Results concerning probabilistic 2-metric spaces*

Shehla Zertaj and Ahmad Khan

Abstract

In this paper, we have introduced the concept of probabilistic maximal triangle in a subset of 2-menger space and have established its properties in the form of some theorems.

In a recent paper Khan and Zertaj' has introduced following concepts.
Definition A. A probabilistic 2-metric space (P-2-M space) is an ordered pair (X, F) consisting of non-empty set X and a mapping F from $X \times X \times X$ to L, the collection of all distribution functions. The value of F at $(u, v, w) \in X \times X \times X$ is represented by $F_{u w w .}$. The functions $F_{u v w}$ are assumed to satisfy the following conditions:
I. $F_{u\left(t w^{\prime}\right.}^{(x)}=1$ for all $x>0$ if at least two of u, v, w are equal.
II. $F_{u r w}^{(o)}=0$.
III. $F_{u r w}$ is invariant under all permutations of u, v, w.
IV. If $F_{u m s}^{(v)}=1, F_{u s w^{\prime}}^{(y)}=1$ and $F_{s w w}^{(=)}=1$ then $F_{u w w}^{(.+y+z)}=1$.

In every 2 -metric space (X, d) the 2 -metric d induces a mapping $\mathrm{F}: \mathrm{X} \times \mathrm{X} \times X \rightarrow L$ such that $F\left(u, v, w^{\prime}\right)(x)=F_{u r w}^{(x)}=H\left(x-d\left(u, v, w^{\prime}\right)\right)$ where H is a distribution function defined by

$$
H(x)=\left\{\begin{array}{l}
0, x \leq 0 \\
1, x>0
\end{array}\right.
$$

With the interpretation of $F_{u r w w}^{(r)}$ as the probability that the area of the triangle with vertices u, v, w is less than x, one sees that conditions I, II and III are straight forward generalization of the corresponding conditions of 2 -metric spaces. Condition IV is a minimal generalization of triangular area inequality which may be interpreted as follow "it is certain that the area of the triangle with vertices u, v, s is less than x, the are of the triangle with vertices u, s, w is certainly less than y and the area of the triangle with vertices s, v, w is certainly less than z then the area of the triangle with vertices u, v, w must certainly be less than $x+y+z$.

The condition IV is always satisfied in 2-metric spaces where it reduces to triangular area inequality (T.A-inequality). However in those P-2-M spaces in which the equality
$F_{u\left(w^{\prime} w^{\prime}\right.}^{(\cdot)}=1$ does not hold for $\left(u \neq v \neq w^{\prime}\right)$ any finite x, IV will be satisfied only vacously. Therefore a stronger version of generalized T. A-inequality on the pattern of Menger space was introduced.

Definition B. A function $T:[0,1] \times[0,1] \times[0,1]$ to $[0,1]$ is called T - 2 -norm if it satisfies the following
$\left(\mathrm{T}_{1}\right) \mathrm{T}(\mathrm{a}, 1,1)=\mathrm{a}, \mathrm{T}(0,0,0)=0$.
(T_{2}) $T(a, b, c)$ is invariant under all permutations of a, b, c.
$\left(T_{3}\right) T(e, f, g) \geq T(a, b, c)$ if $e \geq a, f \geq b, g \geq c$.
$\left(\mathrm{T}_{4}\right) \mathrm{T}(\mathrm{T}(\mathrm{a}, \mathrm{b}, \mathrm{c}), \mathrm{d}, \mathrm{e},) \geq \mathrm{T}(\mathrm{a}, \mathrm{T}(\mathrm{b}, \mathrm{c}, \mathrm{d}), \mathrm{e})=\mathrm{T}(\mathrm{a}, \mathrm{b}, \mathrm{T}(\mathrm{c}, \mathrm{d}, \mathrm{e}))$.
$T=\min$ is the strongest possible universal T for
$\mathrm{T}(\mathrm{a}, \mathrm{b}, \mathrm{c}) \leq \mathrm{T}(\mathrm{a}, 1,1)=\mathrm{a}$
$\mathrm{T}(\mathrm{a}, \mathrm{b}, \mathrm{c})=\mathrm{T}(\mathrm{b}, \mathrm{c}, \mathrm{a}) \leq \mathrm{T}(\mathrm{b}, 1,1)=\mathrm{b}$
$\mathrm{T}(\mathrm{a}, \mathrm{b}, \mathrm{c})=\mathrm{T}(\mathrm{c}, \mathrm{a}, \mathrm{b}) \leq \mathrm{T}(\mathrm{c}, 1,1)=\mathrm{c}$
(i), (ii) and (iii) implies $T(a, b, c) \leq \operatorname{Min}(a, b, c)$.

