at least one Lyapunov exponent 1s posttive, then the system at hand 1s chaouc, and
there will be exponential drvergence of nearby pomts along at least one direction on the atirac-
tor This results 1n an inabifity to predict the evolution of the trajectory beyond an mierval of
tume approxtmately the 1nverse of the divergence rate. When no posive Lyapunov exponent
exusts, there 15 no exponential divergence, and the long-term predictability of the system at
hand 15 guaranteed

3. Application to EEG analysis

In the previous section, a short overview of nonlinear dynamics and chaos was given. In this
section, we will see how these concepts are useful mn the analysis of BEG Since a dynamic
model may be preferred to a phenomenologieal stochastic descriptor, a formalism of chaotic
dynarmes has found appheation 1 analysing the BEG signal and 1n understanding bram func-
tions. So, EEG 1s now bemg considered as the output of 2 nonlinear dynarmc {(chaotic) system
and efforts are on to calculate the varsous charactenstic parameters of the system discussed 1
the Jast section and to develop various apphications usmg them.

Most of the studies made 1n this direction are towards the evaluation of correlation dimen-
sion of EEG signals recorded under different neurophystologrcal states Since the dimension of
the attractor 18 a charactenstic feature of the underlymg neuronal processes generating EEG
signals, 1t has been apphed to classificanon of neural activites, feature detection of varions
bram states, stmdying the effects of drugs on brain, etc Babloyantz et al*% caleulated the
corretation dimension of different levels of sleep stages and found 1t increasing with merease m
mental activity They have reporied a correlation dimension of about 10 for BEG recorded
from mentally active subjects, of about 6 from alert but resting subjects and of around 4 from
subjects 1 sleep stage 4. EEG of Creutzfeld-Jacob disease recorded has a dimension shghily
Tess than sleep stage 4. Other researchers™ > have calomlated the correlation dunenston of al-
pha waves from normal relaxing subjects with eyes closed

Comelatton dimension of BEG signals reveals differences m the state of the neuronal net-
works 4§ 1t gefs mvolved in epileptic serzures when it 18 lower than that of waking state
Babloyantz and Destexhe™ *' found a comelatson dimension of around 2 for EEG recorded
durng petiimal epieptic sexzures asemudes er al ** performed a phase space analysis of EEG
m ternporal lobe epilepsy and reported decrease mn correlation dimension and mcrease m
Lyapuniov exponent during an epileptic attack Ths mdicates that although the attractor has

relatively smaller dimension dunng epileptic attack, the spmning nsule the atteactor 15 greater
and mformation on the mital condstions 15 lost

Scientists at the Center for Nontmear Stadies at Los Alamos believe that 1t may be possible
to develop a computer analysis of EEG recordings to charactersze drfferent forms of seizure.”®
In addstion, it has been shown™ that, durmg epilephic seizures, different areas of the bram from
which EEG signals are recorded do not show a reduction of correfation dimension 1 the same
way as in a kindlng experiment Indeed, a low comelation dunension value was observed mi-
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tially only m entorhunal cortex and fascia dentata In the course of the seizure, the EEG signal
recorded from the ipsilateral hippocampus showed a low correlation dimension, but the contra-
tateral happocampus tended to a low value only 1n the late serzure, while the value of correla-
tion drmenston of the signal recorded from cortex increased appreciably and became more ir-
regular. This tme sequence of changes m correlation dumension suggests that the recrustment
of different areas nto the serzure takes place according to a given sequence: first the cortex and
facia dentata, then the 1psilateral hippocampus, and later the contralateral hippocampus, while
the cortical changes 1n the late phase to a much less regular patter.

The clear transition from a very high to a very low correlation dimension durmng seizure
activity may be used to detect the onset of epileptic seizure activity as well as for the localiza-
tion of an epileptogenie focus m epileptic pattents *** Yaylali ef al. have calculated the corre-
lanon dimension of the unbiased autocorrelation function of the scalp EEG data and used it to
identufy various types of seizures.”

