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Abstract 

In the present communication we define the codes which assign (1 - atphnbet one-one codeword to each of a 
randoni variable and the functions which represent possible transformations from codeword length of a non- 
one code to codeword length of iI uniquely decodable code. By using these functions we obtain bounds on the 
exponentiated nlcan codeword length for one-one code of size (1 - alphabet in ternis of Renyi entropy and 
study the particular cases nlsa. 
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Shannon proved that the minimal expected codeword length L of a prefix code for a ran- 
dom variable X satisfies. 

where H(X) is the Shannon entropy of the random variable X and LuD = Cpil i  is the aver- 
age cadeword length for uniquely decodable code. Shannon's restriction that encoding of 
X will be concatenirted and must be uniquely decadable is motivated by the desire to deal 
with sequential data. In some situations it is advantageous to transmit a single random 
variable in stead of a sequence of random variables, particularly, when there are N states 
for one memoryless source, one for each symbol s; of the source alphabet. Such codes 
which assign a cl'~tit1ct binary eodeword to each outcome of the random variable without 
regard to the constraint that concatenation af these description be uniquely decodable are 
called t : 1 codes. 

Leung-Yan-Cheong and Cover [4] considered 1: 1 codes and defined the average 
codeword length for the best 1:1 code and obtained its lower bound given as 

where N is the number of values that random variable X can have and [S] denotes the 
smallest integer greater than or equal to S. Since the class of 1: 1 codes contains the class 
of uniquely decodable codes, therefore it follows that 
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Compbell [ I ]  introduced the exponentiated codeword lcngth. 

where LuD(t) is the average codeword length for uniquely deccdablc code, D represent the 
size of code alphabet and l i  is the codeword Icngth associated with s, of .Y. Ijc proved the 
following noiseless coding theorem: 

under the condition CD-" 5 1 (1.6) 

where H J X )  is Renyi [S] entropy of order a= 1/1 -i- t and I, is thc cudcword length corrc- 
sponding to source symbols x i .  The inequality (1.6) is Kraf't's inequality which is neces- 
sary and sufficient for the existence of uniquely decodable code. 

Kiefer [3] defined a class of decision rules and showed that H J X )  is the txst dccision 
rule for deciding which of two sources can be coded with smnll cxpcctcci cos t  for se- 
quence of length n, as 11 -+ w, where the cost of encoding a scqucncc is assun~cd lo Ire a 
function only of the codeworth length. Jelinek [ 2 ]  showccl that coding with respect to 
LUD(t) is useful in  minimizing the problem of buffer overflow which occurs whcn thc 
source symbols are being produced at a fixed rate, and the codeworcts arc stored tempo- 
rarily in  a finite buffer. 

In the present paper we define the codes which assign D alphabet one to onc cockword 
to each outcome of a random variable and thc f'unctions which rcprcsctlt imssihlc trans- 
formations from codeword lengths of 1:1 code to UD codcs of s i x  IS alphabet in sec- 
tion 2. 

In section 3 by using these functions we obtain bounds on thc expcmcntiatcd mean 
codeword length of the best 1:l code of size D alphabet i n  icsrns of' IPcnyi entropy and 
study the particular case also. 

2. Transformatioxl from Codeword lengths of I:1 to U Cadcs of Size D-Alphabet 

Let X =  { x i ,  x z  ..., x N )  be a random variable with finite number of valiics having dis~rete 
probability distribution P = {(pi, I+, ..., pN)) ,  pi > 0 for all i, XII ,  = i, p ,  2 p ,  for i < j ) .  Let 
li, i = 1 ,  2, ..., N, be the codeword length of t l~c scqucncc: cncodit~g x, in  ttzc iwst 1:I  code 
of size D alphabet, then the set of possible codcwords i s  

and consequently, we have 
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Thus by inspection we can see that 

where IS7 denotes the smallest integer greater than or equal to S. 

N o w  we define a function h(lJ such that ED-""" 5 1 holds, only then the set of length 

{ yields acceptable codeword length for a uniquely decodable cock. Evidently, if h is 
an integer valued function such that z:, D-""" > 1, then ( h ( l i ) ]  cannot yield a uniquely 
decodable code. 

Theorem 1 .  The followin$ functions are possible transformations fro~n codeword lengths 
of 1 : 1 codes to those of uniquely decodable codes of size D alphabet: 

( i )  
h(li) = 1, + rr[logl,] + log (D" - 1)/  (D'" D). where u > 1 ,  D 2 2. 

(ii)  
lj(li) = 1; + u[log(l, + 111. 11 > 2 and D 2 2. 

(iii) 
l l ( 1 ; )  = I, + [logl; + log(log1,) + ...... + log(log( ...( loglJ))] + 4. 

where we only take the first K iterates for which 

log(log(..,(logli))) is positive. 

