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Abstract 

A steady, viscous, inconipressible flow past a circular cylinder is studied nunmkally at ~i~oderately high Rey- 
nolds numbers. A variable shear flow with velocity curvature Factor G is taken as the incident flow. The drag 
coefficient is calculated at Re = I000 and 2000 with G = 0, 0.1 arid 1.0. The resulrs for G = 0, which corre- 
spond to uniform flow, are compared with the existing results for Reynolds numbers upto 500. The non-zero 
curvature is found to affect the breadth of the wake bubble, the separation angle and the drag coefficient. 

Keywords: Parabolic velocity distribution, Steady tlow, viscous, shear, Finite difference method, Block SLOR 
method., 

Steady, viscous, incompressible flow past a circular cylinder is one of the classical prob- 
lems in fluid dynamics. Many authors have studied the unsteady flow past a circular cyl- 
inder. The existing unsteady flow investigations show that at moderate and high Reynolds 
numbers the flow does not tend to a steady state even after a long time. Very little work 
has been reported for the steady state problem at high Reynolds numbers. This has moti- 
vated the authors to consider this particular problem. I?ornberg4 considered the steady 
flow past a stationary circular cylinder, and has given the flow patterns and drag coeffi- 
cient values up to Reynolds number 600. Tang and Ingham considered the steady flow 
past a rotating circular cylinder up to Reynolds number 100. Steady solutions have been 
obtained by Fornbergs (1988) for the flow past a sphere at Reynolds numbers as high as 
5000. 

The complete literature survey on this problem was given by Collins et and Forn- 
berg4. Collins and Dennis', Badr and Dennis', Loc et a17*! and Son et  alY. are some of the 
investigators who have studied numerically the unsteady flow past an impulsively started 
circular cylinder. 

In the present investigation we study the effect of shear in the incident flow. We con- 
sider a parabolic velocity profile characterized by a velocity curvature factor G. For G = 0 
the incident flow is uniform, and the present results can be compared with those of Forn- 
berg4 and Tang ct al. 
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The basic parameters entering into the variable shear flow are the Reynolds number 

where v is the coefficient of kinematic viscosity, U is the character- defined as Re = - 
v 

istic velocity of the fluid, and a is the characteristic length (radius of the cylinder in the 
present case) and the velocity curvature factor G. Streamlines, vorticity contours and drag 
coefficient values are presented. The drag coefficients obtained are compared with those 
from 24 ~ o r n b e r ~ '  and Tang pt al. for Reynolds numbers ranging from 20 to 500. 

For steady, viscous, incompressible flow past a circular cylinder, the flow at sufficiently 
large distances with variable shear is shown in Figure 1. The problem is described in car- 
tesian and polar co-ordinate systems with the origin on the axis of the cylinder. It is a two- 
dimensional flow such that the flow in the planes s = constant are the same. The velocity 
components at sufficiently large distances are, 

where y/' is a stream function, a, the characteristic length (radius of the cylinder), U,  the 
characteristic velocity of the fluid, and G, the velocity curvature factor; primes denote 
dimensional quantities. All quantities in the I--B plane are non-dimensinnalized as 

giving Re = 2 Ua/v. 

The dimensionless governing differential equations for the two-dimensional flow in 
the stream function-vorticity formulation in the re-0 plane are 

where 

The boundary conditions are 

av y = - = 0 on the surface of the cylinder m. 
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FIG. 1. Schematic of cylinder i n  flow field. FIG. 2. Finite different mesh. 

o, = -26 sin 8 as I' --+ 
For G = 0 the boundary conditions represent uniform flow past a circular cylinder. The 

condition for vorticity OI on the surface of the cylinder is deduced using the definition of 
Jlu a and the zero velocity on the surface, i.e. - = 0 .  
81. 

The governing coupled differential equations are solved numerically using an upwind fi- 
nite difference scheme. The stream function t , ~  and vorticity o vary rapidly near the cylin- 
der surface and hence a smaller step size is essential in this region of the flow field. Far 
away from this surface larger step sizes are permissible. To meet this requirement, the 
independent variables 1. and 0 are transformed as 

r=eeand  $= nil. 