Studies on EEG signals during high-level thinking or creativity show a change m the corre-
fation dimension during infensive cognitive activities *** Trent et al, have presented a com-
plexity measure which shows a peak durmg transition between thinking and non-thinking
states. Also, correlanon dimension shows a difference between the REM (rapid eye movement)
and non-REM vigilance states.”! Itil*® has studied the effect of medication on alpha activity in
patents and did not find any change i dynamic measures.

Studies® show that m schizophrenic panents the dimensional complexity of EEG patterns
at the frontal sites is larger than that at the central sites and the reverse 15 observed in control
subjects This mndicates that a higher frontal than central dimensional complexaty is a character-
1stic 1n schizophrenic patients. Zbigmiew et al.** have proposed an algonthm for computation
of chaotcity based on local Lyapunov exponents and present possible applications of this
method for specific schizophrenic cases. They also show that chaoticity will be able to detect
critical transitions which occur in the dynamics of the brain.

Several visualization techniques in phase space have also been propesed for mterpretation
of climcal EEG records and to charactertze clinscally sigmficant features such as spikes and
seizures.***7 Abu-Faray et al.*® have presented correlation dunension as a topographical map-
ping across the scalp which allows the companson of the dimension across different sites of
the head visually.

Studies with different levels of anaesthesia™ * ¥ show a decrease in the dumensionality of
EEG signals as anaesthetic depth increases. Thus helps in assessing bram integrity and/or depth
of anaesthesia during surgrcal procedures.

Regarding the absolute values of the attractor dimensions reported m literature, the follow-
ing pont has to be noted. The d are dependent on factors like the number of
data pomts considered, the algorithm used for finding them, etc. Hence, mstead of focusing on
the absolute values of correlation dimension estimates, it may be better fo concentrate on the
changes m the values of correlation dimension under different psychophysiological cond-
tions.™® Afbano et al*' believe that though there can be difference in the estimates of correla-
tion dimenston obtamed with different algonthms and signal sampling protocols, the ratio of
correlation dimensions is robust.
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From the foregomg discussion 1t will be noted that significant amount of work has been
done on calculating the characteristics of the system, like cotrelation dunension and Lyapunoy
exponent, and applying them to analyse different sleep stages, epriepuic seizures, depths of an-
aesthesia, etc. However, very little work has been done beyond this pomt Calculating the pa-
rameters 15 Just another feature extraction process (like the EEG spectral estimate) and ss soll
too much of a phenomenological approach Cre should go beyond this but where to? One ma-
Jor durection 15 to develop chaotic, realistic models for EEG generation.

Once a powerful predictive model 15 1n place, one can think of many apphications using it,
Iike compression of EEG data, which s of practical nnportance The next section deals with
vanous nonlimear dynamcal models that are available in literature Compression of EEG data
using nonbnear dynamical models 1s also explamed

4, Nonlinear dynamical modeling of EEG data

A mayor work in the directson of modeling the bramn dynamies was done by Freeman and hig
colleagues % They have madeled the olfactory system of the rabbits as a chaotic system us-
g & set of coupled nontinear ordimary differential equations %57 Therr solutions smulate
vanious EEG patterns observed expersmentally and thus establish to a Jarge extent the physio-
logrcal mechamsms by which these patterns emerge From the mode] and other observations,
they have concluded that chaotic olfactory dynamics in the olfactory bulb supparts a global
attractor that affords quick access to and dissemmation of information.

Lopes da Silva er al ** have developed a lumped parameter model of cortical colurans for
alpha hythm and Jansen™ has demonstrated the presence of chaotic behaviour m it, The model
15 based on two interacting populations of neurons, one consistmg of mam cells and the other
of local mterneurons The population of mam cells 1s charactenzed by two lear transfer func-
nons representing excitory and mhibitory post-synapuc potentrals and a static, nonfinear ele-
ment which relates the average level of membrane potential to the pulse density of action po-
tentrals tired by the neurons The population of mternewrons 15 simlarly descrsbed by analo-
gous lnear and nonlnear functions Fmally, interconnectivity constants which represent the
average number of synaptic contacts from maun cells to intemeurons, and from interneurons to
man cells for both excitory and whubitory branches are used The mput to the model 18 the
external pulse density which can take on various forms. This model 15 capable of complex be-
haviour when 1t 1s allowed to operate m a nonlimear mode.