Definition C. A 2-Menger space (X, F, T) is a P-2-M space (X, F) in which T-2-norm satisfies the following condition. .

for all $x, y, z \geq 0$ and for all u, v, w, s (distinct or not) $\in X$.
Motivated by R. J. Egbert ${ }^{2}$ we have introduced some new concepts and have proved some theorems in this note (for a related concept in Menger space see [3, 4] also). Throughout the discussion we will consider ($\mathrm{X}, \mathrm{F}, \mathrm{T}$) as 2-Menger space with T-2-normcontinuous in all arguments.

Definition 1: Let A be a non-empty subset of X. The function D_{A} defined by

$$
D_{A}^{(t)}=\sup _{t<x}\left[\inf _{u, r, r, w \in A} F_{u t w^{\prime}}^{(t)}\right]
$$

will be called the probabilistic maximal triangle in A.
We now establish the properties of the probabilistic area. We omit the proofs requiring only routine calculations.

Theorem 1. The function D_{A} is a distribution function.
Definition 2. A non-empty subset A of X is bounded if $\sup _{x} D_{A}^{(H)}=1$, semibounded if $0<\sup D_{A}^{(. \cdot)}<1$ and unbounded if $D_{A}=0$.

Theorem 2. If A is a non-empty subset of X then $D_{A}=H$ iff A consists of not more than two points.

Theorem 3. If A and B are non-empty subsets of X and $A \subset B$ then $D_{A} \geq D_{B}$.
Theorem 4. If A, B and C are three non-empty subsets of X such that $A \cap B \cap C=\phi$ then

$$
\begin{equation*}
D_{A \cup B \cup C}^{(r+y+z)} \geq T\left(D_{A \cup B}^{(r)}, D_{A \cup C}^{(y)}, D_{B \cup C}^{(z)}\right) . \tag{1.1}
\end{equation*}
$$

Proof. Let x, y and z be given. To establish (1.1) we first show that

Let

$$
\begin{equation*}
\inf _{u, r, w \in A \cup B \cup C} F_{u r w}^{(r+y+y)}=\inf _{\substack{u \in A \\ r \in B \\ w \in C}} F_{u w+}^{(.++y+z)} . \tag{1.3}
\end{equation*}
$$

Taking the infimum of both sides of this inequality as u ranges over A, v ranges over B, w ranges over C, s ranges over $A \cap B \cap C$ and using (1.3) we have,

However, since T is continuous in all arguments and non-decreasing we obtain

If (1.3) does not hold, then infimum $F_{u m w}^{(x+y+z)}$ takenover u, v, w in $A \cup B \cup \mathrm{C}$ is either attained with all the variables u, v, w in one of the three sets A, B, C or with any two of u, v, w ' in one of the sets A, B, C and remaining one variable in any one of the remaining two sets.
Let, $\inf _{u, r, w \in A \cup B \cup C} F_{u w w}^{(1+y+z)}=\inf _{u, r, w \in A} F_{u w w}^{(++y+z)}$.
We have

$$
\begin{aligned}
& \geq T\left(\inf _{u, r: \cup: \cup \in A \cup B} F_{H w}^{(v)}, H(y), H(z)\right)
\end{aligned}
$$

The same argument works if infimum $F_{t u w}^{(r+y+z)}$ taken over u, v, w^{\prime} in $A \cup B \cup C$ is attained with all the variables u, v, w in B or in C.