With these transformations the governing differential equations (3) take the form 

v2,f = -&?=t W 

where 

The boundary conditions now read 

y=-- " - 0 on the surface of the cylinder 
Jt 
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where 5- is the artificial outer boundary. The condition on the surface of the cylinder for 

vorticiiy comes from * = 0. f-T 

The finite difference discretization of the (-27 domain is given in figure 2. The nodal 
points are the points of intersection of 6 = constant (circles) and 7 = constant (lines). The 
second order derivatives are approximated by central differences of order or A$, 
where A5 and A q  are the step lengths in and q directions respectively. The nonlinear 
terms in the coupled equations are approximated with first-order upwind differences of the 
form, 

where f stands for the coefficients of the first-order partial derivatives of LO. These coeffi- 
cients are derivatives of .ly that have been approximated with central differences at any 
point (ti, )I,). F is the vorticity a. The boundary condition on the surface of the cylinder is 
taken as 

where j is the node number in q direction and 0, 1 and 2 are the nodes in 5 direction. 

The Block SLOR method is used in the iteration process. The resulting algebraic 
equations obtained for w and y are solved in the same order using a tridiagonal solver 
along each line. Diagonal dominance is assured because of the upwind difference ap- 
proximation for the non-linear terms, even at high Reynolds numbers. These iterations are 
continued until, 

at all inner grid points for all field variables y and w. Here n is the iteration number. 

To minimize the oscillations of the solution in the convergence process it is necessary 
to use some initial solution in the iteration process. Here, we used the inviscid flow solu- 
tion to solve the coupled equations at small Reynolds numbers, say at Re = 10, and this 
solution was used as the starting solution at high Reynolds numbers. The optimum accel- 
eration parameters in the convergence process were found to be .8 and .6 for stream func- 
tion yl and vorticity w, respectively. In order to assess the validity of the grid, grid inde- 
pendence tests have been conducted with 41 x 8 1,  61 x 12 1 and 8 1 x 161 grids. For a 
typical case of Re = 60 and G = 0, the maximum vorticity has been cornpared between 
these grids. These values are obtained as 7.094, 7.33 and 7.44, respectively for the thsee 
grids. Because of the 3% variation of the maximum vorticity between the first two grids, 
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Table 1 
Comparison of drag coefficient at moderate Rey- 
nolds numbers 

Re Present results CD Ref. 6 ,  10 CD Ref. 4 CD 

20 2.229 1.995 - 
60 1.279 1.279 - 
100 0.986 1 .059 1 .060 
500 0.529 , - 0.528 

FIG.  3. Drag coefficient as a function of Re. 

an 81 x 161 grid is used for all calculations. With 3 this grid at Re = 10 the present code 
requires 15 minutes of CPU time on an HP9000 workstation. 

With 5- = 0.81 and G = 0, the code was tested at 98 moderate Reynolds numbers 
(20 5 Re 5 500) by comparing the resulting flow patterns with the results of Ingharn et alb. 
and Tang et a/"'. For Reynolds numbers 60 and 100 the location of separation on the sur- 
face of the cylinder was obtained as 63' and 70°, respectively. The variation of the drag 
with Reynolds number is given in figure 3 and tabulated in Table 1 along with the values 
of Ingharn et al." Tang et 01"'. and Fornberg. We observed that agreement is satisfactory. 