Mukesh and Natkar™ have used a general regression neural network with different process-
ing elements to model EEG signals during awake, sleep and rapid eye movement stages They
have also studied the relation between the number of processing elements required for simula-
tion. and the complexity of the EEG pattern They also observed a correlation between the
number of processing elements and fractal dimension. Partkh and Pratap® propose a map 1©
describe EEG actrvity and observe that the predictive ability of the modet 15 lunuted to a few
tme steps as expected for a chaotic tme series Gonzales et al® have proposed a nonjuear
wodel of the form X[n + 1]= Co+ CiXfn] + CyX[n) + C:XInl" to describe EEG dynamics and
have stadied the prediction of bifurcations due to change of parameters.
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A low-order model of sleep stage II EEG, based on gamma kemel, has been proposed by
de Silva and de Olrverra.® Assumung that the EEG can be obtained as the output of a non-
[mear time-invanant system excited with Gaussian white noise duning short periods of sleep
stage 11, they have developed 2 model for the system based on dispersive tapped delay line, the
gamma net,” coupled with a feedforward neural net. This model 1 used to simulate the EEG
signal.

Blmowska and Malmowsky63 have applied a method by Sugthara and May“ for prediction
of chaotic signals to forecast EEG time series and compare the performance with AR model
The EEG data 1s embedded m an E-dunensional plane and prediction of one E-dimensional
poit 15 done by keeping track of the movement of neighbors of that pomnt giving them expo-
nential weights dependmg on therr distance.

We have proposed a model for EEG data (PEE model) based on nonlinear dynarmcal prin-
ciples which 15 explamed below What we have on hand is one-dimenstonal ume series and we
assume that this has come from a nonhinear dynanmucal system of more than three dimensions
which 1s very sensitive to mutial conditions Hence, the first step towards developing a model is
to get back the approxunate phase space from the one-dimensional tme sernies This can be
done using Taken's embedding theorem™ by generanng the E-dimensional vector X, given by
X[n] = [x(r), X(n+ 1), x(n+20), ., x(n+(E- DD}, from the time senes {x()} Here 718
called the delay time and £ the embedding dimension. The process stself 1s called time delay
embedding We have to choose £ and 7 such that the dynanmes 1s brought out properly

Once E and 7 are chosen properly, we can fit a model for the cvolution in the E-
dimensional state space; we have modeled the dynamics of the bramn as

X[n+ 1= FX[n]).

F13 expressed as
M
F(x)=Y cVa)(x)
=0
where I is E-dumensional vector mdex, #° represents the set of orthonormal polynormuals
which serve as the basts and C%s are the expansion coefficients < 27, # > =8, Each ele-
ment of F 15 expressed as

f,(X): i “21. .lﬁcﬁhr“zr g g0z, vﬂE(X)

a;=0a,=0 ag=0

where 15 the order of the polynomual and C, are the expanston coeffictents corresponding to.fs
with s=1, 2, 3,.., E. The set of orthonormal polynomials is constructed usmg Gram-
Schmudt’s orthogonalization process startmg with 79 = 1 and finding the other 2 recursively
from this For finding the expansion coefficients, we follow a method proposed by Giona o
The method does not mvolve multiparameter optimzation and 1t expresses the expansion co-
efficients m terms of hierarchies of moments and functional moments.
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The whole issue can be viewed as an esumauon problem We are trying to estumate
K{n+1] from XTn} Let us call the estimated signal as Xin+ 1}, We can esumate Xin +2),
Xn+3), etc from X[n] by the followang procedure

KLln+ 1= FXInD
Xn+2]*=FXln+1})

and so ont In general,

Xn + 2 = FXn+1~1F) 1=23, .
Viewing the estimation in the £-dmensional space, we can wiite,
X[n] - X[n+1]" : x[n+2] ,
x(n) An+1) s{n+2)

s{n+r) s{n+1+7)° an+2+7)°

|
J

,x("*'(.E-l)f)J x(n+1+(E~1)1)’ x(n+2+(E ~1)':)"
where x(1)°s represent the estimated data pomts

