J Indart Ins! Sat, Sept -Oct 1998, 78, 411-424
0 Iodaan Instute of Scrence

Book Reviews

Deterministic chaos: Complex chance out of simple necessity by N Kunnar, Universties Press (India) Lumted, 3-5-820 Hyderguda, Hyderabad 500 029, 1996, pp 106, Rs 70.

This book is about choos, a subject which gives insight into a variety of seemungly random phenomena Science pervades of disciplines from physics to biology The most drfficult aspect of a book on chaos is how best to introduce concepts decply rooted in mathematics particularly when the book is addressed to students at school and undergraduate level Professor Kumar has accomplished this task admirably Many concepts are made easily understandable by giving day-to-day examples (for cxample, phase locking). The choice of words (for mastance, 'mere thunking of at') and flow of the language are just right to make the book very readable

In the introductory chapter, Professor Kumar uses every-day examples startung from leakeng faucet to Laboratory examples of turbulence, Rayleigh-Bénard convectoon and the oscllatory chemical reacton of Belesov-Zhabotuskiv This chapter is the most unterestung sunce it draws on his wide knowledge of different areas to drive home the ideas Right in the first chapter, using Bernoulli shoft, he introduces concepts such as stretching and folding, sensinve dependence on mitial conditions and algonthmic complexity which are charactenstic features of chaos All these are done without resortung to any hard mathematucs The subtutles in the chapters are themselves catchy.

In the second chapter, the author mntroduces the concept of phase space, vanous types of attractors and theur stabality Poincaré section is introduced, and dussipative and conservative flows are explatned The next chapter is devoced to maps Both logsstic and curcle maps are considered in some detail. Using logistac map, the author discusses period doublug briucanion in sonfe detal Professor Kumar has put some effort to communcate the excitement of the universality exhbited by the class of maps with quadratie maximurn The importance of the two constants which charactenze this universaluty, namely, the Fergenbaum's number and the number associated with metric unversality are discussed Tangent bfurcation and intcrmittency are also discussed. This is followed by a discussion of the circle map Here, concepts of quasipenodicty and phase locking are well communicated followed by a discussion on devil's staurcase and Amold's tongue A bref mention of different routes to chaos along with known laboratory examples are included at the end of the chapter The fourth chapter deals with contunuous tume dissipative systems. Lorenz model is taken as a typical example The emergence of a strange attractor as a consequence of stretchong and foldng of orbits is well illustrated The next chapter deals with Hamitonian chaos Beguning with Hamultoman equations, the author introduces integrable and nomategrable systems After chscussing the disturtion between rational and irrational menanant ton, the KAM theorem is explamed Startung from a two-dunensional integrable system, destruction of the resonant ational ton is dealt with by considening the addution of a nonuntegrable perturbation The importance of ellhptic and hyperbolic fixed points for the emergence of stochastic motion is discussed Standard map and dnven pendulum are discussed as examples. Geometnc example of Suat bullhard ball is also mentioned

One of the quantifiers of chaotuc clynamues is the fractal damension of the chaotac attractor A farly detanled discussion of fractals and multufractals is found in the sixih chapter This chapter starts with typical examples of determonstic fractals such as Koch snow flake and Cantor dust As a measure of such objects, the capacity dimension or the fractal dimension is then introduced Multufractal measures are untroduced as a necessary compleation meant to quantfy objects whech could have spectrum of fractal dimensions A sumple means of generating a multufactal using an terative scheme is llustrated There as also a brief account of reconstuction of a strange attractor from a chaolic time senes using delay tome
embedding with a vew of stressung how vanous dimenstonal invariants can be recovered from the chaotic tarie series Finally, in the last chapter insights provided by science of chaos in understanding hatherto umesolved problems are mentioned Thus chapter also mentions synchromzation, control of chaos and encoding of sıgnals

Even though the book appears small in size, almost all concepts and to a large extent the essentual mathematical details are dealt with In partucular, the appendices contari a bnee account of Lyapunov exponents, Bernoull shaft, Bakers transformation, Smale horseshoe, ete Global bifurcations such as homo- and heteroclinte bifurcations are also explaned in the appendex This will appeal to a reader who is unchned towards quanttative detatls

Chaos is largely a numencal science and therefore considerable effort normally goes in conveyng concepts through figures Professor Kumar has done this without actually using a computer for generatung the plots Most of the figures are hand drawn moluding the butterfly on the cover page The style, content and presentation of the matenal serves the audjence to which it is intended, namely, the undergraduate studeuts Geneally, when one attempts to convey concepts deeply rooted in mathematical details, there is always a possibility of commung errors that stem from oversimplifying That has not happened with thos book The book also bnugs out the fact that science of chaos has had profound influence on many discrplenes Many would have liked to know what the subject is all about but would have found it hard to read a standard techncal book This book will serve this purpose very well since it has the right muxure of concepts, the mimmum technical detanls and a good pedagogical approach

Matenals Research Centre
G Ananthakrishya
Indan Institute of Scrance
Bangalore 560012

A practical guide to heavy tails: Statistical techniques and applications by R. J. Adler et al, Birkhauser Verlag AG, Klosterberg 23, CH-4010 Basel, Switzerland, 1998, pp 534, sFr. 108.

