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Results concerning probabilistic 2-metric spaces*

SHEHLA ZERTAJ AND AHMAD KHAN

Abstract

In this paper, we have introduced the concept of probabilistic maximal triangle in a subset
of 2-menger space and have established its properties in the form of some theorems.

In a recent paper Khan and Zertaj' has introduced following concepts.

Definition A. A probabilistic 2-metric space (P-2-M space) is an ordered pair (X, F)
consisting of non-empty set X and a mapping F from X x X x X to L, the collection of ail
distribution functions. The value of F at (u, v, w) € X x X X X is represented by F,,... The
functions F ., are assumed to satisfy the following conditions:

I £ =1 for all x > o if at least two of u, v, w are equal.

IL £ =0, .

uvw

Il F,., is invariant under all permutations of u, v, w.

IV.IfFLY =1, Fl = Land F{) =1 then Fii™*™ = 1.

nwy U ww'

In every 2-metric space (X, d) the 2-mefric d induces a mapping F: X XX xX - L
such that F(u, v, w) (x) = Flf\‘"’ = H(x-d(u, v, w)) where H is a distribution function defined
by

0,x<0

Hx)= {l, x>0.

With the interpretation of £\ as the probability that the area of the triangle with ver-
tices u, v, w is less than x, one sees that conditions I, II and III are straight forward gen-
eralization of the corresponding conditions of 2-metric spaces. Condition IV is a minimal
generalization of triangular area inequality which may be interpreted as follow “it is cer-
tain that the area of the triangle with vertices u, v, 5 is less than ., the are of the triangle
with vertices u, s, w is certainly less than y and the area of the triangle with vertices s, v, w

is certainly less than z then the area of the triangle with vertices u, v, w must certainly be
less than x + y + z,

The condition IV is always satisfied in 2-metric spaces where it reduces to triangular
area inequality (T.A-inequality). However in those P-2-M spaces in which the equality
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FY =1 does not hold for (1= v #w) any finite x, IV will be satisfied only vacously.

nn
Therefore a stronger version of generalized T. A-inequality on the pattern of Menger
space was introduced.

Definition B. A function T: [0, 11 x [0, 1] X [0, 1] to [0, 1] is called T-2-norm if it sat-
isfies the following

(THT(a,1,)=2a,T(O00,0)=0.

(T>) T (a, b, ¢) is invariant under all permutations of a, b, c.

(T3) T(e,f,g)2T(a,b,c)ifeza fzb,g2c.

(T) T (T(a, b,c,),d,e)2T(a, T(b,c,d),e)=T(a, b, T(c,d,e)).

T = min is the strongest possible universal T for

T(a,b,c)<T(a,1,)=a @)

T(a,b,¢c)=T(b,c,a)<T(b, 1, 1)=b (ii)

T(a,b,c)=T(c,a,b)<T(c, 1, 1)=c (iii)

(i), (ii) and (iii) implies T(a, b, ¢) < Min(a, b, ¢).

Definition C. A 2-Menger space (X, F, T) is a P-2-M space (X, F) in which T-2-norm

satisfies the following condition.

IV M. Fr 9 2 (RS, )L FGD)

mww Hvs 27 usued © s

for all x,y, z 20 and for all u, v, w, s (distinct or not) € X.

Motivated by R. J. Egbert’ we have introduced some new concepts and have proved
some theorems in this note (for a related concept in Menger space see [3, 4] also).
Throughout the discussion we will consider (X, F, T) as 2-Menger space with T-2-norm-
continuous in all arguments.

Definition 1: Let A be a non-empty subset of X. The function D, defined by
Dy = sup{ inf F,f",,"}

1<y Libvwed
will be called the probabilistic maximal triangle in A,

We now establish the properties of the probabilistic area. We omit the proofs requiring
only routine calculations.

Theorem 1. The function D, is a distribution function.

Definition 2. A non-empty subset A of X is bounded if sup Dﬁ\“" =1, semibounded if
Ry

0 <supDf"” <1 and unbounded if D, = 0.

.Theorem 2. If A is a non-empty subset of X then D, = H iff A consists of not more than
two points.
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Theorem 3. If A and B are non-empty subsets of X and A < B then D, 2 Dy.

Theorem 4. If A, B and C are three non-empty subsets of X such that ANBNC=¢
then '

(v+y+s) (x) ) : )
Dylsuc 2 T(DAblj’DAbC’D;RGC)‘ (1.

Proof. Let x, y and z be given. To establish (1.1) we first show that

EGr) > inf FY. inf Q) inf RO | 1.2
wrwealsuc M wrwedUs "™ wyweayc ™ uyweBUC uva (1.2)
Let
[ (X+y+o) : (Xy+z)

inf Fo 7 =inf F 0070, 1.3
ayvawedlUsuc ™ wea " (1.3)

veB

weC

Now for any quartret of points «, v, w and s in X, we have F(SH*9) > T(F("’) FO) p& )

o s 2% sw = syw

Taking the infimum of both sides of this inequality as u ranges over A, v ranges over B, w
ranges over C, s ranges over A N B N C and using (1.3) we have,

inf  F et (RO EGLER).
u".‘".eAUHUC W neA wy USH STU
vel
weC
seANBNC

However, since T is continuous in all arguments and non-decreasing we obtain

inf  Fa* P21 int FY,inf o EOL bf FG)L|
urweAlUBUC uvsedlB usweAlJC seweBUC

If (1.3) does not hold, then infimum FY™*) takenover u, v, win AU B U C is either at-

mw
tained with all the variables u, v, w in one of the three sets A, B, C or with any two of u, v,
w in one of the sets A, B, C and remaining one variable in any one of the remaining two
sets.
by ds)

Let, inf  Fo0 = dof
urweAUBUC uaWweEA

F.(,\‘-i-y-&-:)
o .