Now if infimum $F_{u r w^{\prime}}^{\left(i+y^{+}\right)}, u, v, w$ ranges over $A \cup B \cup C$ is neither attained with u in A, v in B and win C nor with all the variables u, v, w in one of the three sets A, B, C then it must be attained with any two of u, v, w in one of the sets A, B, C and remaining one variable in any one of the remaining two sets.
Let, $\inf _{u, r, w \in A \cup B \cup C} F_{u w+}^{(.++y+z)}=\inf _{\substack{u, r \in A \\ w \in B}} F_{u w w}^{(x+y+z)}$.
Then $\inf _{u, v, w \in A \cup B \cup C} F_{l(t w}^{(x+y+z)} \geq T\left(\inf _{\substack{u, v \in A \\ u \in B}} F_{u\left(w w^{\prime}\right.}^{(., r)}, H(y), H(z)\right)$

$$
\geq T\left(\inf _{u, r, w \in A \cup B} F_{u w w^{\prime},}^{(v)}, \inf _{u, v, w \in A \cup C} F_{u, w^{\prime},}^{(y)}, \inf _{u, v, w \in B \cup C} F_{u \cdots w^{\prime}}^{(\vartheta)}\right) .
$$

The same argument works for other combinations. Finally using the fact that the cuboid $\{(p, q, r): o \leq p \leq x, o \leq q \leq y, o \leq r \leq z\}$ is contained in the tetrahedron $\{(p, q, r): p, q$, $r \geq o, p+q+r<x+y+z\}$.

The inequality (1.2) and continuity of T gives

$$
\begin{aligned}
& D_{A \cup B \cup C}^{(r+y+z)}=\sup _{p+q+r<x+y+z}\left(\inf _{u, v, w \in A \cup B \cup C} F_{u \backslash w}^{(p+q+r)}\right) \\
& \geq \sup _{\substack{p<r \\
l<y \\
r<z}}\left(\inf _{u, r, w \in A \cup B \cup C} F_{\mu \mu \cdot w}^{(p+q+r)}\right) \\
& \geq T\left(\sup _{p<i=1}\left(\inf _{u, v, w \in A \cup B} F_{u r w}^{(p)}\right), \sup _{u<y}\left(\inf _{u r, r, w \in A \cup C} F_{u r w w}^{(q)}\right), \sup _{r<z}\left(\inf _{u, r, w \in B \cup C} F_{u r w}^{(r)}\right)\right) \\
& =T\left(D_{A \cup B}^{(r)}, D_{A \cup C}^{(\rho)}, D_{B \cup C}^{(z)}\right) .
\end{aligned}
$$

Definition 2-Let A, B, C be non-empty subsets of X.
The probabilistic area of A, B, C is the function $F_{A B C}$ defined by

$$
F_{A B C}^{(r)}=\sup _{t<1 .}\left(T\left(\inf _{p \in A}\left(\inf _{q \in B}\left(\sup _{r \in C} F_{p q r}^{(t)}\right)\right) \inf _{q \in B}\left(\inf _{r \in C}\left(\sup _{p \in A} F_{p q r}^{(t)}\right)\right)\right) \inf _{r \in C}\left(\inf _{p \in A}\left(\sup _{q \in B} F_{p q r}^{(t)}\right)\right) .\right.
$$

We omit the proofs of the following properties.

Theorem 5. $F_{A B C}$ is a distribution function.
Theorem 6. If A, B, C are non-empty subsets of X, then, $F_{A B C}$ is invariant under all permutations of A, B, C.
Theorem 7. If A, B, C and D are non-empty subsets of X then for any x, y and z

$$
F_{A B C}^{(\cdot+y+=)} \geq T\left(F_{A B D}^{(\cdot)}, F_{A D C}^{(y)}, F_{D B C}^{(=)}\right)
$$

Proof. Let u, v, w be given. Then for any quartrets of points p, q, r and s in X we have $F_{p q r}^{\left(u+r^{\prime}+w\right)} \geq T\left(F_{p q s}^{(u)}, F_{p s r}^{\left({ }^{(}\right)}, F_{s q r^{\prime}}^{(w)}\right)$.
Since T is continuous and monotonic

$$
\sup _{r \in C} F_{p q r^{\prime}}^{\left(u+r^{\prime}\right)} \geq T\left(\sup _{s \in D} F_{p \mu s}^{(u)}, \inf _{s \in D}\left(\sup _{r \in C} F_{p s r}^{(v)}\right),\left(\inf _{s \in D}\left(\sup _{r \in C} F_{s q r^{\prime}}^{(w)}\right)\right) .\right.
$$