Everyone in the busmess of science (well, almost everyone) knows about the Gaussian distribution Many reasons have been invoked to justufy its use, such as phemomenological justufications that use the central limit theorem, maximum entropy or worst case analysis, or merely the convenjence of being able to use its enormous marhemaucal spin-offs that have evolved over the years Go from random variables to random processes and one finds that a smular special status is accorded to Gaussran processes and processes that are 'driven' in some sense by Gaussian noise (e g diffusions) This Gaussian culture, along with the 'Poisson culture' that is ats discrete counterpart, have been a part of the consciousness of generations of probabilists and statistricians to such an exteat that anythung else appears an aberration No better evidence of thus mental make-up than the use of the word 'outhers' to indacate data ponts signficantly away from the typical, the connotation being that they are somehow bad or undesirable Of course, one knew that there are infintely divisible distributions other than the Gaussian or Poisson, and independent increment processes other than the Browman motion or Porsson process, but the study of these has largely remaned an esoteric topic pursued by a few specialusts

But this is no longer so The need to muct such distrbbutions and processes into manstream research has been thrust forth forcefully by emerging applications, the most notable being internet uraffic and finance. In cither of these two domans, mitial developments used the Guassian/Porsson crutches as one mught expect, but the lumtations of these soon became apparent It was no longer possible to treat outhers as freak episodes, but was essential to develop models that adrout them in a natural way Thus the need for 'heavy talled distributions', dubbed tbus because therr probability densitues have 'fat' or 'heavy' tails as
one moves towards infinty in any direction Contrast this with the raptrly decreasing tails of the bellshaped Gaussim curve

For the ever-adventurous commumty of probabilists and statisticians seekng fresh huntung grounds (not to menton funding possiblitues), this has been a comacopsa of research problems. There has been a flury of acturty to buld a body of work that will hang together as some sort of a general approach to these, along the lines of the existang constucts for the Gausstan case. A group of probablists and statisticians have got together and put together this collectron of articles, with an eye on its pedagogical value Given the current paucity of 'user-fnendly' resources for this area, theys explacit aim has been to create a 'gude' or 'handbook' of sorts

The articles have been categonzed into several subgroups The first grouping of five articles on 'applicatoons' starts on the nght footung by describing the issues thrown up by unternet and finance applications The six attucles in the second group on 'time senes' consider the extensions of traditanal technuques in time and frequency doman to these processes Typically, the lumtations of sfrict adherence to conventional misdom (eg the use of the only second-arder statisucs) is ponted out and alternatives/extensions are proposed Topics such as robust estumation, estumation of long-range dependence and effects of nonlneantues are duscussed, whth appropnate caveats for actual practice. The three sectrons that follow, 'heavy tail estmation', 'regression' and 'signal processimg', have two articles each and deal woth vanous statistical issues such as bootstrap and parameter estumation The section on 'model structures', with three artucles, addresses vanous theoretical issues about these distributions and processes The final quartet on 'numencal procedures' highlights computational and approxmate issues as well as software implementations

The lest of authors (too long to be reproduced here) features many of the active workers in the field Together they have put together a valuable collection of articles on an important field in the process of maturng, with inmense potental for both theory and applications A very trmely contribution

Deparment of Computer Scence and Automawn
VIVER S. Borkar
Indian histutate of Scrence
Bangalore 560012.

High dimensional probability by Ernst Eberlem et al, Bukhauser Verlag AG, Klosterberg 23, CH-4010 Basel, Switzerland, 1998, pp 344, sFi 128.
'High-dmenstonal probability' is the new avatar of 'probability on Banach spaces' The book contams 20 articles. Bnef descriptions of some of the artucles based on the interests of this revewer are given in this review.

In 'Convergence in law of random elements and random scts', Hoffinann--Jorgensen gives the basic theory of weak convergence of random elements and sets in great generality

M Ledoux (A short pronf of the Gaussian isopenmetrie nequality) deals with some versions of the following inequality

If A is a Borel set m R, A_{r} is the set of points whose distance from A is less than r, and μ is the standard Gaussian measure on R^{n} then $\mu\left(A_{r}\right) \geq \Phi(a+r)$ whete a is a number satusfyng $\mu(A) \geq \Phi(a)$ and $\Phi(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{x} e^{-y^{2} / 2} d y, x \in \mathrm{R}$ This important inequality is a consequence of an inequalty due $o \mathrm{~S}$

Bobkoy and a sumple self-contained proof of the last mequalty using only the methods of calculus is given in the artucle The proof is based on an artucle of the author with D Bakty

In 'The best doob-type bounds for the maxunum of Brownan paths' G Peskar proves the nequality

$$
E\left(\max _{0 \leq t \leq T} \mid B(\mathrm{r})\right)^{p} \leq C_{p q}\left(E\left(\int_{0}^{c} \mid B(t)^{q+\mathbf{1}} d t\right)\right)^{\frac{p}{r-i}}
$$

for all stop times χ, for $0<p<q+1$ with $q>0$ They obtam the best constant $c_{p ;}$ and therr result extends to all non-aegatuve submartungales.

