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Abstract

In the present communication we define the codes which assign ¢ — alphabet one-one codeword to each of a
random variable and the functions which represent possible transformations from codeword length of a non-
one code to codeword length of a uniquely decodable code. By using these functions we obtain bounds on the
exponentiated mean codeword length for one-one code of size d — alphabet in terms of Renyi entropy and
study the particular cases also.
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1. Introduction

Shannon proved that the minimal expected codeword length L of a prefix code for a ran-
dom variable X satisfies.

HX) S Lyp <HX) + 1 (1.1

where H(X) is the Shannon entropy of the random variable X and Lyp = Zp;1; is the aver-
age codeword length for uniquely decodable code. Shannon’s restriction that encoding of
X will be concatenated and must be uniquely decodable is motivated by the desire to deal
with sequential data. In some situations it is advantageous to transmit a single random
variable in stead of a sequence of random variables, particularly, when there are N states
for one memoryless source, one for each symbol s; of the source alphabet. Such codes
which assign a d’¢tinct binary codeword to each outcome of the random variable without
regard to the constraint that concatenation of these description be uniquely decodable are
called 1:1 codes.

Leung-Yan-Cheong and Cover [4] considered 1:1 codes and defined the average
codeword length for the best 1:1 code and obtained its lower bound given as

L. = Zpi{log(i/2 + 1)] 2 H(X)-log longN-3, (1.2)

where N is the number of values that random variable X can have and [S] denotes the
smallest integer greater than or equal to S. Since the class of 1:1 codes contains the class
of uniquely decodable codes, therefore it follows that
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Ly € Lyp (1.3)

It may be noted that all logarithms have been taken to the base D unless otherwise stated
and we denote the average codeword length for the best 1:1 codes and uniquely decodable
codes by L.; and Lyp respectively.

Compbell [1] introduced the exponentiated codeword length.
Lyp(t) = (1/Dlog (Ep:D™), 0 <1< o0 (1.4)

where Lyp(t) is the average codeword length for uniquely decodable code, D represent the
size of code alphabet and I; is the codeword length associated with x; of x. He proved the
following noiseless coding theorem:

H(X) < Lyp(t) < H(X) + 1 (1.5)
under the condition ZD™¥ < 1 (1.6)

where H (X) is Renyi [5] entropy of order &t=1/1 + ¢ and [; is the codeword length corre-
sponding to source symbols x;. The inequality (1.6) is Kraft's inequality which is neces-
sary and sufficient for the existence of uniquely decodable code.

Kiefer [3] defined a class of decision rules and showed that H (X) is the best decision
rule for deciding which of two sources can be coded with small expected cost for se-
quence of length n, as n — o, where the cost of encoding a sequence is assumed Lo be a
function only of the codeworth length. Jelinek [2] showed that coding with respect to
Lyp(t) is useful in minimizing the problem of buffer overflow which occurs when the
source symbols are being produced at a fixed rate, and the codewords are stored tempo-
rarily in a finite buffer.

In the present paper we define the codes which assign D alphabet one to one codeword
to each outcome of a random variable and the functions which represent possible trans-
formations from codeword lengths of 1:1 code to UD codes of size D alphabet in sec-
tion 2.

In section 3 by using these functions we obtain bounds on the exponentiated mean
codeword length of the best 1:1 code of size D alphabet in terms of Renyi entropy and
study the particular case also.

2. Transformation from Codeword lengths of 1:1 to UD Codes of Size D-Alphabet

Let X = {x}, x5..., xy} be a random variable with finite number of valucs having discrete
probability distribution P = {(py, pa,..., pn)}, p;> 0 for all i, Ep, =i, p, 2 p; for i <j}. Let
l;, i=1, 2,..., N, be the codeword length of the sequence encoding x; in the best 1:1 code
of size D alphabet, then the set of possible codewords is

{0, 1,..., (D~1); 00, 01,..., (D-1) (D~1); 000, Q01,....}
and consequently, we have

li = 1, 12-_- 1,..., lD= l, lD»,‘ ‘—‘-2,..., 1[)([)* |5= 2, ele
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Thus by inspection we can see that .
li=Tlog(D-1)i/D + 1)] 2.1)
where [S] denotes the smallest integer greater than or equal to S.

Now we define a function #(/;) such that ZD™"'" < 1 holds, only then the set of length
{h(l))} yields acceptable codeword length for a uniquely decodable code. Evidently, if / is
an integer valued function such that Z;L, D™ > 1, then {h(/))} cannot yield a uniquely
decodable code.

Theorem 1. The following functions are possible transformations from codeword lengths
of 1:1 codes to those of uniquely decodable codes of size D alphabet:

(i) :

h(ly) = I + allogly] + log (D" ~ 1)/ (D" = D). where a > 1, D = 2. 2.2)
(i1)

hilpy =6+ allogll; + D). a>2and D 2 2. (2.3)
(iii)

h(ly = 1; + [logl; + log(logl) + ...... + log(log(...(log/)))] + 4. 2.4)

where we only take the first K iterates for which
log(log(...(log/)))) is positive.

For the proof refer to Leung-Yan-Cheong and Cover{4] Theorem 2.

Lemma 2.1 Let
Gp(X) = 1 x logp % logp(logpx) (2.8)
then
infinite if D > e:l
finiteif D<e
For proof refer to [4]
Thus I, is finite only if D < ¢ which implies D = 2.
for D =2 and M = Logse, we have.
I £ logae/(logze—1) < 3.26 (2.9)
Hence |
Y 1/l logllog(log 1)... <l + 1 <35. (2.10)
Substituting (2.10) in (2.7), we get ’
<352 (2.11)

If we choose ¢ =4 in (2.11), then S £ 1. Hence theorem 1 is proved.
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3. Bounds on exponential mean codeword length of 1:1 code

The exponentiated mean codeword length of size D alphabet for the best 1:1 code is de-
fined as

Lia() = (10 log (pDM =71, 0 <1 < o0 (3.1)

Since the class of the best 1:1 codes contains the class of uniquely decodable codes,
therefore it follows that

Ly (6) < Lyp(r) (3.2)
It may be seen that (3.2) also holds in view of Li,; < Lyp.