Consequently

$$
\begin{aligned}
& \inf _{p \in A}\left(\inf _{y \in B}\left(\sup _{r \in C} F_{p q r}^{\left(u+v^{+}+w\right)}\right)\right) \geq T\left(\inf _{p \in A}\left(\inf _{v \in B}\left(\sup _{r \in C} F_{p q s}^{(u)}\right)\right)\right. \\
& \left.\inf _{r \in A}^{(u)}\left(\inf _{v \in D}\left(\sup _{r \in C} F_{p s r}^{(v)}\right)\right), \inf _{v \in D}\left(\inf _{y \in B}\left(\sup _{r \in C} F_{s q r}^{(w)}\right)\right)\right) .
\end{aligned}
$$

Similarly

$$
\begin{aligned}
& \inf _{p \in A}\left(\inf _{r \in C}\left(\sup _{y \in B} F_{p / q}^{\left(u+r^{\prime}+w^{\prime}\right)}\right)\right) \geq T\left(\inf _{p \in A}\left(\inf _{s \in D}\left(\sup _{y \in B} F_{p \psi s}^{(u)}\right)\right),\right. \\
& \inf _{p \in A}\left(\inf _{r \in C}\left(\sup _{s \in I} F_{p s r}^{(v)}\right)\right), \inf _{s \in D}\left(\inf _{r \in C}\left(\sup _{q \in B} F_{s u r}^{(w)}\right)\right),
\end{aligned}
$$

and

$$
\begin{aligned}
& \inf _{\psi \in B}\left(\inf _{r \in C}\left(\sup _{p \in A} F_{p q /}^{(u+r+w)}\right)\right) \geq T\left(\inf _{\psi \in B}\left(\inf _{s \in D}\left(\sup _{p \in A} F_{p \psi s}^{(u)}\right)\right)\right. \\
& \inf _{x \in D}\left(\inf _{r \in C}\left(\sup _{p \in A} F_{p s r}^{(r)}\right)\right) ; \inf _{y \in B}\left(\inf _{r \in C}\left(\sup _{x \in D} F_{s y r r}^{(u)}\right)\right) .
\end{aligned}
$$

Therefore, since T is associative, we have

$$
T\left(\inf _{p \in A}\left(\inf _{q \in B}\left(\sup _{r \in C} F_{p q r}^{\left(u+r^{\prime}+w^{\prime}\right)}\right)\right), \inf _{p \in A}\left(\inf _{r \in C}\left(\sup _{q \in B} F_{p q r}^{\left(u+r^{\prime}+w^{\prime}\right)}\right)\right),\right.
$$

$$
\begin{aligned}
& \left.\inf _{y \in B}\left(\inf _{p \in A}\left(\sup _{r \in C} F_{p q r}^{\left(u+r^{\prime}+w^{\prime}\right)}\right)\right)\right) \geq T\left(T \left(\inf _{p \in A}\left(\inf _{q \in B}\left(\sup _{s \in D} F_{p q \mathcal{L}}^{(u)}\right)\right),\right.\right. \\
& \inf _{p \in A}\left(\inf _{v \in D}\left(\sup _{y \in B} F_{p q / s}^{(u)}\right)\right), \inf _{y \in B}\left(\inf _{s \in D}\left(\sup _{p \in A} F_{p q / s}^{(u)}\right)\right), \\
& T\left(\inf _{p \in A}\left(\inf _{s \in D}\left(\sup _{r \in C} F_{p x r}^{(v)}\right)\right), \inf _{p \in A}\left(\inf _{r \in C}\left(\sup _{s \in D} F_{p x r}^{(v)}\right)\right),\right. \\
& \inf _{s \in D}\left(\inf _{r \in C}\left(\sup _{p \in A} F_{p s s}^{(v)}\right)\right), T\left(\inf _{s \in D}\left(\inf _{q \in B}\left(\sup _{r \in C} F_{s,\left(r^{\prime}\right)}^{(w)}\right)\right),\right. \\
& \left.\left.\inf _{s \in D}\left(\inf _{r \in C}\left(\sup _{q \in B} F_{s q q^{\prime}}^{(w)}\right)\right), \inf _{q \in B}\left(\inf _{r \in C}\left(\sup _{s \in D} F_{s q r^{(w)}}^{(w)}\right)\right)\right)\right)
\end{aligned}
$$