In 'A consequence for random polynomials of a result of De La Pena and Montgomery-Smith' E Gme uses decoupling of tall probabilites of U-statistics to denve decoupling nequalities for general polynomals in any set of independem (not neeessanly symmetre) random varables
'Small devation probabilites of sums of midependent random varables' by T Dunker, M. A Lffshits and W Linde In 1986, V M Zolotarev anoounced a precise description of the behavour of

$$
P\left\{\sum_{j=0}^{\infty} \phi(j) \xi_{j}^{2}<r\right\}
$$

as $r \rightarrow 0$ where $\{\phi(j)\} \in l^{\prime}, \phi(j)>0 \forall f$ and $\{\xi\}$, is 1 d. $N(0,1)$ The present authors find an naccuracy in the result of Zolotarev and give a corrected version They also deal with the case in which $\{\xi\}$ ts replaced by antid sequence of non-negative randon varables with finte second moment A result in this drecfon was obtauned by R Davis and S Resnck in 1991 and M A Lufthuts in 1997, but the present paper focises on the verfiability of the result in the most important specific examples
W. V Ls and G. Ptitchard constder the following problem (Central luut theorem for the sock-soting problem) n different pars of socks ane scrambled in a laundry bag Socks are drawn randornly one an a tume from the bag and laid on the table When the mate of a sock appears the two are removed from the table How much table space is required? The authors prove a functional central huat theorem for the table space usage as a function of the number of socks drawn
"Laws of large numbers and conturaty of processes' by B Henkel For a sequence $\left\{X_{i}\right\}$ of independent random varrables which are cther centered and if of symmetric it is showin that the Strong Law of Large Numbers is equivalent to as contunaty of the paths of the process

$$
\left\{(1-t)^{2} \sum_{n \geq 3} t^{n} \sum_{0 \lll n} x_{t} x_{n-1}\right\}
$$

and the fact that

$$
\frac{1}{n^{2}} \sum_{k=1}^{n} x_{k}^{2} \rightarrow 0 \mathrm{as}
$$

In 'On random measure processes with application to smooth empirical processes' P Gaenssler ef al prove a unform law of large numbers for finction-mdexed 'random measure processes'. In partucular, this gives a unform law of large numbers for smoothed empincal processes They also prove a functional
central fimut theorem for smoothed empurcal processes under conditions dfferent froro the ones found in Hiteracure

In 'A suflicient condtiton for the contanuly of high order Gaussian chaos processes', M B Marcus obtains suffictent conditions for contmuty and boundcdness of inth order Gaussian chaos processes $(m \geq 2)$ The results are stated in Probability in Banach spaces by M Ledoux and M Talagrand, Sprnger Verlag, 1991 However, the proof given here is incomect

The paper 'Optumal tal comparison based on companson of moments' by I Pinelis is concerved with the problem of maxumzing $E y(\xi)$ over all random elements ξ satisfyng the mequality $E \phi(\varphi) \leq E \phi(\eta)$ for all $\phi \in \mathcal{F}$ where $\eta_{1 s}$ a given randon vanahle on some measurable space, ψ is a given measurable function and 7 is a given set of measurable functoons on that measurable space.

On the whole, a usefill collection of arucles in this area by some of the active researchers with a faur undication of the current themes in the field Of nterest more to speciatsis rather than the broader communty of probabilists

Indian Statistucal Instriute
K. Rama Murthy

Bangalore 560059

Integration-A functional approach by Klaus Bichteler, Birkhauser Veriag AG, Klosterberg 23, CH-4010 Basel, Switzerland, 1998, pp. 208, sFr 68

This is a modern book dealing with a very ancent topie mitegration of functoons The hist of names of star mathematicians associated with the cnicial development of the subject at vanous stages is indeed mund boggling Rtemann, Cauchy, Borel, Lebesgue, Radon, Nikodyn, Ruesz, Carathćodory, Dantel, Steltjes, etc Apart itom other questoons, the mtotivation came from Fourier analysts definition of Fourer coefficrents involved integration of periodic functions over the penod If the function is continuous, the theory of Riemann integration is adequate for defining its integral. Let us brefly recall the mann dea Reemann squeezed the given funcuon from above and below by step functions, functions which are piece-wise constants on sub-intervals Integrals of thes latter class of functions are easy to define

$$
\Sigma_{\text {sleps }}(\text { step size }) \times \text { (height of the step) }
$$

It was soon realized that the class of funtions integrable in the Remann sense is too narrow It is not stable under several himit operations. Exteasions of the Remann's idea to higher dmeasions posed grave duficulties At the same time, input from physics suggested that many physical quantitses may have 'bad' densities but ther averaged values make sense perfectly Thus, there was a need to enlarge the concept of the integral Lebesgue entered the scene and resolved many of these problems Hus 1dea was the same as that of Riemann except that he approximated by simple functrons (instead of step functons) which are prece-wise constants on subsets A which are not necessarily sub-notervals Unlike Rimann who partitooded the doman (physical space) Lebesgue worked with co-dotnam (state space) and this is the key pout for his success Next step in carrying out Lebesguc's idea required measurng the size of subsets A Thus was born Lebesgue measure. In its construction, he admutted countable enterval coverng of subsets. We recall that finte coverng techmque was commonly used durng that era It is thue that the class of functions integrable in Lebesque sense is stnctly larger than Riemann class However, the largest class of functions tor which one can define integral which bas desired propertues is unkiown