The re~ul t s  for Re = 1000 and 2000 with G = 0, 0.1 and 1.0 have been obtained. The 
corresponding streamlines and vorticity contours are presented in figures 4 to 7 for differ- 
ent values of Reynolds numbers and curvature factor G. In figures 4 and 5 the streamlines 
and vorticity contours at Re = 1000 are given close to the cylindrical surface to show the 
flow pattern clearly. To give an overall picture of the flow pattern the graphs at Re = 2000 
are given in a wider range -10 to 10 in x direction and -4 to 4 in y direction. For uniform 
flow, i.e,, for G = 0, it is found from these results that the length and breadth of the wake 
bubble increases with the Reynolds number, The separation of the flow occurs at 91' and 
95.8" for Re = 1000 and 2000, respectively. The symmetry of the flow is observed even at 
high Reynolds numbers. The same is also observed for the variable shear flow with velac- 
ity curvature factor G =; 0.1 and 1.0. To confirm the validity of the present results these 
results are compared with the results obtained by approximating the convective terms with 
second order upwind difference method of the form 
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FIG. 4. Streamlines as Re = 1000, (a )  G = 0,O. 
ri/= (-2 to 2), (b) G  = 0.1, y= (-3 to 3) ,  (c )  G = 
1.0, v= (-8 to 8). 
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FIG. 5 .  Vorticityuontourh at Rc = IOOO, ( a )  G = 0.0, 
@=(-7 ta 7), (b )  G = 0 . 1 ,  w = ( - 4  to 41, (c) G =  
1.0, 0 = ( -5  to 5). 

where f and F are defined earlier in equation (5). With this approximation it is observed 
that the results obtained up to Re = 2000 do not vary much but at higher values they var- 
ied considerably. 

The streamlines at Re = 1000 and 2000 in figures 4 and 6 show the wake region se- 
duced in length and breadth as G increases. Particularly, the breadth is dec;seased drasti- 
cally with increasing G for all Re. But, away from the surface of cylinder the flow is al- 
most similar to the uniform flow. The distortion in vorticity distribution due to the cylin- 
der in shear flow is given in figures 5 and 7. Unlike uniform flow the vorticity is distrib- 

Table 2 Table 3 
Separation angles at various Reynolds numbers Drag coefficient at various Reynolds numbers 

Re G = O  G=O.l  G = l . O  Re G=O GzU.1  G=1.0 - 
1000 91" 84" 74" 1000 0.476 1.359 4.592 
2000 95.8" 87" 793" 2000 0.284 0.754 2.581 
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I I (a)  

FIG. 7 . .  Vortici~ylines nl Re = 2000, ( a )  G = 0.0, 
w = ( - 5  to S), ( h )  G=0.1, ru=(-4 to 4), (c) G =  
1 *0, w = (-9 to 9). 

uted throughout the domain because of the nature of the incident flow. The vorticity con- 
tours near the surface of the cylinder are turned towards the cylinder at the top and bot- 
tom. In figure 5 the closed vorticity contours near the cylinder are given at Re = ZOO0 and 
G = 0, 0.1 and 1 .O. The separation angles are reported in Table I1 for various G. 

The drag coefficient Co is calculated in terms of frictional drag and pressure drag of 
the form CD = CDF + CDP at 4 = 0 as 

where the non-dimensionalized pressure P is calculated from the re la t i~n  
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FIG. 8. Pressure coefficient on the cylinder at FIG. 0. Presst~re coefficient on rhe cylinder at 
Re = 1000. Re = 2000. 

The integrals in (9) are evaluated by using integration by parts. Then we have 

With these relations it is observed that the drag coefficient C is increasing with G.The 
resulting drag D coefficients are given in table 3. 

To see the effect of G on the pressure, the dinlensionless presswe coefficients defined 
by (white" (1974)) 

where po(@ is the pressure on the cylinder surface and p,-, the uniform pressure at large 
distances, is calculated fro1-i-1 the formula 

The curves of the pressure coefficient at Re = 1000 and 2000 for various G are given 
in figures 8 and 9, respectively. 

Conclusions 

Steady viscous flaw past a circular cylinder with a parabolic velocity distribution is con- 
sidered for high Reynolds numbers. The main observations of the present results are: 

1. The breadth of the wake bubble decreases with increasing G. As a result the separation 
angle also decreased with increasing G - separation occurs further downstream. 

2, Drag coefficient increases with G, 
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