Let us look at X{n+ 11 =Dn+ 1) x(n+ 1+ 7, . x(n+1+{E~ D77 which 15 0b-
tamed from XAl = (), xn+ 1), xn+(F-DDYF Smeex(n+ 1, 1+ 141,
x(n+ L+ (E-2)1) are estimated from the past and future values, 1e from x{n), x(n-+ 1), ,
x(n + (£ - 1)7, we calf the process as smoothenng Smee x(n + 1+ (E - 1)7)° 1s estunated from
the past values alone, we can call the process as prediction

To get back the one-dunensional tune series from the E-dimensional space, we pull out
x{n+ 1) from X[ + 1F, x(n + 2)° from X[n + 2] and so on Now, 1f we look at the estumated
one-dumensional  series {x(m+ 1"} with =12, , we can say that {x(n+1)°)} with
t=12.. (E~ )T are got by smootheng and {x(z+ 1)} with 1> (E~ 1)t are got by predic-
tion. So, in general, we can call F as a non-causal transformation which takes X[r] to X[ + 1]

The performance of the model is presented here for deep sicep EEG data (delta wave) Dif-
ferent methods have been apphed to find out the mimmal £ needed and the opuimum value of
7% an £ of 7 or 8 and a 7 of 10 to 15 are found to be optimal for the data To test if the
iodel works well, estimation using the model was carned out Figure 1 shows the actual and
estimated signals for E=7, =10, p=2and E=7, 1=13, p=2, respectively As can be seen
from the figures, the model 15 able to estimate the data well up to around 61 and 81 pomts, re-
spectively. The pecformance of the model has been analysed for vanous values of E, 7and p.”*

We have also applied 2 model, proposed by Sugthara and May,* to BEG signals and stod-
ted 1ts estimation capacity (both smoothenmg and prediction) The 1dea behind the model (call
1t NNA model) 15 as follows We already have in hand a set of consecutive pomts of evolution
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of the dynamucal system, also called a set of base points, and we want o see whers a given
pout, not included n the base points, moves or evolves n the E-dimenstonal space. For that,
we find closest nesghbors to the given pomt from the set of base pomts Then to see where the
given pont has moved 1n the phase space, we see where the neighbors have moved (which 1s
known since we already have the evolution of them), and add up the evolutions of the neigh-
bors after gving exponential weights depending on the neighbors’ distance from the given
powmt This 15 represented mathematically as follows

Let x(1), x(2), , x(N) be the one-dimenstonal time series we have in hand The first step
towards modeling is to embed this i the appropriate E-dimensional space Let X[1], X[2],. ,
XN —(E - 1)7] be the set of embedded points (with X[n] being (x(n), x(n + 1), ... x(n -+ (E- 1)
B where E 15 the embedded dumension and 71s the delay time Consider the set of pomts
X(B1), XIB;), , X(Bys] as the base and the evolution of some pont, say X[k], which does not
belong to the base, 15 to be found It 15 to be noted that to get back the one-dumensional time
series from the E-dimensional pownt, x(k + 1) is pulled out from X[k + 11, x(k + 2) from X[k + 2]
and 50 on So, the evolution of the one-dimensional point x(%), ‘f steps mto the future 1s grven
by

tk+f)= NEB k, +/)eXP[-A ast (XK} X[k, ])]

where k, +f< NB, X'[k]s are the closest nesghbors of X[k], ¥'(k)s are the first coordinates of
the E-dimensional points X"[k.Js, dist( ) the Euclidean distance i E-dumensions, A a constant
and NNB the number of nelghbors to be considered. This 1s a non-parametric method which
uses no prior information about the model used to generate the time series, 1t uses the informa-
ton m the output itself.