The works of Carathédory mark a watershed in the point of view adopted in the theory of mntegratom As we know, there are two objects mvolved in the megration motegrand and the measure in the
classical book, Carathéodory generaized the concept of length of interval to the concept of measure on large class of sets His method is very powerful and this gave rise to abstract and axmomatic measure theory The tools he introduced (outer measure, cut condition, etc) are quate ingenious Because of influenthal books by Halmos and others, the above approach now forms part of the cumeulum mn varous uthversities around the world This method is also successful in dealing with lower dumensional measures (e g Hausdorff measures) However, th success in stochastic integration is limuted

The present book presents a different path known as Danrell's approach to integration It concentrates on the integrand and not on the measure That $1 s$ why thes is referred to as functional approach In this method, one extends the lenear functional, namely, the Remann integral, which is onignally defined for compactly supported contmuous functions to a large collection By takmg charactenstic functions assocrated with sets, one can recover the measure Readers famulhar with measure theory can easily compare thus situation with Riesz Representation Theorem There are sone carker books where this approach is followed, for example, L H Loomes, An introductoon to abstract harmome analysis, Van Nostrand, 1953 Traduorally, one defines Dameill's lower and upper means and the integrable class is precisely the one for when their two means conncide The novelty in the present book is that the use of Danell's lower mean is altogether avorded Having identfied the incegrable class, the author proceeds to introduce Lebesgue spaces and study their properties Product measures, convolutons, Radon-Nikodym Theorem are some of the other topics covered va functional approach

Given the distribution theory and modern development of partal differental equations, the idez of viewing measures as linear functionals (rather than as a set functon) has ganed momentum One of the straking results is that any periodic distribution has a well-defined Fourrer senes which converges to it This has solved to a great extent our mital question on Founer senes with wheh we started our discussion Another appleatoon whech comes to my mind is optumal design problems Thear sutual formulation involves mumuzation over a class of sets Generically, such problems do not admut a solution Thus, a relaxation procedure is followed in which we replace sets by ther characternstic functions Daniolls approach is perhaps the first illuscration of such adeas

For reasons ctted above, I feel that a balanced view of both approaches (Carathéodory and Daneil) should be taught in any analysis course at M Sc level The present volume, beng a moden introducton to Dauell approach, is recommended as a textbook for its lucid style, liberal number of exercises and general presentation.

TIFR Centre
M Vanninatean
Indian Instrute of Science Campus
Bangalore 560012

The computational beauty of nature by Gary Willam Flake, The MIT Press, 55 Hayward Street, Cambrtdge, Mass 02142, USA, 1998, pp 483, \$45.

Computers bave come to occupy a centre stage in modern scientufic exploration For example, computer xperments have played (and contunue to play) a cruchal role m understanding nonlinear systems where 10 analytic solutrons are possible Further, an indepth appreciation of the beauty of fractals would not lave been possible without computers The book under revew explores varnous fields using computation is the basic tool.

The book deals with the followng topics-computation, fractals, chaos, complex systems and adapation Smee each of these topics has already been individually covered by other books, the author tres to
be different by exploring all of them on one single book. He thes them all together by usung the computer as a laboratory to study them He also stresses the unifying (but well-known) theme that sumple recursive rules cau lead to complicated behavour and pattems many of these fields This prevents the book from torning out to be an unconnected collection of topics

In the first part, the author starts wath a sumple introdiction to numbers meluding concepts of countability He then introduces the melhod of Godelization where many natural numbers are mapped into one single number Then the Church-Turng thesis is explamed brefly The famous baling problem is also discussed This part ends with a breef description of Godel's theorem

The next part deals with fractals Fractals have become very fashonable in recent tomes Thus part starts by recolfectung some basic propertues of fractals including self-smulanty and fractional dimenson Ludenayer systems that model plant growth usmg smple recursive rules are dealt with next Many figures are given as examples One mice feature of the book is that it provides the address of an FTP site that contans the source code of programs used in the book for compurer experments. Thus a reader, using these programs, can start by teproducing most of the figutes given in the book and contonue with further exploration on one's own
terated functoon systems usmg affine lmear transformanons are descobed next The part on fractals ends whth an mevitable description of Julia sets and the Mandelbrot set (the so-called master Julta set) A niee touch is the melusion of a relanvely unknown and ill-understood property of the Mandelbrot set where the value of π emerges as a higher-order pattern on its own

The thurd part of the book deals with the now ubiquitous phenomenon of chaos This part starts. predictably enough, with the example of the logstics map One wishes that the author had used a different example The inclusion of shadowing lenma whech has important mplicatoons for computablity of chaote systems is more satisfying Another satisfying feature is the inclusion of a "Further exploration" wection at the end of each chapter which guldes the reader to new unexplored avenues Strange attractors, attractors of chaotuc systerus which typically have fractional dimensions, are descubed nexi Agan, farmivar examples are grven which could have been avoided A nice self-contaned explanation of control of chaos is a welcome addition This part ends with a chapter lonking together chaos, raudomness and incomputability

The fouth part is an exploration of the world of complex systems (autocatalytic sets, ecosystems, economes, etc) The furst chapter is an introdiction to cellular automata noluding Wolfram's classficatuon and Conway's famous Game of Lufe The next chapter deals with self-organzation where autonomous agents interact in such a way as to create global order Three examples-Resnick's termites, Langton's virtual ants and Reynolds bords (virtual birds)- are explored using cellular automata Next, concepts of cooperation and competition in a family of interacting agents are explamed using game theory in particular, non-zero sum games like the well-known Prisoners Duemma the prototypical model of socal conflct) are studied in some detail. Applications to ecosystems are also considered The final chapter deals with artuficial neural networks (espectally the Hopfield neural network)