We have
: (Xby+z) > s F(A\') H Hiz )
e R it R HOLHG)

2T( inf F,f\'XZ,H(>’),H(Z))
uvwedUB
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inf FC)

a1 ot R R g P

ewer
urwedlUB uvwedlUC

The same argument works if infimum F5"*) taken over u, v, w in A U B U C is attained

with all the variables #, v, win Borin C.

Now if infimum FF*) u, v, w ranges over A U B U C is neither attained with u in A,
vin B and win C nor with all the variables u, v, w in one of the three sets A, B, C then it
must be attained with any two of u, v, w in one of the sets A, B, C and remaining one vari-

able in any one of the remaining two sets.

. XEy+z . Xk y+D

Let, inf  FG™™) = inf E()
urweAlBUC ureA
weB

Then  inf  FU*) 27| inf FSLH(y), H(z
en u,\',wél}UBUC v "’“ZA 1 (,V) ( )
we

- X . ¥ L z
2T inf P;r(vu)" inf El(w) , inf F;c(\'u)' .
nyweAlUB uyvweAUC uvweBlJC

The same argument works for other combinations, Finally using the fact that the cuboid
{(p, g, 1N 0<psx,08¢<y, 0<r<z) is contained in the tetrahedron {p, g, 1) :p, g,
F2o,p+q+r<x+y+z}.

The inequality (1.2) and continuity of T gives

D(.\'+,\*+5) = sup ( inf F(I,’T{IH))
Hueue prgrr<yeys\ by weAUBUC om

. . (prg+r)
2 sup( inf  F.0
pex\itvwedlBUC

g<y

re<s

27| sup| inf F‘!”.],su( inf F(i”.),su inf  E)
(IKE-.(M,\‘.WEAUB o ll<,l\:‘> wrwedlUe ™ ,.<I_.J wrwesUe

= () ) o

=T(D fUss D DS )
Definition 2-Let A, B, C be non-empty subsets of X.
The probabilistic area of A, B, C is the function F. apc defined by

ik =sup| 7 int| inf| sup £ || inf] inf] sup £ || inf] i (0
e =S ealaeal e v | i 1260 b Frar | pinf fnd] sup P | ¢

q&B

We omit the proofs of the following properties.
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Theorem 5. Fapc is a distribution function.

Theorem 6. If A, B, C are non-empty subsets of X, then, Fyyc is invariant under all permu-
tations of A, B, C.

Theorem 7. If A, B, C and D are non-empty subsets of X then for any x, y and z

(\+\+)

(x)
FABC 2T (FM‘M)’FADC’FI()B)C )
Proof. Let u, v, w be given. Then for any quartrets of points p, ¢, r and 5 in X we have
VW) () v (u
™ 2 T(F Fn )

Since T is continuous and monotonic

sup Fl‘,jl‘f‘ > T[ sup F,E"},) , mf (sup o }(mf (sup Fw': ) n

reC seD reC
Consequently
inf| inf| sup FU ) | L > T inf ()
peA[qeﬂ( ,.E? rar ;12:\ (][2;; QUPFI"[\
inf| inf| sup F") ||, inf] inf] su F(“
peA[\ED[,GF P seD (l/CB ,EF o
Similarly
inf! inf| su F‘"“*" - mf mf up F®
pcA{lE((ng b4t pel\ sel :Eg ras
inf] inf] su  inf mf su F“) \
pei X(:c( \Fg /m xel)[le( qeﬁ w
and

inf| inf| sup £ |2 T mt inf qupF,E",'?
ye\ reC| peq qEB seD ,,&A

inf| inf supi‘," ,inf mt supFw‘,' .
se| rel{ peq geBl reC\ ep

Therefore, since T is associative, we have

T inf| inf| su F‘”J”*“ inf] inf| sup FUF ||
((;EA(:]GB(,EF pr peA| red ¢/eg par
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o tloer | s )
,%25(322(3:5: i )JHP i ﬂ
o )
et ol )

inf| inf] sup £ | |, inf inf| sup F | |1}
;eb(}'gc(izg s D (1/23 e fﬁg o

Now arguing as in the last step of the proof of theorem 4 we have

Fie™ = sup T(inf[inf(sup gg;;;w)])

wtrbwertvis | PEAL4EB\ reC

inf] inf| sup £ inf] inf| s plereaw) ’
peA(reC[qu oar }Ieg reC ,:25 par

2 supT| inf| inf| sup FU )
u<.I\') (I’EA((IEB(IEE e

rey
wez

o e zzg[isg[;:g as:;w})]}
rfonr e o)
o o)
a2 .%25[125[7;5&5;2 m
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su inf| inf| sup F{*) X
( p \dl J}J el 'E([qeg sqr

| inf supF\(‘,‘,‘ '

rel’\ yvep

) p(y)
T(" sun» Fanpe sFDn()

sup I"(mt[mt’
wes vl yell
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