It can be looked at as an estmation problem as was done i the previous model. The data
pomnts x(k+1), x(k+2), , x(k+L) are estmated from X[k]= (x(k), x(k+1),.., x(k~+
(E-1)1)" and the set of base points, where L 15 the length up to which estmoation 15 done Let
the estimated data points be represented as ¥°(k+ 1), X+ 2),.., ¥(k+L). Since £k + 1),
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#k+2), , ¥k+(E-1)7) are estrmated from the past and future samples, the process 1
called smoothening Estrmation of x'(k+ (B~ 1)1+ 1), £+ (B~ Dt +2), , x(k+ L) 15 based
only on past samples and hence the process 1s called prediction

We present the performance of the model for deep sleep EEG data The data was first em-
bedded 1n a 7-dimenswonal space with a delay of 13 Estunation was carried out, keeping the
ezl 1,750 data pounts as the base and considening 200 neighbors with an A of 01 One 1m-
portant point to be noted is that the estimated signal follows the actual signal only n shape, up
10 2 cextain point, and 1f we need exact matching with the estimated signal, weight A should be
varied till 2 good matching 1s obtamed, another way 1s to scale and transiate the estimated sig-
nal to match with the origmal signal Thus is done as follows' first, each data pomt of the est-
mated signal 15 multiphied with a scale factor and then 2 translation factor 13 added to 1t The
scale factor and translation factor are given below

range of actual signal

scale factor =
- range of estimated signal

translaton factor = mean of actual signal-mean of estimated signal

The scaled and translated signal 1s shown in Fig 2 As can be seen, there 15 good matching
between the actual and estumated signals up to some pot, and then they deviate

4 1. Compression of FEG data

The estimation capacity of the models can be effectively used to compress the EEG data The
general sdea 15 explained below a model 1s fitted for the data to be compressed, and the model
coefficients are stored Assume that the model 1s able to estimate well up to L ports, taking
one data posnt as mput. Then, compression can be achieved i the following way the first data
powt s stored The mext L data pomts can be estimated from the first data pomt using the
modef and 56 are not stored The next data powt to be stored 15 the L+2nd one. The subsequent
L data points, 1&. L+3 to 2L+1 are not stored since they can be estimated from the L+2nd data
point using the model. Thus procedure 15 d The cc d data set will contamn only
the data pomnts 10 mtervals of L

i
T
|

T 6w w W W W W W

Fig 2 Estmated signal with scaling and transtation
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The quality of the compression technique depends on how well the model 15 able 1o esti-
mate, the compression ratio depends on how long the model 15 able to estimate well, and the
complexity of the compression scheme depends on the complexity of the model To get a lugh
compression ratio and a good-quality decompressed signal, we need a model which can esti-
mate well for 2 Jonger duration

When the model based on orthorormal polynomial expansion (PEE model) 15 used for
comp g the data as explamed above, we are able to get up to 50 1 compression rato with
very good-quality decompressed signals ™ The decompressed signal 1s sad to be of ‘good
quality” when 1t matches well with the original signal, w 2 scale that s presentable to the phy-
sician

We have developed™ another compression techmaue vsing the NNA model. The idea 1s
explained below

Let N be the number of one-dimensional pomts to be compressed; compression 1s achieved
in the followmg way
The {irst NB E-imensional powats, X[ t) to X{NAY, are saved and they will serve as the base
for estmation using the model
Take the next E-dimensional pownt X4, & being NB +1
Estumate the E-dimensional point X[kl = (x(k), x(k+ 1), , s(k-+(E— Do) further up
(E - 1)T pownts using the modef; the neighbors of X[k} are searched withm the base points
X{1] to X[NB|.

Scale and wansiate the estimated s1gnal and check if the estimated signal matches well with
the onigmal signal by calculating some parameter {called the cut-off parameter), hike the
correlation coefficient between the original and the eshmated signals

1f the estmated signal matches well with the ongimal signal, save the 1itial E-dimensional
point X[&] = (x(k), x(k + 1), ., x(k+ (E~ 18" along with the scale factor and the translation
factor and do not save the next (£ — 1)7 points swce they can be estimated from X[k) nsing
the model. Then go to the next E-dimensional pomt, 1 e. mcrement & to k+ (E~1)7+ 1 and
repeat from step 3

If the estmated signal does not match well with the onginal signal, save the 7 one-
dimensional points x(k), x(k + [),..., x(k+ T~ 1) and go to the next E-dimensional pomt, L.
incrementt k to k+ 7+ 1 and repeat from step 3

To demarcate each step, some number, which 15 quite different from the data points, should
be added or saved in the begimnmg of steps 5 or 6 Different demarcation numbers should be
used for steps, say I3, for step 5 and D, for step 6.