The final part introduces adaptive systems which adapt to external changes in the environment using feedback mechanmsms It starts with a nice description of genetic algonthms and classifier systens (in partucular, the zeroth-level classifier systems) The next chapter introduces the concept of Rosenblatt's perceptron, a type of pattern classification device based on a model of visual perception

To summanze, the book nicely tues together different areas like chaos, fractals, computaton and complex/adaptrye systems using computer-assisted exploration. The avalabslity of source code for varsous programs and sectuons on "Further exploration" and "Unifying themes" at the end of each chapter are
some of the highlights of the book The use of chohed examples to illustrate vanous concepts is unwarranted given that this book is preceded by many others covering the same areas

Department of Mathematics and
Govindan Rangarajan
Cenre for Theoretacal Studies
Indran instutute of Science
Bangalore 560012

Bifurcation of planar vector fieids and Hilbert's sixteenth problem by Robert Roussarie, Brkhauser Verlag AG, Klosterberg 23, CH-4010 Basel, Swatzerland, 1998, pp 224, sFi 98

The subject matter of the book is dynamical systems One of the goals of the subject is to describe the behavour of systems for large tumes What it given is a law govermong their evolution in an sofinitesimal amount of tume. Above situation is usually modelled by a set of ordinary differential equation:

$$
\begin{equation*}
\frac{d x(t)}{d t}=X(x(t)) \tag{1}
\end{equation*}
$$

The amin to study the asymptote behavour of the solution as the independent variable, nimely, time, goes on unfinty One of the examples is the study of the solar system where X is a vector field representing Newton's gravitational force of atraction The unknown x is also a vector with components ($r_{1} x_{A}$) depending on the position and the velocity of the Sun and the planets One of the charactenstic features of the example is that X is singular

In general. even if X is a smooth force field and $N \geq 3$, the system represented by x can exhbot: 'chaotic' behaviour for large times. There is am abundant hiterature about chaos in the field of mathemat1cs, physics and other televant sclences Given this situation, the framework of the present volume at first sight seems to be very modest Indeed, it is devoted to the case $N=2$ and where X is smooth and even analytic al many tomes In the study of chaos, such a siuation is usuidly brushed aside by stating that the case is annteresting and the behavour is desenbed by Poncare-Bendixson Theorem One may thus wonder at the relevance of the present book It is true that the case of many bodies ($N \leq 3$) xs complicated If we vew at as a case of two bodes $(N=2)$, it is clear that the complicatoon is due to the fact that the force exerted on the two bodtes by the rest is complex If this force as assumed to be small then we can easily see the relevance of the case $N=2$ and the system behavour under perturbations Thus is precisely the object of this book Startrng with Poncare-Bendixson Theorem for an individual X, it presents varions scenatios for the behaviour under perturbations by considening a fambly $\left(X_{2}\right)$ There ate many intricacies in mathematical analysis and the proofs are surprasingly dehcate. Hilbert's sxxteenth problem is one aspect of it

In the case of a single vector field X, the possible asymptotic behavour, roughly speaking, is deseribed by sugular points, limut cycles and saddle connections In the case of a famuly $\left({ }_{n}\right)$, these objects change as the paramerer λ, varies and at curcical values λ^{*}, qualtative changes (called brfurcations) toke place in the behaviour Bufurcation analysis of singular ponts (e.g. Hopf bifurcation) is classical and can be found in many mathemancal texts. The man anm of the present book is to study bifurcation of limut cycles. It is mitutively clear that such bifurcatoons can occur only if there is an accumulation of limut eycles at the critical value λ^{*}. Thas idea has been formalzed in thus monograph by the motroduction of the notion of limit periodec sets Γ associated with the family $\left(X_{\lambda}\right)$ The notion of cychicty, $C y c l\left(X_{\lambda}, \Gamma\right)$, waich denotes the number of hant cycles bufurcating from Γ, is also introduced.

The prototype example of bifurcation analysis done in this book is Bogdanov-Takens family $\left(X_{\lambda}^{N}\right)$ whech novolves two scalar paraneters It is shown how a small timit cycle is created from a singulat pome and how it grows and finally how it dies at saddle connection

The study of bifurcation of lunit cycles is different from that of sugular points and it requires different mathematical tools and methods One classical tool used in thes context is Poncaré transversal and the assochated reluru map P Depending on the nature of the recum map, dilferent methods are employed to obtain the results The am of this text is to present them in a systematic way if p is smooth (e g. elliptic singular point, periodic orbit) then methods of analytic geometry, theory of Abclian integrals, preparation theorem, etc are used (Ch 4). In the case of homochme saddle connection, P is not smooth Asymptotic Dulac senes (myolving loganthms) is used to analyse thus case (Ch 5) Finally, on Chapter 6 (see also Ch 3), the author presents desingularization process (blow-up of sugulanties) to show how more complicated limit perodic sets can be reduced to the elementiry cases treated in the previous two chepters

Hibert's sxteenth problempresented at Pans Congress in 1901 concems, in partucular, in showng that there are fintely many limit cycles for polynomal planar vector fields A more general conjecture resarding the fimteness of $\mathrm{Cycll} X_{\lambda}$. Г) 1 s offered in Chapter 2 along with a programene for solving tinlbert's problem Results proved in Chapters 3-5 establish the truth of the peneral conjecture in a number of cases Thus, the scoond half of the title of the book as also gustified