Now we obtain lower bonds of (3.1) in the next theorem in terms of the Renyi entropy
of order o by using the functions defined in theorem 1.

Theorem 2. The exponentiated mean codeword length (3.1) for the best 1:1 code of
size D alphabet satisfies the followings:

(a)
L) 2 H (X)-a(l + log (H(X) + 1))-r, (3.3)

where a > max(1, log.D), T2 log(D“~-1)/(D*-D), ov=1/1 + 1t and 0 <t < 1/a.

(b)
Lya(f) 2 H (X)~alog (H(X) + 2), (3.4)

where @ 2 max(2, log,D), a=1/1+tand 0 <t < l/a.

(©)
Ly.(t) = H (X)-log (H(X) + 1))~log log(H(X) + 1) +....—6, (3.5)

where a=1/1 +1,0 <t <1 and base of logarithm is 2.

Proof:

(a) From (1.4) and (1.5), we have
(1/n)log(Zp:D"™) 2 H (X)

or

log(ED"") > tH (X), since ¢ > 0.

[t imples

EDI/i > Drlla (36)
On using theorem 1(/) in (3.6), we get
E{D"!*eloe 19y > Dl e — 1), where 72 log (D~1)/(D"~D) and a > 1.
or
E{D"}E(D“#!* D} » D'™*0, since
ElDi(l +alog I + 1))} SE{DJI}E[Dar(IogH n],
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or

E{D[I}E{ [ul} > ‘Dllllu—r-—u)
By Jensen’s inequality E(/"'} < (EN)", so we have
E{DI’}(E,)UI > {Dl(llu-r—u)

or

(I)Ll:lu)) 1 > DlIIlu-«rvu)/(El )ur’ since E{D” ] = (DLl:l(l))l
Raising both sides of (3.9) to the power 1/t and taking logarithm, we get

L) 2 H ~t-a-alog(E1).
Since Ly € Lyp < H(X) + 1, therefore it follows that
Ly 2 H (X)=a(l +log(HX)+ 1) -7
where ¢ > 1, T2 log(D"-D/AD"-D), = 1/1 +tand 0 <1 < /u
(b) From (3.6) and theorem I (ii), we have
E{D" sty s (X, a 22
or
E{D"}E{D™ ) < D™, since
E{DM st by s pupty prpe siost 1)
or '

{DMUOYELT + DY) 2 DM, since E{D") 2 (D17
By Jensen’s inequality E{(1 + 1)} SE{1 + 1)}*, so we have

(DM 2 DMUEL + 1))

Raising both sides of (3.9) to the power 1/t and taking logarithm, we get
Liatey 2 H ~alog(E1 + 1)
It implies.
Lia(r)y 2 H (X)-alog(H)(X) + 2), since E1 <H(X) + 1,
wherea 22, 0=1/1 +tand0<t < l/u

(c) Again from (3.6) and theorem [(iii), we have
E(DI” s log b Togddog Dy L Jogtlogi.dlog 1)) + 4)} > D'H".
It implies
E{D”)E( l)llug(l slog be ~h»gc.‘.llngl)))} > DI(HM-«H
or
(Dn;tm):E[(w)r] > l)l(//“‘-ﬂl)7 since E{D”} = (DLl:l(l))r
where 1% = [ log | log(log 1)....Jog(....(log 1}).
By Jensen’s inequality £{(1%)'} < (E{1%}), so we have
(D“:””)f > I)H”HMU/(E{ 1* })I
Raising both sides of (3.11) to the power of 1/t and taking logarith, we have

3.7)

(3.8)

(3.9)

(3.10)
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Lia(n) =z H-4-log E{1%}
or

Lty 2 H ~4-Ellog(1%)}, since E{log(1%)} = log £{1%} G2
we consider

log(1*) = log! + log(logl) + .... upto the last positive term = log*1 (say Although log#1 is
not concave, yet Leung-Yan-Cheang and Cover [4] proved that there exists a concave
function F*(1) such that

F(1) S log™*l < FH(1) + 2.

Thus
E{log(1%)} = E{log*1} S E{F*(1) + 2} S FHEL) + 2 < log™(£1) + 2 (3.13)
Substituting (3.13) in (3.12), we get
Ly (t) 2 H (X)-6-log*(E1)
or
L.ty 2 H (X)-6-log(E1)-loglog(E1).....
Since E1 < H(X) + 1, therefore it follows that
Li.(0) 2 Ha (X)-6-log(H(X) + 1 )~loglog(H(X) + 1)...

It may be noted that part (c) has been proved by taking arbitrary base D of logarithm.
Thus it holds for D =2 also. This completes the proof of theorem 2.

Particular case: It can be eas'ily verified that (3.3), (3.4) and (3.5) reduce to the results
due to Leung-Yan-Cheong and Cover [4] for Shannon entropy, when @ — 1 and D =2,

From (3.2) and (1.5) it follows that
Lty <HX)+ 1 (3.16)
Hence (3.16) gives an upper bound on L,.(1).

Remarks

The upper bound on L, (¢) is equal to that of Lyp(¢) while the lower bounds are better than
lower bound on Lyp(t). The lower bounds obtained in this paper are more general due to a
o. parameter and thus are more effective and flexible for application point of view.
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