The compression ratio is calculated as follows Let Z be the number of tmes step 5 gets
executed and let ¥ be the number of tunes step 6 gets executed, 1. Z 15 the number of umes
there 13 good matching between the estimaied and the ongwal signals and Y the namber of
times there 15 no good matching berween the onginal and the estmated sigoais. Thea the num-

ber of pants to be stored (N') becomes
N'=[E+2Z]+ [ +[Z+1]

w

IS

e

o
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=[(E+3Z+[(r+ DY) @

The term ( + 2)Z correspands to one E-dimensional pomt, one scale factor and one translation
factor to be stored Z times, the teom ¥ comresponds to T one-dunensional points to be stored ¥
umes and Z+ ¥ corresponds to the demarcation pownts to be stored The compression ratio 15

N N

The following procedure should be followed for uncompressing the data

Check 1f the demarcation number 15 Dy or Dy

I{ 1t 15 D), then the data stored after that will be the E-dumensional pomnt, say X[p], along
with the scale and translation factors So, estimate x(p + 1), x(p+ 2), , x(p + (E — 1)7) from
x[p] using the model, x(p) can be extracted from X|p] itself Then scale and translate the es-
tunated signal using the scale and translation factors and go to step 1

[

3 If the demarcation number 1s Dy, then T data pomts themselves, say x(r), x(r-+1). .
x{r+ T-1), will be stored after D, and so nothing needs to be done, go to step 1

The techruque gaves a moderate compression rato with a moderate quality of decom-
pressed signal We are able to get around 15.1 compression ratio whereas the method discussed
before this 15 able to give up to 50 1 compression ratto with extremely good-qualsty decom-
pressed signal But the advaniage here 1s that this method takes less time to decompress, for
example, ths method takes only 0 9 seconds to decompress 1,000 points™ whereas the tech-
mique discussed earher takes as much as 13 6 seconds (with £="7 and p = 2) The computation
was done using a shared memory paraile] computer, DEC TurboLaser 8400 with 8 processors,
50, the ttime here represents the CPU time taken by the above-mentioned computer to decom-
press 1,000 pomts

5. Conclusions

The paper discusses how nonlmear dynamical techmques are used to analyse EEG data It
deals with vartous models that have been developed for EEG signal based on chaotic principles
and ahout dafa compression as an application of chactic modelmg BEG bemg a complex g
zal, 1ts analysis was based until recently on the assumption that 1t 15 the output of a stochastic
process. With recent developments m nonlinear dynamucs and chaos, it is being considered as
an output of a chaotic system This 15 based on the idea that even a simple nonlinear determ-
nisfic system which 15 very sensitive (o imitral conditions can generate outputs which are very
complex(-looking) Smce EEG is a complex-lookang signal, 1t could have been generated by
such a nonlinear dynamucat system Most of the studies done 1 this direction are on calculaung
the charactenstics of the system like correlation dimension and Lyapunov exponents, and ap-
plymg them w analyse different sleep stages, epilepuc seizures, depths of anaesthesia, etc
Several models, based on chaotic principles, have also been developed for EEG data The
models arc able to give good estumapon of the data and this concept can be used for compress-
mg the daa efficiently. Up to 98% compression can be obtamed using the chaotic model-based
rompression techmaues.

We expect that a model-driven approach should result m a better undesstandmg of BEG
vaveform than the conventional phenomenological approach 1t may help m the construction
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of physiologically rezhstic mathematical models that simulate bram activities. Nonlinear dy-
namical tools have potential application in feature extraction, data compression and analysis of
EBG data The techmques have great potential i studying transitional states of brain actrvity
seen m epilepsy, cogmitive task performance and various states of consciousness. More studies
are required to tap the potential of nonlmear dynamical techruques for these apphcations to
BEG and this paper 15 an attempt in that direction. They will have a great impact on research
and chmeal use of EEG data
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