Thus text brings together several results from previous artocies and presents hem in a coherent mannor The reader is a little bit unconvenenced by a few (unconsequental) onsprints here and there He should also be very caretul with the numbering of theorems which is not very standard Othorwisc. I feel that thos is a treasure house of mathematical ideas and methods in qualitatue theory of dyanancal systems mituated by Poticaré

TIFR Centre
M. Vanninatelan

Indran Institute of Sclence Campus
Bangalore $560 \mathrm{C12}$

Algebraic aspects of integrable systems by A S Fokas and I M Gelfand, Burkhauser Verlag AG, Klosterberg 23, CH-4010 Basel, Swizerland, 1998, pp 360, sFr 138

This volume is a collection of articles on antegrable systems, dedicated to late Irene Dorituan whose works on the algebrare siructures in integrable systems are well known Particularly, her discovery that integrabilty of nonlmear evolution equation has a close connection with the exastence of bi-Hamltomian structures (discovered by Magn at the same time but mdependently) has inspred a large number of mathematucians and physicists working in this area The papers teflect on the advancements made in the algebrac aspects of untegrable systems, both formula and specific, besides some contributions to analyuc aspects, and essentually give a flavour of the state of the att of the 15 contributions, those of Alber et al and McKean consider analytuc aspects of integrabie systems, whole the rest deal writh algebraic aspects

The artucles on algebrac structures deal broadly with the following aspects
(1) B1-Hamultoman structures
(ii) B1-Hamitoman operators and therr related Porsson brackets
(ia) Extension of the above properties to discrete systems
(iv) Master symmetncs and infintely many symmetries
(v) Transtormations

The detads are as follows.
The 1970s works of Dorfman and Magrt clearly show that untegrable solton equatuons such as Kortegweg-de Vries and ponlinear Schrodinger equations and therr generalizations can be constructed usng a bl-Hamitoman method Fokas et al describe a basic approach to construcl a wde vanety of integrable bi-Hamitonzan equations that include nonlithear disperstom, supporing novel type of solitonic solutooss Fordy and Farms present a systematic construction of Hamiltonarn structures wntten in stationmry marufold coprdanates by restricting to isospectral Ilows Fuchsstener describes how compatible Hamitoman parrs play a crucal role in the theory of untegrable systems
'Many papers are devoted to the construction of bl-Hamultoruan' operators, thenr related Poisson brackets and then connection to Lax operators in the study of algebratc structures In particular, the paper of Oevel duscosses the br-Hamoltoman operators in connection with r-matuces and the modified YangBaxter equation, whule Dickey constructs the t-functoms of Zakharov-Shabat and other matrix herarchies of integrable equations Coben et al idenufy some nice comnections between pseudo-differential operators and modular forms

An uterestung area of activity in recent tumes has been the extension of integrabutity aspects of contunuous evolution equations to corresponding diserete equations. Discretuzed versions and ther aigebrac propertues of vanious equations uncluding the equation $u_{t}+u u_{x}=0$ (Kuperschmidt), certam Schwarzian equation (Najhoff) and Newman equation (Ragnseo and Sums) are discussed The paper of Semenov-Than-Shansky and Sevostyanoy discusses nonultralocal Possson brackets for one-dumensional lattice systems

Grumbaum and Hyine, in line with the interest of Dorfman on the concept of master symmetries, bring out certain relations between the Toda lattue, Bocher's theorem and orthogonal polynomuals Integrable solitou systems are assoctated with mfintely many symmetnes Kodama and Mikhallov discuss nonnocegrable effects appearng in hugher order conrections of an asymptotic perturbation expansion for a given nonlnesr wave equation as extenswon of theory of normal form approach of Kodama and approximate symmetry approach of Mukhalov, and identrfy obstacles to asymptotse integrablity Santum describes the cructal role played by symmetnes in the devation of multuscale expansion for a class of nonlinear Schrodinger equation herarchy and in the study of propagation of quasi-monochromatic, nondissipative and weakly nonlmear waves

Further, Ferapontov and Mokhor demonstrate that for an arbitrary number n of primary fields, the equations of associativity can be rewnaten in the form of ($n-2$) parwise commuting systems of hydrody-namic-type mitegrable systems, having certain natural Familtonian representation Schef and Rogers show that the $(2+1)$ dimensional Lowener-Konopelchenko-Rogers untegrable system is nivanant under Laplace-Darboux-type transformations which is then exploited to derive novel Ennst-type integrable equations

Two papers deal whth analytic aspects of integrable systerns McKean deals with Derac and Schrodinger periodic operators to study the canonical l-fom of symplectic geometry in the context of dcfocusing nonlnear Schrodanger equation and Korteweg-de Vries equation using trace formulas. Considerng complex bilhard Hamultomaan systems and nonlunear wave systems, Alber et al. consiruct miterestung classes of solutions in the context of Riemannan manfolds.