Now arguing as in the last step of the proof of theorem 4 we have

$$
\begin{aligned}
& F_{A B C}^{\left(.++y^{+z}\right)}=\sup _{u+r+w<x+y+z} T\left(\inf _{p \in A}\left(\inf _{q \in B}\left(\sup _{r \in C} F_{p q r}^{(u+v+w)}\right)\right)\right. \\
& \left.\inf _{p \in A}\left(\inf _{r \in C}\left(\sup _{q \in B} F_{p q r}^{\left(u+r^{\prime}+w^{\prime}\right)}\right)\right), \inf _{q \in B}\left(\inf _{r \in C}\left(\sup _{p \in A} F_{p q r}^{\left(u+r+w^{\prime}\right)}\right)\right)\right), \\
& \geq \sup _{\substack{u<x \\
l<y \\
w<Z}} T\left(\inf _{p \in A}\left(\inf _{q \in B}\left(\sup _{r \in C} F_{p q r}^{(u+v+w)}\right)\right)\right. \\
& \left.\left.\inf _{p \in A}\left(\inf _{(r \in C}\left(\sup _{q \in B} F_{p q r^{r}}^{\left(u+w^{\prime}\right)}\right)\right), \inf _{q \in B}\left(\inf _{r \in C}\left(\sup _{p \in A} F_{p q r^{\prime}}^{(u+v+w)}\right)\right)\right)\right) . \\
& T\left\{\sup _{u<i} T\left(\inf _{p \in A}\left(\inf _{q \in B}\left(\sup _{s \in D} F_{p q u s}^{(u)}\right)\right)\right), \inf _{p \in A}\left(\inf _{s \in D}\left(\sup _{q \in B} F_{p q s}^{(u)}\right)\right),\right. \\
& \inf _{q \in B}\left(\inf _{v \in D}\left(\sup _{p \in A} F_{p q s}^{(u)}\right)\right), \sup _{x<y} T\left(\inf _{p \in A}\left(\inf _{s \in D}\left(\sup _{r \in C} F_{p s s r}^{(v)}\right)\right),\right. \\
& \left.\inf _{p \in A}\left(\inf _{r \in C}\left(\sup _{s \in D} F_{p s r}^{(1)}\right)\right), \inf _{s \in D}\left(\inf _{r \in C}\left(\sup _{p \in A} F_{p s r}^{(v)}\right)\right)\right),
\end{aligned}
$$

$$
\begin{aligned}
& \sup _{w \ll} T\left(\inf _{x \in D}\left(\inf _{q \in B}\left(\sup _{r \in C} F_{s \neq r}^{(w)}\right)\right)\right), \inf _{x \in D}\left(\inf _{n \in C}\left(\sup _{g \in B} F_{s q r}^{(w)}\right)\right), \\
& \left.\left.\inf _{q \in B}\left(\inf _{r \in \in}\left(\sup _{v \in I)} F_{s u r}^{(w)}\right)\right)\right)\right\} . \\
& =T\left(F_{A B D}^{(\cdot)}, F_{A D C}^{(y)}, F_{D B C}^{(-)}\right) .
\end{aligned}
$$

Acknowledgement

The authors thank the referee for valuable suggestions and helpful comments in improving the earlier version of this paper.

References

1. Khan, A. and Zertan, S.. Probabilistic 2-metric spaces, submitted to communications, De La Faculte Des Sciences, De L Uni D Ankara.
2. Egbert, R. J.,

Products and quotients of probabilistic metric spaces, Pacific J of Math, 24 (1968), 437-455.
3. Constantiv, G. and Instratisct , 1., Elements of probabilistic analysis, Kluwer Academic Publishers, 1989.
4. Schwelzer, B. and Sklak. A..

Probathilistic metric spaces, N. H. Series, 1983.