For the proof refer to Leung-Yan-Cheong and Cover[4] Theorem 2, 

Lenlrna 2.1 Let 

then 

1 infinite if D 2 e 
I ,  = Go (.r) = dr / .v log, X log(log, X) ... . .= 

finite if D < e 
1 I 

For proof refer to 141 

Tlms 111 is finite only if D < e which implies 0 = 2 .  

for B = 2 and M = Log2e, we have. 

Hence 

C 111 logllog(l0g 1) ... < I 2  + 1 < 5 .  

Substituting (2.10) in (2.7), we get 

S < 5.2" ' ' 
If we choose c = 4 in (2.1 I), then S 5 1. Hence theorem 1 is proved. 
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The exponentiated mean codeword length of size D alphabet for the best 1: 1 code is de- 
fined as 

L l ,  l(t) = ( lit) log (~pi~'[l"g'"-""" + 'I), 0 < t < 0~ (3.1) 

Since the class of the best 1:l codes contains the class of ~iniyuely decodable codes, 
therefore it follows that 

Ll: ,(t) 5 LLID(~)  (3 2)  

It may be seen that (3.2) also holds in view of L I : ~  I L U ~ .  

Now we obtain'lower bonds of (3.1) in the next theorem i n  terms of the Renyi entropy 
of order a by using the functions defined in theorem 1. 

Theorem 2. The expoilentiated mean codeword length (3.1) t'or the best 1:l code of 
size D alphabet satisfies the followings: 

(a) 
L1  ( t )  2 H,(X)-a( 1 + log ( H ( X )  + 1 ) ) - I . ,  (3.3) 

where a > max(1, log,D), z 2 log(Dfi-l)/(DN-D), a = 111 + t and O < t < llcr. 

where a I max(2, log,D), a = 111 + t and 0 <: t 5 l lcr.  

(c) 
t , : , ( t )  r H,(x)-log ( H ( x )  + 1) )-log ~ o ~ ( H ( x )  + 1) +.....-li, (3.5) 

where a = 111 + t, 0 < t 5 1 and base of logaritl~rn is 2. 

Proof: 

(a) From (1.4) and (1.5), we have 

( l l t ) l ~ g ( ~ ~ ~ ; D ' " )  2 H,(X) 
or 

IO~(ED'") 2 tH,(X), since t > 0. 
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By Jensen's inequnhty I"'] < (El)"', so we have 
{ D t /  ) ( ~ 1 ) " '  2 { I)'"'"-""' 

0 r 
(~ f . l : l " ) )  1 > - ~ " / i l l - " i 0 / ( ~ 1  )(/I, since E I  ~ ' 1  - - ( ~ L l : I ( t ) ) r  

~h i s i ng  both sides of (3.9) to the power l i t  and taking logarithm, we get 

Since L I E l  I Lrrn < N ( X )  + 1, therefore it follows that 

y Jensen's inequality E ( ( 1  + 1 )"'I I E (  1 + I ) ) ' " ,  so we have 
{[J~J:"'')~ 2 1 +- 1 ))lit 

Raising both sicius of (3.9) to the power I / t  rind taking logarithm, we get 

or 

(1)" " O ) ' E ( (  1 * ) ' I  > - ~ / ( " " - 4 ' ,  since E { D " }  = ( ~ L l : l ( ' ) ) ~  (3.10) 

wherc 1 * = I log 1 Iog(1og 1 ).....log( .+.. (log I ) ) .  

By Jensen's inequality E { ( 1 * ) ' }  < (E{l*})', so we have 
( ~ 1 ~ 1 : 1 1 ~ ~ ~ 1  - > l ~ f f / ! t r - 4 k / ( ~ ~  1 & 1 11 

Raising both sides nf (3.1 1 )  to the power of l / t  and taking logarith, we have 
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we consider 

Thus 

E( log( l*)}  = E(log"'1 } I E { F : ; ' ( l )  + 21 5 F '" (E1)  + 2 S log'i'(E1) mi-  2 (3.13) 

Substituting (3.13) in (3.12), we get 

Ll  , (t) 2 HrZ(X)-6-log:':(E 1 ) 

or 

L I Z  (t) 2 H,(X)-6-log( E I )-loglog(E 1 )..... 

Since El < H ( X )  + I ,  therefore it follows that 

LI : l( t)  2 H a  (X)-6-log(H(X) + I )-loglog(H(X) + 1 )... 

It may be noted that part (c) Iias been proved by taking arbitrary base f )  of logarithm. 
Thus it holds for D = 2 also. This completes the proof of theorem 2. 

Particular case: It can be easily verified that (3.31, (3.4) and (3.5) reduce to the results 
due to Leung-Yan-Cheong and Cover [4] for Shannon entropy, when a -+ 1 and D = 2. 

From (3.2) and ( 1  5) it follows that 

Hence (3.16) gives an upper bound on L I :  ( t ) .  

emarks 

The upper bound on L1:[(t) is equal to that of Lulj( t )  while the lower bounds are better than 
lower bound on Lun(t). The lower bounds obtained in this paper are more general due to a 
a parameter and thus are inore effective and flexible for application point of view, 
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