To summarize, the book is a collectron of articles wratten by experts in the feeld promarly on the vartous algebrate structures assocuated woth motegrable systems They pronde a feel of the present status of the field, whule provding an opportunty to appreciate the contrbutions and ioterests of Irene Dorfman Researchers working in the area of integrable systems will find it a useful addition to hterature

Centre for Nonlinear Dynamics
M LAKSHMANAN
Bharatitudasan University
Tuuchrapallı 620024

Generalized characteristics of tirst order PDEs by A Melıkyan, Burkhauser Verlag AG, Klosterberg 23, CH-4010 Basel, Swizerland, 1998, pp. 310, sFt 148

Thes hook reports on recen progress toade on a very classical topic, namely, that of definngy unque solution to a system of ordmary differentral equations specified by a vector field X it X is Lupschtz, the classical Cauchy-Lpechitz 'Theorem acheves thas task by assocatung a unuque solution to each given intral condition Given mitial position and velocty, the above theorem solved the problem of findmg the trajectory of a classical parucie moving in a smooth potental field the major challengeng task abead is to consider the case when X'is not Lipschuriz

Let us start with a quick look at a way mo wheh first-order PDEs and then characlenstres arise Study of propagation of hght waves provides an illustratuve example Their behaviour is modetled by PDEs such as the wave equatom However, in the short-wave hout, the concept of the wave functuon ϕ is not very useful and is replaced by the notion of fambes of trajectones. The suble conmection belween Uese two theores is provided by the ansatz of the geonetrical optics $\phi=a e^{x^{-1}} 4$, where a is the amphtude, u the phase function and ε the wavelength It can be deduced that u satisfies the Hamulton-Jacobu equation

$$
\begin{equation*}
F(x, V u(x))=0 \tag{1}
\end{equation*}
$$

where $f=F(x, p$) is the so-catled Hamttonian assoclated with PDE Suce (1) is a first-order POE, the method of charactenstics apples and reduces it to a system of ODEs in the smooth region

$$
\begin{equation*}
x=F_{p}, p=-F_{x} \tag{2}
\end{equation*}
$$

The solution (when it exists umquely), called charactenstres, detines a curve in the phase space (x, p) and its profection to the phystical space x delines what is called ray These are the appropnate tools to descrite bnear wave phenomena we the short-wave himu Thus descmption is consistent with Fermat's proctife and Snell's law of refraction Typically, even if F is regular, rays tend to focus on caustec sixfoces Since the value of u is transported along rays, u hecomes muluvalued on caustecs. At first sight, this seems to suggest the falure of the above construction of u

On the other hand, results proving the existence and unqueness of the wave function ϕ in vanous situations indicate that the above difficulty can be overcome Thes es confirmed by means of the ingemons procedure of Maslov and one can globally define characteristucs (and hence rays) Morphology (a form) of structurally stable caustic singularties exhibited by wavefronts ss a study of independent interest

It is useful to recall the importance of charactenstics in the above example They are camers of information from mitrial data They predict the posian of sugularities of the soluann and the speed with which they propagate A quesuon for the future is how to generalize thas to noulmear equations

Study of transport of passive scalar by incompressible flud fows requres knowledge of streambes n turbulent regumes, the velocrty field is notoriously irregular, oscilating, chactic, random, ete Defin100 of anuque charactenstucs (ie streamlnes) under these carcumstances minans a big challenge Kowver, chanks to the concept of renormaized solurons, some understanding of the basic issues involved las been acheved

If we consider corrpressble flud flows without dissipation (modelled by nonlmear hyperbolic conervatuon laws), there is a new singularty calied shocks across which stare varable may admur a jump fow to define unque characteristics in thus case" The second law of thermodynamics is mposed io the orm of what is called entropy condition to eliminate certarn non-physical shocks and thereby detine the haractenstics uniqueiy These ideas have been successfully implemented in the case of sngle and double onservation laws to demonstrate umiqueness, asymptotic stabilty and other qualitative properties of the slution

Another set of ideas to deal wath singulartues and non-uniqueness is set-valued mappings, generalized radents and dufferental inclustons. Thas is especially frutful al the vector tieid enjoys some monotomey propertues

In this book, the examples motivalug the theory of charactensucs come from oplimal control and ditrentral games In these cases, the correspondung first-order equation is of the form

$$
\begin{equation*}
F(x, u(x), \nabla u(x))=0 \tag{3}
\end{equation*}
$$

he function $F=F(x, u, p)$ which has now u-dependence need not be smooth The corresponding classsI charactenstics ame modifications of (2) and are given by

$$
\begin{equation*}
x=F_{p}, \quad u=\left\langle p, F_{p}\right\rangle \quad p=-F_{x}-p F_{u} \tag{4}
\end{equation*}
$$

xe concept of wiscosiry solution $u \in C^{0}$ which generalizes the entropy condttion is the most approprate te for (3). In this set-up, it is not clear how to define solution for (4) and valudate method of characterisis which asually denands $F \in C^{2}$ and $u \in C^{2}$ However, unqueness and stability of viscosity solutuons dicate that the characterisuc system (4) may be sutably modified to cover even the non-smooth calses us is indeed confirmed in a number cases of singulantues, manly codimension one, considered in thas rok These singularites are consistent with viscosity condition, they are called equivocal, focal, disper1, wiversal angulanties (the termmology coming maniy from differential games) The above classifftion is essentaally based on the behaviour of classical charactersucs defined by (4) in the vicmity of igularities (Thus is analogous to, for instance, Lax entropy condition in the byperbolic conservation ws) Many of them occur in cases where F is nerther convex nor concave. The location of these sunguthes is not known a prion Its detemunation as well as the construction of u are part of the problem To s end, the author proposes what is called method of singular characteristics (MSC) The basic idea of * construction comes from differental geomery and is presented in Chapter 1 along with an application some free boundary problems In Chapter 2, MSC is apphed in the thoery of viscosity solutions lapter 3 suggests a survey of vanous features of flamilonians ansing in calculus of varrations, optamal ntrol and differental games Chapters 4 and 5 are devoted to the study of singulartites occurnng in ferential games. In Chapter 6, the author investigates a somewhat non-classical situation where the uton u is smooth but not the Harmiltoman F. An mdependent analysis of MSC along with its drect sentation is attempted in Chapter 7 for two-dmensional problems It is demonstrated in Chapter 8 that SC can be aseful for second-order PDE as well Viscosity solations are not considered here but it is umed that the equation is nothmg but the stationarity condition of a functional defined not only on ictions but also on sets which may possibly contan theu sngulanises

In the above ducusson, we have presented a glmpse of the contents of the book as well as their importance/sigmuficance We have also tried to place the contribution of the look in the overall development of the eatre subject One of the goals is to keep track of singularitues of solutions, appearance of new ones, therr locations, speed and strength Such an information is vital not cnly for the advancement of the theory but also for the design of efficient numencal schemes Characienstics are canners of such an information Undoubtedly, MSC presented in this volume is a step in this direction Active researchers in PDE will find t extremely usefu!

TIFR Centre
M Vanninatilan
Indiar Jastitute of Serence Canpus
Bangalore 560012

Differemtial and integral operators by I Gohberg et al, Burkauser Veriag AG, Klosterberg 23, CH-4010 Basel, Switzerland, 1998, pp. 344, sFr. 148

Operator theory is one branch of mathematics which is used and recognized as mportant by both pure and applied maihematucians without any dispute. On the one hand, it is a field of mathemances where mathematicians can work on problems which are only of matbematical uterest without boibering about applications. Here one can study interesting problems ma very abstract set up On the other hand, the applicatons of operator theory are tremendous In sumple terms, at unifies a whole lot of interestung practical problems from various branches of science In fact, one can put varous systems in a single framework For example, the applications concerncd problems from mathemalical physics, quantum mechances, hydrodynamucs, astrophysics, network and systems, ete to name a few The basic sdea is to new equatrons describing the physical phenomena as operator equations and then use the beautiful abstract theorems avalable in operator theory In this respect, drfferential operators, psendo-differental operators, integral operators, etc all come under the framework of general operator theory

The book under review is the first in the two volumes of proceedings of the intemational workshop on 'Operator Theory and Appticatons' held at the Universty of Regensberg, Germany, durng July 31August 4, 1995 This workshop was the 8th in a senes of workshops on 'Operator 'Theory' held at varnous places with a regular two-year interval starting from the 1981 workshop at Santa Montea, California, LSA This inelf shows the mpertance of operator herry in the present-day mathematics

The book ander review contans 22 atteles covering a wide range of latest develupments m operator theory and its applications, namely, spectral theory of ontinary and partial differential operators, pseudodifferental and integral operators Λs it covers a range of spectialized copics, a complete analysis of the book means analysing each atticle separately which is not possible and is beyond the scope of the review

As everyone knows most of the physical systems are modelled by differential equations, it is not surprisung that majonty of the artucles are concerned with differential operators, more specifically partial differential operators Of course, there are other interesting articles from integral operators and pseudodifferental operators For exanple, in the article by M. M Malamud, the author studies the invanant and hyper-minyariant subspaces of drect sum of Volterra operators In the pseudo-dufferental category, there are two articles, one by V S Rabmovich and the other by E. Schrohe and B. W Schulze. In both of them, Mellin psendo-differentaal operator techmques are used Rabinovich stadres singular integral operators on some Carleson curves while in the other article boundary-value problems on manfolds with edges arc investigated S Albeveno and K A Makarov studies a model of a quantum mechanical system relared to
the three-body problem which s defined in terms of a pseudo-differental operator with unbounded symbol

Most of the other aracles, broadiy can be put in the differential operator category A Lafschatz in his article studres a problem related to a three-dimensional quasi-heical plasma equbibria with flow, where he uses the Fourier transform method to reduce the ongmal problem with partal differential operator to a family of spectral problems for ordinary differental operator He also presents some numencal procedure for finding the spectrum Thes is the only article presenting some numencal results Spectal problems related to generalized string equation and matrix Stum-Liouville equations are mes. trgated in the article of L A Saknovich Many articles are devoled to the study of Stum-Liouville operators, viz 'On estimates of the first eigenvalue in some elluptic problems' by Yu V Egorov and V A Kondratiev, 'Non singularrty of critical ponts of some differentual and dufference operators' by A. Flege and B Namman, and 'Interpolation of some function spaces and undefinte Strm-Liouville ptoblem' by S G Pyatkov

This book also contans many other articles of interest studying vanious aspects of partial differential operators, more specifically eiliptic operators We do not go into therr detarls

Though all the articles presented in the book come under the purvew of operator theory, each one is a specalized topic needing dufferent treament ln other words it is not concentrated on a spectal area of course, one can refer to a particular artacle of his or hea chose This can nether be used as a textbook nor as a reference volume to begun or carry out research It is just a collection good articles combined together in the broad area of operator theory and looks more like an issue of a jolimal

